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Abstract: Plant growth-promoting bacteria (PGPB) enhance plant growth, as well as protect plants
from several biotic and abiotic stresses through a variety of mechanisms. Therefore, the exploitation
of PGPB in agriculture is feasible as it offers sustainable and eco-friendly approaches to maintaining
soil health while increasing crop productivity. The vital key of PGPB application in agriculture is its
effectiveness in colonizing plant roots and the phyllosphere, and in developing a protective umbrella
through the formation of microcolonies and biofilms. Biofilms offer several benefits to PGPB, such as
enhancing resistance to adverse environmental conditions, protecting against pathogens, improving
the acquisition of nutrients released in the plant environment, and facilitating beneficial bacteria–plant
interactions. Therefore, bacterial biofilms can successfully compete with other microorganisms found
on plant surfaces. In addition, plant-associated PGPB biofilms are capable of protecting colonization
sites, cycling nutrients, enhancing pathogen defenses, and increasing tolerance to abiotic stresses,
thereby increasing agricultural productivity and crop yields. This review highlights the role of
biofilms in bacterial colonization of plant surfaces and the strategies used by biofilm-forming PGPB.
Moreover, the factors influencing PGPB biofilm formation at plant root and shoot interfaces are
critically discussed. This will pave the role of PGPB biofilms in developing bacterial formulations and
addressing the challenges related to their efficacy and competence in agriculture for sustainability.

Keywords: abiotic stresses; biofertilizer; biofilm; biocontrol; plant growth-promoting bacteria

1. Introduction

Elevating food production to feed a growing population, which is projected to increase
to 9.15 billion in 2050, under exacerbated climate change is one of the greatest challenges
facing the agricultural sector [1]. Intensive use of agrochemicals such as fertilizers and
pesticides has successfully increased yield of crop production [2,3]. However, the increase
in agricultural production is not proportional to the increase in the mentioned input [4,5].
Moreover, the long-term application of agrochemicals causes water-holding capacity depletion,
soil fertility reduction, and disparity in soil nutrients [6–10]. Therefore, this leads to undesirable
problems such as increasing pollution, land degradation, depletion of natural resources, loss
of biodiversity, and rising production costs [3,10].

Widespread adoption of sustainable agricultural practices is urgently needed to ad-
dress soil health degradation due to injudicious application of chemical inputs and loss of
soil microbial diversity. Such practices ensure an integrated system of crop and livestock
production in the long term by producing sufficient quantities of high-quality food, mini-
mizing waste and environmental impacts, and using nonrenewable resources efficiently
and profitably [11,12]. This environmentally friendly approach has recently gained consid-
erable attention. The application of sustainable agriculture can help preserve ecosystems,
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promote economic stability of farms, and improve the quality of life of farmers [10]. For
these reasons, the focus of a sustainable agriculture must be on balancing social, economic,
and ecological goals while managing limited resources [3,13].

Soil is not only an essential tool for crop production, but also a complex living
medium [14,15], which must be considered holistically. Soil maintains biological pro-
ductivity, supports the quality of the air and water environment, and sustains the health of
plants, animals, and humans [16]. Therefore, healthy soil must be protected and conserved
to ensure long-term productivity and stability [17]. Microorganisms, as biological compo-
nents of soil, are important key players in nutrient cycling, organic matter decomposition,
and soil structure maintenance [18]. Hence, they are widely known as “natural soil engi-
neers” [19] and can be an eco-friendly alternative to maintain soil health and improve crop
productivity.

Among the plant-associated microbial communities in soil, PGPB can be formulated as
biobased organic biofertilizers and biopesticides due to their ability to maintain a nutrient
rich soil environment, improve abiotic stress tolerance, and act as antagonists against
various pathogens [2]. Moreover, the use of PGPB in agriculture has no negative impact on
the ecosystem, ensures food safety, and creates sustainable crop production [12].

This review highlights the importance of biofilm formation as an essential component of
plant–PGPB interactions. Understanding the process, mechanisms, and factors influencing
biofilm formation by PGPB will lead to its applications and innovative future prospects.

2. PGPB as Multipotent Bioagents

The rhizosphere can be divided into three zones: the endorhizosphere is the interior
of the root, the rhizoplane is the surface of the root, and the ectorhizosphere is the zone
that extends from the rhizoplane to the bulk soil and consists of soil that adheres to the
root [20,21], in addition to the volume of soil that is not part of the rhizosphere and
is not influenced by the root is referred to as bulk soil [22]. Plant growth-promoting
bacteria are able to colonize plants through different types of plant–microbe interactions
and forming associations on root and shoot surfaces as complex, interactive microbial
communities [23,24]. These beneficial bacteria can make an important contribution to
numerous ecological processes in the soil, including nutrient transformation and fixation,
organic matter decomposition, and mitigation of abiotic and biotic stresses [25,26]. Soil
in the rhizosphere surrounding plant roots has a microbial population 100 to 1000 times
higher than the rest of the soil, which is influenced by substances excreted by the plant
roots [21,27]. PGPB colonizing the rhizospheric region interact with other taxa such as
fungi, protozoa, nematodes, and plant viruses.

Roots release mainly high-molecular-weight compounds such as enzymes, proteins,
and polysaccharides from the root tips, which are called root exudates. This mixture, which
consists of polysaccharide-rich secretions, often forms a sheath of slime on the outer surface
of the root called mucilage [28]. Other substances such as sugars, amino acids, hormones,
vitamins, phenolics, and other secondary metabolites in the form of low-molecular-weight
components are also secreted [29]. These various compounds can enrich the rhizosphere
with nutrients, make the environment more comfortable for microorganisms, and help
maintain stable soil aggregates [6,30]. In addition, the release of compounds by plant roots
that affect the physical and chemical properties of the rhizosphere can attract beneficial
microbes in the soil, enriching the microbial community [31].

