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Abstract: Picea asperata, a common tree species in the subalpine areas of Li County, Sichuan Province,
China, is susceptible to Lophodermium piceae. Remote sensing has the advantages of large-scale, fast
information acquisition, and low cost, which can overcome the shortcomings of ground survey.
Hence, we used Landsat 8 satellite multi-spectral images and forest resource distribution data to
investigate and analyze this forest disease at a large scale. Firstly, we extracted the spatial distribution
information of Picea asperata and chose a temporal sequence indicator to establish a regression model
and obtained a significantly negative correlation between the damage degree of plants and the change
rate of normalized difference vegetation index (NDVI). Accordingly, the investigation results of
the disease have good consistency with the ground survey data in spatial distribution and damage
degree. On this basis, a temporal regression analysis was performed by combining the remote
sensing investigation results with climate variables, and canonical correspondence analysis (CCA)
was utilized in the spatial comprehensive analysis of Lophodermium piceae with terrain, soil and forest
stand factors. Conclusively, this study effectively coped with the difficulties in full investigation and
analysis of Lophodermium piceae in ecologically fragile subalpine areas of Western Sichuan. It is of
important reference value in the early warning and monitoring of this disease, and also provides
objective and reliable information support for ecological restoration and management planning
in the Wenchuan earthquake-stricken areas.

Keywords: Lophodermium piceae; subalpine area; satellite multi-spectral images; large-scale investiga-
tion; spatio-temporal analysis

1. Introduction

Forests are essential for biodiversity and human life. There are about 8000 forest
pests in China, but over 200 of them have brought about serious losses [1]. It is urgent to
investigate and control these forest pests. However, traditional survey methods greatly rely
on human labor, which is costly and time-consuming. Their efficiency and accuracy largely
depend on artificial factors. Particularly, it is difficult to investigate forest pests in high
mountains and dangerous slope areas that humans cannot reach [2]. Moreover, because of
complex topography and inconvenient transportation in forest areas, it is difficult for local
forestry departments to accurately acquire large-scale and accurate information of pests
in time [3]. All of the above make it difficult to control an epidemic situation once pests
are found. With the development of remote sensing technology, its application in forest
research has made remarkable achievements [4,5]. Benefitting from the advantages in plant
growth monitoring, vegetation parameter inversion, and other fields, remote sensing tech-
nology has played a more significant role in the investigation and control of forest pests
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than ever [6]. Meanwhile, it has been proven that various forms of vegetation indexes (VI)
can manifest some important biophysical characteristics or functions of plants, and they
have been widely used in monitoring plant pests. For instance, Ye et al. established a binary
logistic regression (BLR) method to evaluate the spatial relationship between the nor-
malized difference vegetation index (NDVI) and infected or uninfected banana plants by
fusarium wilt based on UAV (unmanned aerial vehicles) multi-spectral images [7]. Their
work indicates that remote sensing technology with a red-edge band is suitable for identi-
fying this disease. Santos et al. studied the role of NDVI generated from Sentinel-2 data
in mapping defoliation caused by leaf-cutting ants in Eucalyptus plantations. Greene et al.
studied the spatial association between major lepidopteran pests and NDVI [8]. Oblinge et al.
identified conifer mortality induced by Armillaria root disease using airborne LiDAR and
ortho-imagery in south central Oregon [9]. On account of atrocious geography conditions,
it is very difficult to perform large-scale field investigations of forest pests in Li County.
Hence, the first purpose of this study was to evaluate the effectiveness of space-borne
multi-spectral remote sensing technology in a large-scale investigation of Lophodermium
piceae in subalpine areas.

On the other hand, emergence and evolution of forest pests are owing to many factors,
which can generally be divided into two aspects. One is the own growth status of forest
vegetation, and the other is the comprehensive influence of growth environment, such as
natural geographical conditions and human factors. Meanwhile, these factors may also
vary with time. For example, Li et al. proposed a multi-factor risk assessment method for
Dendrolimus tabulaeformis based on climate, terrain and other factors [10]. Based on the ex-
isting species distribution model, Maxent, Melissa et al. mapped the potential probability
distribution of invasive Bretziella fagacearum in eastern and southeastern Minnesota and
correlated the occurrence of Bretziella fagacearum with environmental variables (including
climate, terrain, land cover, soil and population density) [11]. They found that land cover
and soil type were important variables to estimate the distribution. Therefore, our work also
attempted to explore those variables that were more important in determining the severity
of Lophodermium piceae in our study area, Li County.