PGPB play an essential role in regulating soil fertility, nutrient cycling, and promoting
plant growth [32]. The major regions where plant–microbe interactions occur include
the surface and apoplast of leaf tissue (phyllosphere), the rhizosphere, the inner regions
of plant tissue (endosphere), and the bulk soil [33]. The microorganisms that originate
from the seed are the first to colonize plants. This seed-derived microbiota is eventually
supplemented and partially replaced by rhizosphere microbes that enter the plant through
the roots. Partnerships between plants and microbes can vary in intricacy. The plant
responds to the presence of a microbe and its metabolites; vice versa, the microbe is affected
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by the plant environment and reacts to plant metabolism and physiology. Plant exudates
attract microbes in the soil toward the root zone. In turn, plant development and health are
significantly impacted by the microbiota’s activities in the root zone (Figure 1).
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PGPB generally support plant growth through two types of mechanisms: direct and
indirect (Figure 2). The direct mechanisms relate to increasing nutrient availability and
phytohormone production. Indirect mechanisms of PGPB, on the other hand, include
inhibiting various pathogens or preventing negative effects on plant health. Increasing nu-
trient availability in the soil can occur through various processes such as nitrogen fixation,
solubilization of mineral nutrients, and mineralization of organic compounds [27,32,34,35].
One of the limiting and most important factors in agriculture is the supply of plant nutri-
ents, especially nitrogen, phosphorus, and potassium [27]. Nitrogen fixation is considered
an essential trait of PGPB to provide nitrogen through symbiotic and nonsymbiotic mecha-
nisms [27,32]. Phosphate solubilization of mineral forms is possible through secretion of
organic acid, release of protons, or production of chelating substances [36]. In contrast, min-
eralization of organic phosphorus occurs through the synthesis of phosphomonoesterase,
phosphodiesterase, and phosphotriesterase, which catalyze the hydrolysis of the phospho-
ric ester [37]. Potassium in soil is usually deficient as it could be in the form of insoluble
stones or silicate minerals [20,38]. Furthermore, phytohormone-producing PGPB can stim-
ulate plant growth and development stages, such as cell elongation, cell division, root
development, root hair formation, shoot initiation, and tissue differentiation by providing
and regulating various plant hormones, including gibberellins (GAs), cytokinins, abscisic
acid (ABA), ethylene, and indole-3-acetic acid (IAA) [39,40].
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PGPB can produce various metabolites, such as antibiotics, siderophores, volatile organic
compounds (VOCs), hydrolytic enzymes, hydrogen cyanide (HCN), and 1-aminocyclopropane-
1-carboxylic acid deaminase (ACC deaminase), that reduce or prevent pathogenic diseases
and protect against environmental stress [35,41–43]. Synthesis of antibiotics, which are low-
molecular-weight and toxic organic compounds, is a strategy that microorganisms use to
compete with other microorganisms. Different microorganisms have the ability to produce
different antibiotics. Bacillus can produce several antibiotics such as iturins, mycosubtilin,
bacillomycin D, surfactin, fengycin, and zwittermicin A [44]. On the other hand, Pseudomonas
protegens FD6 produces a variety of antibiotics including 2,4-diacetylphloroglucinol, pyoluteorin,
and pyrrolnitrin to suppress plant pathogens. Zhang et al. [45] conducted a study on the efficacy
of FD6 in controlling gray mold on tomato fruit. The results showed that there were no visible
disease lesions at 5 days after inoculation. Siderophores are iron chelators that can sequester
iron from the environment. Siderophores not only provide essential metal nutrients for the
plants but also inhibit the growth of pathogenic microorganisms and trigger the induction of
systemic resistance (ISR) in plants [39,42]. Pseudomonas putida B2017 can act negatively against
Fusarium oxysporum, Rhizoctonia solani, and Sclerotinia sclerotiorum by secreting siderophores [46].
It has been demonstrated that VOCs produced by microorganisms have antimicrobial effects
on plant pathogens by deforming phytopathogenic fungi hyphae and spores [47]. Several
VOCs such as 1-undecene, dimethyldisulfide, 2,5-dimethylpyrazine, benzothiazole, 4-chloro-3-
methyl, and phenol-2,4-bis(1,1-dimethylethyl) can penetrate the soil and rhizosphere [47,48].
Ossowicki et al. [49] reported that VOCs from Pseudomonas donghuensis P482 significantly
inhibited the growth of R. solani AG2.2IIIB and F. culmorum PV. The hydrolytic enzymes, such
as chitinases, glucanases, proteases, and lipases are involved in biotic stress mitigation caused
by fungi due to their ability to degrade the fungal cell wall [50,51]. Studies by Rasul et al. [52]
showed that inoculation of rice seedlings with Pseudomonas sp. MR11 and MR34, and Bacillus sp.
MR42 increased plant seed phosphate content, improved plant root, shoot, and grain weight,
and suppressed the causal agent of rice bacterial leaf blight. These bacteria increased the
enzymes phenylalanine ammonia lyase, catalase, peroxidase, β, 1–3 glucanase, and polyphenol
oxidase. Several PGPB can also protect plants from adverse environmental conditions by
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synthesizing ACC deaminase. Lowering ethylene levels is mediated by the conversion of
ACC, the precursor of ethylene, into α-ketobutyrate and ammonia [35,53]. Application of two
isolates Aneurinibacillus aneurinilyticus and Paenibacillus sp. to French bean seedlings reduced
the negative effects of salt stress and increased root length, root fresh weight, shoot length, shoot
fresh weight, root and shoot biomass, and total chlorophyll content [54]. These two isolates
showed ACC deaminase activity, as well as several plant growth-promoting traits including
production of IAA, siderophores, ammonia, and HCN, and solubilization of P and zinc (Zn).
Another indirect mechanism is the ability of PGPB to produce exopolysaccharides and form
biofilms [6,55]. Exopolysaccharides are responsible for bacterial adhesion to soil particles and
root surfaces; therefore, they are important for bacterial biofilm development [55,56]. Plant-
associated biofilms are able of support host plant growth, reduce microbial competition, and
protect against pathogens and external stresses [57–60].

3. Biofilm Formation by PGPB Communities in Varied Agroecosystems

Biofilm is a structured community of microbial cells in which the cells are often embedded
in an extracellular matrix (ECM) composed of extracellular polymeric substances (EPSs)
and bound to a surface [61,62]. The ECM is the body of the biofilm and is composed of a
conglomerate of different types of EPSs [63]. Microorganisms release EPSs to promote the
attachment process on biotic or abiotic surfaces, followed by the formation of the ECM that
surrounds and hold cells together [62,64]. Thus, the ECM ensures the structural integrity
of a biofilm [65]. Cell density of the biofilm is high, ranging from 108 to 1011 cells·g−1

wet weight [66]. The bacteria can form either a single-layered or multilayered biofilm on
the surface with single or multiple bacterial species within the ECM [60]. The ECM in the
biofilm provides the mechanical stability of the biofilm, mediates cell–cell communication, and
induces the formation of synergistic microconsortia, making the biofilm lifestyle different from
the planktonic state [66,67]. Therefore, microbial cells in biofilms provide several advantages
over their planktonic counterparts, namely, protection, enhanced cell-to-cell adhesiveness
and cohesion between microbial cells, improved nutrient accumulation potential, increased
gene change rate, increased tolerance to antimicrobial agents, and better survival in adverse
environments [62,66].

3.1. Biofilm Structure

The vast majority of a biofilm is formed by the ECM, while the cells of the microor-
ganisms represent less than 10% of the dry mass [64,68]. The EPS contains mainly polysac-
charides, proteins including extracellular enzymes, lipids, and nucleic acids (eDNA and
eRNA) [62,66]. The main components of EPSs are exopolysaccharides, long linear or
branched chain molecules with a high molecular weight of 500–2000 kDa [69]. There are
several types of exopolysaccharides that have been isolated and characterized from a wide
variety of bacterial species. Most of them are heteropolysaccharides consisting of two or
more different monosaccharides. On the other hand, some of them are homopolysaccha-
rides that are made up of single sugars such as sucrose-derived glucans, fructans, and
cellulose [69,70]. Cellulose is one of the most abundant homopolysaccharides in nature, con-
sisting of repeating chains of β-1,4 linked D-glucose that form fibrils [71]. Several bacterial
genera such as Agrobacterium, Acetobacter, Azotobacter, Rhizobium, Sarcina, Alcaligenes, and
various species from the Enterobacteriaceae and Pseudomonadaceae families can synthe-
size cellulose [71,72]. One of the best-studied models for biofilm formation is Pseudomonas
aeruginosa, which produces at least three different exopolysaccharides, including alginate,
polysaccharide synthesis locus (Psl) polysaccharide, and pellicle (Pel) [73,74]. Alginate is
composed of anionic polymers, such as β-D-mannuronic acid and α-L-guluronic acid [63].
Alginate has multiple functions, including adhesion, scaffold formation, water/nutrient
retention, protection from harsh environments, and antimicrobial agents, and it is also
responsible for the mechanical stability of mature biofilms [62]. Overproduction of this
exopolysaccharide is characteristic of mucoid strains [75]. Psl polysaccharide is a repeating
penta-saccharide containing D-mannose, D-glucose, and L-rhamnose [76]. In addition, Psl
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polysaccharide plays a role in cell surface attachment and maintenance of biofilm architec-
ture [77]. Pel, on the other hand, is a glucose-rich exopolysaccharide, required for pellicle
formation at air–liquid interfaces [71]. Several proteins that constitute the EPS exhibit enzy-
matic properties, such as protein-degrading enzymes, polysaccharide-degrading enzymes,
and lipid-degrading enzymes, are produced in the biofilm mode. The degrading enzymes
break down biopolymers into low-molecular-mass products that can be used as carbon and
energy sources. Therefore, enzyme proteins have functions in either biofilm reorganization
or degradation [78]. In addition, nonenzymatic proteins, such as lectins associated with the
cell surface and extracellular carbohydrate-binding proteins involved in the formation and
stabilization of the polysaccharide matrix network are also found in the EPS [62].

One component of EPS is extracellular DNA (eDNA), which is either self-secreted or
derived from lysed bacteria within the community and serves to strengthen the biofilm
infrastructure [74]. The presence of eDNA contributes to the structural integrity of the
ECM [79]. It also facilitates the exchange of genetic information between bacterial cells
within the biofilm, and can increase the biofilm’s tolerance to antimicrobial agents [67,74].

3.2. Biofilm Formation

Development of microbial cells from a free-living planktonic life form into biofilms
lifestyle is divided into five main phases. It consists of reversible attachment of bacteria on
a surface, irreversible attachment by adhesion to the surface, development of microcolonies,
maturation with a three-dimensional structure, and dispersion by the release of bacterial
cells to initiate to form a new biofilm [59,80]. Figure 3 shows the phase of biofilm formation.
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3.2.1. Bacterial Attachment to a Surface

The first step of biofilm formation is reversible bacterial attachment to the surface.
This initial attachment can be easily dislodged and reassembled, either by bacterial mobility
or by the action of fluid shear forces [59,81]. Planktonic cells interact with a substrate
surface as a result of a random process mediated by Brownian motion and bacterial surface
appendages such as pili, fimbriae, and flagella. Another mechanism for surface transport
of bacterial cells is sedimentation due to gravitational forces or convection, in which cells
are physically transported to the surface by the movement of the bulk fluid [58,59]. Motile
bacteria are more competent to overcome hydrodynamic and repulsive forces by utilizing
flagella [82]. Flagellum-based motility can be either forward propelling motion in liquids
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(swimming) or on solid moist surfaces (swarming) [74,83]. On the other hand, bacteria can
exhibit twitching that allows bacterial movement along the surface, driven by type IV pili.
Type IV pili play a role in motility, cell–cell adhesion, cell–surface adhesion, and horizontal
gene transfer [84,85].

Bacteria constantly change their movement in response to their environment [74].
The ability of motile bacteria to monitor changes in environmental conditions and di-
rect their movement toward a favorable environment in nutrient gradients is called
chemotaxis [29,86]. The process of chemotaxis is initiated when a nutrient source or
chemoattractants in the environment bind to membrane-anchored receptors and trigger
phosphorylation of the associated cytoplasmic histidine kinase CheA. Phosphorylated
CheA (CheA-P) interacts with phosphorylated CheY. In addition, CheY-P diffuses through
the cytoplasm and then interacts with the flagellar motor, changing the direction of the
flagellar motor rotation of the cell toward a favorable environment through a tumble [87,88].
Plants release various complex organic compounds including sugars, amino acids, organic
acids, and other small molecules from the roots. Therefore, the chemotaxis response of bac-
teria to chemical gradients depends on the plant host and root region [29]. O’neal et al. [88]
reported that motile cells of A. brasilense accumulated in root hairs and elongation zones of
wheat but were shed in the root tip. The increased accumulation of A. brasilense in the root
hairs and elongation zones of wheat was caused by attractant organic acids such as pyru-
vate, malic acid, and succinate, whereas the low accumulation of A. brasilense at the root tips
of wheat was due to the production of reactive oxygen species such as hydrogen peroxide.

3.2.2. Adhesion to Surface

The next step in biofilm development is the irreversible attachment of bacterial cells
through a permanent bond in the presence of EPSs [80]. The EPSs play an essential role
in the host attachment process, acting as a “molecular glue” responsible for the firm
anchoring of bacteria to the surface and nurturing contact between cells [59,89,90]. Dia-
zotrophs, such as Rhizobium leguminosarum, Azospirillium brasilense, and Gluconacetobacter
diazotrophicus attach to the surface of roots using cellulose microfibrils with agglutinating
activity [89]. P. aeruginosa produces at least three types of exopolysaccharides, including Psl
polysaccharide, Pel, and alginate, which play an important role in biofilm formation [73,74].
Ghafoor et al. [91] reported that P. aeruginosa mutants deficient in Psl polysaccharide ex-
hibited decreased crystal violet staining of static biofilms at an initial stage of biofilm
development. In contrast, mutants deficient in Pel lacked the formation of pellicle at the
air–liquid interphase in inert culture medium. At this stage, it becomes more difficult
to break the adhesion of bacterial cells to a surface by treatments such as shear force or
chemical treatment with enzymes, detergents, disinfectants, and surfactants [80,92].

3.2.3. Microcolony Formation

The production of EPS matrix leads to the growth and aggregation of microorganisms
to form microcolonies [80]. Adhesion of bacterial cells to the substrate and between bacterial
cells has a major impact on microcolony formation. Microcolony structures form due to the
downregulation of the type IV pili-dependent twitch motility and the production of matrix
components that adhere tightly to cells within the biofilm, stopping motility [93,94]. The
production of biosurfactants such as rhamnolipids from P. aeruginosa plays an additional
role in promoting the formation of microcolonies in the initial phase and facilitates the
migration of cells to form a mushroom cap in the maturation phase of the biofilm [95].
Several bacteria can form microcolonies on different roots from the tip to the elongation
zone [96]. The advantages of forming microcolonies are that they allow substrate exchange
between species and remove end products from bacterial cells [59,90].

3.2.4. Biofilm Maturation

After microcolony formation and EPS accumulation, the biofilm community grows
by simultaneous cell proliferation [74]. The biofilm expands from a thin layer to up
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to 100 layers [97]. Formation of the mushroom shape occurs in a sequential process
in which a nonmotile bacterial subpopulation forms the initial microcolonies and the
mushroom stalk. The nonmotile bacterial subpopulation may form in a subpopulation
due to downregulation of motility [59]. Moreover, mature cells supported by type IV
pili and guided by a chemotaxis gradient climb up the mushroom stalk due to nutrients
and subsequently form the mushroom caps. As expected, bacteria in the biofilm move
toward the nutrient-rich zone to maintain their activity and biofilm growth [93,98,99].
Sheraton et al. [99] revealed that the development of mushroom-shape in P. aeruginosa
biofilm was influenced by chemotactic motility. Their study showed that chemotaxis-
deficient mutants lacking chemotactic motility formed large stalks without caps. In addition,
Ghanbari et al. [100] found that the formation of mushroom-shaped structures in the biofilm
of P. aeruginosa also depends on the nutrient content and initial density of cells on the stalk.

3.2.5. Biofilm Dispersal

During dispersion, the final step of the biofilm life cycle, individual cells leave the
biofilm to resume a planktonic lifestyle. Dispersion is the final stage of a biofilm’s life cycle,
during which individual cells detach from the biofilm and resume a planktonic lifestyle.
The detachment process is a strategy used by bacterial cells to leave biofilms and begin
a new life cycle under suitable environmental conditions [59]. It is a complex process in
response to changes in their environment, such as nutrient starvation, oxygen starvation,
production of matrix-degrading enzymes, accumulation of toxic products, and passive
behaviors such as detachment and erosion by external forces such as shear forces [77]. In
addition, bacterial cells within a mature biofilm can also spread when the number of cells
reaches a threshold [74]. During the spreading process, genes responsible for cell motility
and EPS degradation are usually upregulated, while genes related to EPS production
are often downregulated [59]. Quorum sensing (QS) is the intercellular signaling among
bacteria. This process has been shown to play a special role in biofilm spreading in response
to cell population density through the cell–cell communication system [59]. Insufficient
carbon and nitrogen sources may be the critical factors leading to the bacterial dispersal
process. In addition, EPS-degrading enzymes, such as the glycoside hydrolases PelA and
PslG in P. aeruginosa, also contribute to the detachment of bacteria from the matrix [101].
Another mechanism to escape from mature biofilms is the release of a mixture of D-amino
acids, such as D-tyrosine, D-leucine, D-tryptophan, and D-methionine. This mechanism
is controlled by racemase enzymes, which catalyze the stereochemical conversion of L-
to D-amino acids. Studies by Guilhen et al. [102] have shown that dispersed biofilm
cells are more efficient at attaching to plant roots, forming microcolonies, and surviving
better than their planktonic counterparts. Dispersion is considered an important stage for
biofilm control as the planktonic state becomes more susceptible to immune responses and
antimicrobial agents.

3.3. Factors Responsible for Biofilm Formation

Several factors are largely responsible for the formation of biofilms. Abiotic factors
are involved in biofilm formation, such as nutrient availability, temperature, pH, oxygen,
and surface physicochemical properties. Biotic factors such as microbial cells and metabo-
lites produced by bacteria also influence biofilm formation [89,103]. Nutrient-depleted
conditions stress microorganisms but stimulate biofilm formation. However, prolonged
nutrient deprivation prevents biofilms from advancing their maturation [104,105]. Savijoki
et al. [106] reported that culturing Lactobacillus rhamnosus GG in a medium containing 2%
fructose increased biofilm formation twofold compared to 2% glucose and that planktonic
cells cultured on fructose exhibited higher adherence levels compared to glucose. The
concentration of carbon sources also affects biofilm formation. In a study by Zou and
Liu [107], different carbon sources such as glucose, maltose, lactose, and sucrose were
used at different concentrations (from 0–10 mg/L) to induce biofilm formation. The results
showed that the optimal concentration for Staphylococcus epidermidis biofilm production
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was 2.5 mg/mL for all carbon sources. As mentioned earlier, biofilms are stimulated under
stress conditions. Wang et al. [108] demonstrated that P. stutzeri A1501 formed a biofilm
with the highest biomass in lactate-containing K (LK) medium without added nitrogen,
compared to LK medium supplemented with ammonia chloride as a nitrogen source.

Extreme temperatures and pH negatively affect biofilm formation [103]. The optimal
growth temperature for Listeria monocytogenes was 37 ◦C. Moreover, biofilm production of
58 isolates of L. monocytogenes was five times higher at 37 ◦C than at 10 ◦C [104]. Citrobacter
werkmanii BF-6 has been shown to grow in a wide pH range. Interestingly, biofilm formation
increased with decreasing pH at 30 ◦C in LB medium, although it inhibited bacterial
growth [109]. A study by Haque et al. [110] showed that Enterobacter asburiae ENSD102,
Enterobacter ludwigii ENSH201, Vitreoscilla sp. ENSG301, Acinetobacter lwoffii ENSG302, and
Bacillus thuringiensis ENSW401 developed thick and robust air–liquid biofilms at pH 7.
In addition, E. asburiae ENSD102 and Vitreoscilla sp. ENSG301 produced optimal solid–
air–liquid biofilms at pH 4. Restriction of oxygen availability also affects bacterial biofilm
metabolic activity and usually triggers active dispersal [111].

Cell adhesion to the surface is a prerequisite for colonization [103]. However, the
physicochemical properties of the surface between the substrate and the bacteria influence
each other [59]. For example, surface roughness may promote bacterial attachment and
biofilm development due to lower shear forces and greater surface area. However, bacteria
prefer to adhere to hydrophobic and nonpolar surfaces rather than hydrophilic surfaces
because hydrophobicity reduces the repulsive forces between the surface of the bacteria
and the substrate [59,89].

QS is an intercellular signaling in bacteria that regulates gene expression in response to
cell population density via a cell–cell communication system. It is mediated by the produc-
tion and detection of signaling molecules called autoinducers, such as N-acylhomoserine
lactones (AHL) in Gram-negative bacteria, oligopeptides in Gram-positive bacteria, and
autoinducers-2 (AI-2) in both Gram-negative and Gram-positive bacteria [20,75,112,113].
QS contributes to several key ecological and interdependent properties of bacteria, such
as secretion of antibiotics, siderophores, or enzymes, virulence factors of phytopathogens,
and communication between plants and microbes [58,114]. QS in Aeromonas regulates the
expression of biofilm formation, motility, and virulence [96,115].

Lipopeptides such as serawettins and rubiwettins were produced by Serratia marcescens
and Serratia rubidaea, respectively, indicating wetting activity involved in surface coloniza-
tion [116]. In contrast, B. subtilis produced antibacterial agents such as surfactin and
bafilomycin L, which are important for swarm motility. Moreover, the inability of B. subtilis
mutants to produce surfactin, bacillomycin L, or both surfactin and bafilomycin L indicated
a significant reduction in biofilm formation [117]. Zhu et al. [118] also reported that the
expression of genes encoding the mutants was lower than wildtype B. pumilus HR10, affect-
ing swarm motility performance, polysaccharide content, and biofilm formation. Surfactin
reduces surface tension and acts as a wetting agent, thereby affecting bacterial swarm
motility [117].

EPSs are responsible for facilitating cell-to-surface and cell-to-cell interactions, aggrega-
tion or adhesion of cells to the surface, diffusion barrier to protect the cell, and regulation of
biofilm formation and structure [60]. EPSs can suppress cell adhesion through electrostatic
forces, while large amounts enhance adhesion through interactions between functional
groups in EPS [90]. In addition to EPSs, eDNA plays an important role in biofilm formation,
including mediating cell–cell interactions, and it is mainly found in the stalk region of
microcolonies [74].

Bacteria produce siderophores to chelate iron under low iron availability [119,120].
Under Fe-limiting conditions, microbial surface hydrophobicity and biofilm formation
decrease [121]. Guo et al. [122] used E. coli UTI89 as a model organism to study the effect of
different iron concentrations. They found that biofilm formation increased under an iron
concentration of 0 to 10 µM, but was completely inhibited in the presence of 2000 µM iron.
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Thus, the iron siderophore plays a role in the formation of structured biofilms. Siderophore-
deficient mutants of P. aeruginosa showed a decreased ability to form biofilms [123].

4. Role of Biofilm-Forming PGPB in Sustainable Agriculture

PGPB biofilms are found in various niches within agroecosystems. Rhizosphere and
plant roots are hotspots for PGPB interactions as significant amounts of nutrients are
released from plant roots [29]. Diverse PGPB are able to form microcolonies on different
parts of roots, from the tip to the elongation zone. They also grow into large populations
and form mature biofilms [124]. Most studies on root colonization patterns have shown that
PGPB colonization in the rhizosphere forms microcolonies or aggregates on root surfaces.
The distribution of these colonies is patchy and nonuniform [58]. Living in biofilms
provides several benefits to PGPB, including facilitating bacterial interactions with plants,
improving bacterial resistance to adverse environments, protecting against pathogens, and
enhancing uptake of nutrients released in the plant environment [118]. Many beneficial
bacterial biofilms associated with various plants have been studied (Table 1).

Table 1. Role of PGPB biofilms associated with various plant species.

Functional Trait PGPB Plant Species Inoculation of PGPB Enhancement Reference

Biocontrol P. polymyxa B5 Peanut
(Arachis hypogaea L.) Seed 96.7% biocontrol efficacy

43.5% plant yield [125]

B. pumilus HR10 Masson pine
(Pinus massoniana) Roots 76.8% biocontrol efficacy [118]

P. synxantha,
P. brassicacearum Arabidopsis thaliana Roots 81% and 82% biocontrol

efficacy, respectively [126]

B. subtilis 916 Rice (Oryza sativa L.) Rice sheaths 60% biocontrol efficacy [117]

B. velezensis BBC047 Tomato
(Solanum lycopersicum L.) Roots; leaves ±66% and ±53% biocontrol

efficacy, respectively [127]

Plant growth
promotion B. salmalaya 139SI Oil palm

(Elaeis guineensis Jacq.) Seedling and soil 55.4% stem height
66.7% stem dry weight [128]

Consortium of Pseudomonas
sp. M45 and

Stenotrophomonas sp. K96

Tea
(Camellia sinensis) Roots 4.85-fold shoot length

4.65-fold root length [129]

B. amyloliquefaciens SQR9 Maize (Zea mays L.) Roots
42–60% biomass

32–46% shoot height
33–49% root length

[130]

Plant growth
promotion,
biocontrol

Consortium of
Microbacterium,

Stenotrophomonas,
Xanthomonas

Arabidopsis thaliana L. Soil ±31% shoot fresh weight
±36% biocontrol efficacy [131]

Plant growth
promotion,

drought tolerance

B. aryabhattai ESB6,
P. azotoformans ESR4,

P. cedrina ESR12,
P. chlororaphis ESR15,

P. gessardii ESR9,
P. poae ESR6,

P. veronii ESR21,
S. Maltophilia ESR20

Tomato
(Solanum lycopersicum L.) Roots

11%, 14%, 7%, 6%, 8%, 10%,
3%, and 12% plant height,

respectively

18%, 33%, 22%, 18%, 3%,
29%, 17%, and 2.5% root dry

weight, respectively

[132]

Plant growth
promotion,

salinity tolerance

B. licheniformis QA1,
E. asburiae QF11

Quinoa
(Chenopodium quinoa Willd.) Seeds and soil

±42% and ±46% root length,
respectively

±46% and ±13% shoot
length, respectively

[133]

Drought tolerance B. amyloliquefaciens 54 Tomato
(Solanum lycopersicum L.) Roots ±15% relative water content

of leaves [134]

P. azotoforman FAP5 Wheat
(Triticum aestivum L.) Seeds

9% shoot length
14% root length

10% shoot dry weight
16% root dry weight

[135]

Consortium of
Microbacterium oxydans,

Paenibacillus amylolyticus,
Stenotrophomonas rhizophila,

Xanthomonas retroflexus

Arabidopsis thaliana Rhizosphere
2-fold fresh weight

1.5-fold diameter of rosettes
1.5-fold chlorophylls content

[136]

Salinity tolerance B. amyloliquifaciens Barley
(Hordeum vulgare L.) Seeds and soil 23% root dry weight

43% shoot dry weight [57]
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4.1. Biocontrol Activity against Plant Pathogens

Evidence that the survival, persistence, and virulence mechanisms of microorganisms
with biocontrol potential are largely related to their biofilm lifestyle has been well estab-
lished since the early 1980s [137,138]. Various PGPB efficiently occupy, colonize, and form
biofilms in/on their rhizospheric or phyllospheric niches as their own survival strategy,
as well as to mediate plant control activities [103,139]. Plant-associated biofilms are able
to protect plants from pathogenic microorganisms by competing with and inhibiting their
colonization, stimulating ISR, and producing antimicrobials [34,45,58,131,134].

Several research groups [140–143] have demonstrated that a lipopeptide “surfactin” trig-
gers bacillus biofilm formation via KinC activation of the Spo0A pathway. Zeriouh et al. [144]
demonstrated that surfactin produced by B. subtilis strain UMAF6614 triggers biofilm forma-
tion on melon phylloplane and contributes to its biocontrol activity against plant pathogens
(Pectobacterium carotovorum, Xanthomonas campestris, and Podosphaera fusca). Biofilm forma-
tion by biopesticides can be stimulated by plant root exudates or through exposure of the
microorganisms to antimicrobial products or stress [125,145–147]. Haggag and Timmusk [125]
demonstrated that biofilm formation by Paenibacillus polymyxa B5 on peanut plant inhibits col-
onization of the pathogenic fungus, Aspergillus niger, as well as helps in reducing 96.7% crown
rot disease and successfully promoting 43.5% of plant yield. Furthermore, Timmusk et al. [148]
demonstrated the antagonistic abilities of two P. polymyxa strains against Phytophthora palmivora
and Pythium aphanidermatum in an A. thaliana model system. Biofilm-forming PGPB signifi-
cantly protected the plants from various pathogens, resulting in increased plant productivity.
However, there were only a few reports that included plant yield information as a consequence
of biocontrol agents of biofilm-forming PGPB.

4.1.1. Root Colonization

Colonization of the rhizosphere or roots by PGPB plays essential roles in eliminating
pathogenic microorganisms by reducing the availability of root exudates and triggering
an innate immune response [139]. As a result, horizontal filtering of soil bacteria occurs,
leading to a reduction in bacterial diversity in the soil and greater bacterial specialization on
the root. Subsequently, interactions among soil bacteria increase, leading to higher bacterial
persistence and colonization of roots through processes such as metabolic exchanges,
secretion of antimicrobial substances, and other processes. The ability of PGPB to colonize
faster, as well as compete with nutrients and niches, represents the basic mechanisms
that protect plants from phytopathogens [149]. Fan et al. [150] reported that the Gram-
positive rhizobacterium Bacillus amyloliquefaciens FZB42 can colonize different plants with a
specific region on the roots. FZB42 preferentially colonized the tips of the primary roots of
Arabidopsis, along the furrows between the epidermal cells of the roots, and in the concave
spaces on the ventral sides of the fronds of Lemna. This is dependent on the availability
of plant tissue, water, and nutrients [103]. A study by Harting et al. [126] showed that
inoculation of P. synxantha or P. brassicacearum on A. thaliana seedlings successfully protected
the roots from Verticillium dahliae colonization. The roots of A. thaliana treated with the
bacterial culture were examined under a fluorescence microscope. Fewer fungal hyphae
were detected on the roots, and large portions of the root were free of fungal hyphae. This
suggests that those Pseudomonas isolates may be an effective biocontrol agent. In addition,
Haggag and Timmusk [125] used P. polymyxa to colonize and form a biofilm on the root of
A. thaliana to inhibit crown root rot caused by A. niger. Their study showed that P. polymyxa
B5 significantly colonized the root, and the density reached 109 bacteria per gram of soil
after 30 days. The results may indicate that the higher population densities of strain B5 in
the rhizosphere effectively control A. niger.

4.1.2. Triggering Induced Systemic Resistance (ISR)

Induced systemic resistance is one of the plant defense strategies initiated by beneficial
microbes such as PGPB and mycorrhizal fungi against pathogenic attack [151–153]. The
density of PGPB must to reach 105–107 colony-forming units (CFU) per gram of root to
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elicit ISR [151]. Many plants such as bean, cucumber, tobacco, tomato, carnation, radish,
and A. thaliana can use ISR as a protective mechanism against a variety of plant pathogens,
including bacteria, fungi, viruses, and insects [154,155].

Phytohormone signaling pathways such as salicylic acid (SA), jasmonic acid (JA),
and ethylene (ET) are required as primary regulators in the plant immune signaling net-
work [131,152,154]. In general, SA is effective against biotrophic pathogens, whereas JA/ET
is effective against necrotrophic pathogens and insects [131,153]. B. cereus AR156 was
involved in both the SA and JA/ET pathways and triggered ISR against the biotrophic
pathogen Pseudomonas syringe DC3000 on A. thaliana [156]. In contrast, B. cereus AR156
activated only JA/ET signaling pathways and stimulated ISR against necrotrophic Botrytis
cinerea on Arabidopsis. Activation of signal transduction pathways during ISR depends on
ISR-inducing strains, host plants, and pathogens [154]. According to Zhu et al. [118], the
wildtype B. pumilus HR10 was able to colonize the roots of Pinus massoniana seedlings and
inhibit R. solani better than the biofilm-deficient mutant MA15. Their study also showed
that the expression of PR2, which regulates the salicylic acid-related gene of B. pumilus
HR10, was higher than that of the biofilm-deficient mutants and the control. This suggests
that B. pumilus HR10 contributes to the initiation of ISR. Zebelo et al. [157] demonstrated
biocontrol activity of Bacillus spp. against Spodoptera exigua larvae when larvae were fed
cotton (Gossypium hirsutum) inoculated with Bacillus spp.

4.1.3. Antimicrobial-Producing Biofilm

Microbes produce biosurfactants, such as polysaccharide–protein complexes, lipopep-
tides, glycolipids, phospholipids, fatty acids, and natural lipids. Lipopeptides have high
surface activity and antibiotic potential that can be used as biocontrol agents [158]. Bacillus
subtilis is a recognized biocontrol agent due to the production of lipopeptides such as
surfactin, iturin, and fengicin. Hazarika et al. [159] found that B. subtilis SCB-1 produces
iturin and exhibits strong antagonistic activity against several phytopathogenic fungi be-
longing to the genera Alternaria, Cochliobolus, Curvularia, Fusarium, Neodeightonia, Phomopsis,
and Saccharicola. Luo et al. [117] also reported that the surfactin-deficient mutant and
bafilomycin-deficient mutant of B. subtilis 916 altered swarming motility, reduced biofilm
formation, and reduced antagonistic activity of Rhizoctonia solans-infected rice scales. More-
over, Stoll et al. [127] concluded that surfactin production by Bacillus velezensis is involved
in biofilm formation and stable colonization to further activate ISR. The lipopeptide sy-
ringomycin produced by Pseudomonas spp. was able to inhibit the growth of saprophytic
Aspergillus nidulans and Verticillium spp. Moreover, the inhibitory effect depends on the
presence of the gene encoding the transcriptional regulator LuxR or genes involved in the
synthesis of syringomycin [126]. In addition to antibiotics, PGPB also produce exoproteases,
HCN, or phenazines [27].

4.2. Promoting Plant Growth by Biofilm-Forming PGPB

Beneficial biofilms attached to plant roots aid in nutrient cycling, provide essential
macro- and micronutrients, and produce growth-promoting substances, including auxins
(indolyl-3-acetic acid), gibberellins, and cytokinins [40]. A study conducted by Haque
et al. [132] showed that 26.9% of rhizobacterial strains isolated from drought ecosystems
were able to form biofilms in a NaCl-containing liquid culture and exhibit several plant
growth-promoting properties such as nitrogen fixation, solubilization of nutrients (P, K, and
Zn), and production of IAA, ammonia, siderophores, ACC deaminase, catalases, lipases,
cellulases, and proteases. Inoculation of Xanthomonas, Stenotrophomonas, and Microbacterium
isolates that formed a biofilm in the soil significantly increased the fresh weight of Ara-
bidopsis plants and resulted in systemic resistance to downy mildew [131]. Biofilms of
Rhizobium miluonense Rm3 and Burkholderia anthina Ba8 were able to dissolve inorganic
phosphates, lower pH, and release organic acids [160]. In addition, consortium biofilms
of PGPB and Aspergillus were able to dissolve phosphorus, produce IAA, and exhibit
higher nitrogenase activity than their bacterial and fungal counterparts [161]. Further
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work by Hazarika et al. [129] found that Stenotrophomonas sp. K96 and Pseudomonas sp.
M45 exhibited strong biofilm formation and colonization on tea roots, as well as synergis-
tic plant growth-promoting properties, resulting in significant increases in several plant
growth-promoting vegetative parameters. Bandara et al. [162] reported that the produc-
tion of indole acetic acid-like substances (IAAS) and the acidity of biofilms composed of
endophytic bacteria and fungi were higher than those of mixed cultures, fungi, or bacteria.
The acidity was higher because biofilms release H+, which is reflected in IAA production
and solubilization of minerals. In addition, microbial acid production is important for the
suppression of plant pathogens [163].

Naturally, biofilm formation in the rhizosphere is composed of several bacterial
species [29,164]. Several studies have shown that mixed biofilm-based inoculants form
stronger biofilms than single species, suggesting collaboration among strains [29]. A
four-species consortium consisting of Stenotrophomonas rhizophila, Xanthomonas retroflexus,
Microbacterium oxydans, and Paenibacillus amylolyticus produced greater biofilm biomass
than individual species, suggesting that all individual strains benefit from inclusion in the
multispecies community [164]. A multispecies consortium of Bacillus spp. and Microbac-
terium sp. isolated from the rhizosphere showed high synergy in biofilm formation [29].
Biofilm formation of PGPB on plant roots helped to enhance photosynthesis and leaf
growth. Co-inoculation of 50% recommended fertilizers with PGPB biofilm biofertilizers
helps to increase leaf growth [20]. Conventional application of monocrops or inoculation
with mixed crops may not result in the highest microbial effects than application of biofilm
consortia [60]. Prasanna et al. [165] showed that inoculation with cyanobacteria induces
a plant defense response and increased Zn mobilization in corn hybrids. They also con-
firmed that cyanobacterial treatment resulted in significant changes in glomalin-related soil
proteins and polysaccharides in the soil and the activity of defense enzymes in plant roots
and shoots.

4.3. Mitigating Abiotic Stress in Plants by Biofilm-Producing PGPB

Biofilm formation is considered a primary protective strategy against unpredictable
and adverse environmental conditions. Therefore, PGPB can survive in biofilms in the
rhizosphere and interact with plants better than planktonic cells. Cells within the biofilm
matrix have been shown to be more resistant to antimicrobial compounds, desiccation,
and UV light [166]. Environmental stresses such as nutrients and osmotic stress lead to
increased competition among bacteria for available nutrients. Therefore, planktonic bacteria
congregate and form biofilms to protect them in the rhizosphere. In addition, increased
production of exopolysaccharides can support biofilms and improve tolerance to abiotic
stressors [57].

Studies by Kasim et al. [57], showed that 20 of the PGPB tested had the ability to
form a biofilm under 0, 250, 500, and 1000 mM NaCl, which increased with increasing salt
concentration. In addition, barley grains coated with nine selected biofilm-forming PGPB
isolates showed that they attenuated the deleterious effect of salinity and had higher shoot
length by 10–15%, fresh mass of shoots and roots by 64% and 35%, respectively, dry mass
of shoots and roots by 41–43% and 8–27%, respectively, and relative water content of shoots
and roots by ±7% and 12–15%, respectively, compared to the control. A similar result
was also reported by [167]. Inoculation of salt-tolerant strains Pseudomonas plecoglossicida
PB5 and Bacillus licheniformis AP6, which had the ability to form a biofilm, withstood
salt stress better than non-inoculated plants, significantly promoted dry mass (89–96%),
and improved photosynthetic pigments (10–67%), gas exchange activities (42–67%), and
nutrient uptake (9–14%) in sunflower. Some PGPB that form EPS can bind cations such as
Na+, suggesting a role in alleviating salt stress by reducing Na+ availability, increasing K+

absorption, and improving water uptake [20,133].
According to Wang et al. [134], biofilms of Bacillus amyloliquefaciens 54 improved root

colonization and drought tolerance in tomato plants. In addition, plants inoculated with
hyper-robust biofilm (∆abrB and ∆ywcC) of mutant B. amyloliquefaciens 54 were better able
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to withstand drought stress. In another study conducted by Timmusk et al. [168], Bacillus
thuringiensis AZP2 formed a biofilm and produced an EPS matrix around wheat root hairs,
which is an important strategy to improve tolerance to drought stress. Their study also
found that AZP2 produced small amounts of alginate, which has the property of retaining
water. Thus, it may increase tolerance to drought stress. In addition, Ansari et al. [135]
reported that the strain Pseudomonas azotoforman FAP5 effectively alleviated drought stress
in wheat plants through enhanced biofilm development, photosynthetic pigment efficiency,
antioxidant enzymatic activities, and root colonization. Moreover, plant inoculated with
strain FAP5 had higher root adhering soil per root tissue (RAS/RT) by 29% compared to
the control. Enhancement of RAS/RT indicates an increase in soil aggregation and higher
water-holding capacity around the roots, which improves nutrient uptake in plants. A
consortium of four species, Stenotrophomonas rhizophila, Paenibacillus amylolyticus, Microbac-
terium oxydans, and Xanthomonas retroflexus, had the strongest synergy in biofilm formation
and induced drought tolerance through increased ABA biosynthesis and chlorophyll con-
tent [136]. It has also been reported that some soil bacteria form biofilms in response
to heavy metal pollution and scavenge heavy-metal ions such as arsenic, lead, mercury,
and cadmium, leading to attenuation of heavy-metal contamination of plants in polluted
areas [169,170].

5. Conclusions and Future Prospects

PGPB biofilms are considered to have a fundamental role in future agriculture to
achieve sustainable development goals. They can provide an alternative to agrochemicals
in the agricultural sector as biofertilizers and biocontrol agents. Beneficial biofilms on
plant roots help in nutrient cycling, provide inorganic nutrients (N, P, and K), and mitigate
abiotic stress. They protect plants from pathogens by competing with and colonizing
pathogenic microorganisms, stimulating ISR, and producing antimicrobials. Moreover,
the beneficial effects of the interaction between plants and PGPB are enhanced by the
formation of a biofilm toward the planktonic form. PGPB as a bioinoculant sometimes fails
to competitively colonize plant roots and rhizosphere. Therefore, PGPB biofilm formula-
tion is one of the strategies in bioinoculant development to overcome conflicting in vivo
effects. However, significant efforts are still required to develop effective formulations for
sustainable agriculture based on biofilms producing PGPB. The most important steps will
be (a) the selection of biofilms producing PGPB over planktonic PGPB, (b) crop-specific
plant/biofilm-producing PGPB interaction studies before preparing them for commercial
scale, (c) the formulation’s physical form (e.g., liquid, solid, wettable powder), (d) car-
rier material selection for the formulation, etc. In addition, it is necessary to understand
the communication of bacteria within the biofilm with other microorganisms and plants
through a variety of molecular signals. This will help stabilize the effect of biofilm–plant
interactions and provide insight into microbial ecology.
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