In a word, this study was intended to establish an effective and reliable correlation
model between disease degree and spectral parameters through a little amount of ground
sampling data, so as to realize a large-scale investigation of Lophodermium piceae in subalpine
areas. Moreover, the temporal and spatial distribution of this disease was analyzed, and its
main impact factors were also explored in terms of terrain and climate. The remainder of
this article is organized as follows. First of all, our data sources and adopted methods are
introduced. Then, the investigation results of disease based on satellite-borne multi-spectral
remote sensing technology are presented. In the end, spatio-temporal analyses of the whole
study area are elaborated and the conclusion is drawn comprehensively.

2. Methods
2.1. Study Areas

Li County is located in the upper Minjiang River, the east edge of Qinghai-Tibet
Plateau, and the northwest of Sichuan Basin [12]. The geographical range of Li County is
N30.91◦~31.20◦, E102.54◦~103.51◦. The tectonic structure of Li County belongs to the mid-
dle section of Longmenshan fault zone. The whole terrain of the county inclines from
the northwest to southeast. The lowest point is the Wuli boundary marker of an ancient city
in Taoping Village bordering Wenchuan County at an elevation of 1442 m, where Zagunao
River flows out of Li County. The highest point is Zhegu Mountain, with an elevation
of 5922 m. The altitude difference in this county reaches about 4500 m. The county has
undulated terrain, deep canyons, high mountains, steep slope valleys and the average
slope is 30 to 40◦ with a maximum of 60◦. The terrain there is complex and is a typical
mountain canyon landform. In terms of climate, this county is influenced by three circu-
lations, namely, Siberian western flow, Indian Ocean warm current and Southeast Pacific
monsoon. Due to large altitude differences and complex terrain, the climate there possesses
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significant mountainous characteristics. It rains heavily in spring and summer and is
mostly frosty in winter. The annual rainfall is between 650 to 1000 mm, and the annual
average temperature in valleys is 6.9 to 11 ◦C. The high altitude and humid climate are
very likely to cause the outbreaks of forest pests, which seriously affects the sustainable
development of the local ecological environment. The location of Li County is illustrated as
below, see Figure 1.

Figure 1. The location of Li County in Sichuan.

With regard to forestry resources, there are typical subalpine vegetation coverages
in Li County, which are vertically stratified along altitudes and diverse in multi-level
structures. According to the statistics of forest classification and division results in 2008,
the area of Li County reached 432,000 hm2, of which its forest area was 241,000 hm2, ac-
counting for 56% of the total, and the total stand volume is 17,630,000 m3. Picea asperata is
planted in large quantities and one of the dominant tree species in this county. However,
since Li County is very close to Wenchuan County, this county is one of the intensive
damage areas of the “5.12” Wenchuan earthquake in 2008. Mountain collapses caused by
the earthquake have seriously destroyed forest vegetation and surface soil. Since a large
amount of fallen diseased (or dead) trees accumulated in forestlands after the earthquake,
the forest ecosystem of this county was severely damaged and its ability to resist natural
disasters and forest pests weakened. In addition, due to the special climate and geographi-
cal conditions, secondary disasters such as landslides, mountain torrents and debris flows
frequently occur in the range of Li County, which does more harm to local fragile natu-
ral ecological environment and provides more benefits to the occurrence and spread of
forest pests than before. On the other hand, due to its fragile ecology after the Wenchuan
earthquake, Li County is a central area of ecological restoration, and many afforestation
projects have been executed. However, because of the influence of traditional modes and
technology limitation, densities of artificial spruce forests are rather high and result in low
stress resistance of spruce populations. According to the records of the local forestry de-
partment, Lophodermium piceae occurred in 2007. After the Wenchuan earthquake in 2008,
the disease was more serious. In addition, owing to inappropriate management, such as
forbidding logging, thinning once every five years after plantation for reasonable density
control cannot be implemented, which also promotes pest breeding and epidemic. In 2014,
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China launched a nationwide survey of forest pests [13]. In order to realize a detailed
forest pest investigation of Li County in mountainous areas after the Wenchuan earthquake,
we resorted to satellite multi-spectral remote sensing technology for the first time.

2.2. Characteristics of Lophodermium piceae

Picea asperata is an endemic shallow-rooted tree species of China, whose ideal growth
environment includes a cool and humid climate, and fertile, deep, well-drained and slightly
acidic sandy soil. It is resistant to shade and cold and grows slowly. Picea asperata is
evergreen and widely distributed in Li County, and usually grows in the subalpine region
with the altitude of 2400–3600 m [14]. There were, in total 36251.46 hm2 of Picea asperata
forests in Li County. Lophodermium piceae occurs frequently in some artificially renewed
forest areas of Li County with an increasing trend of infectious area and damage degree
year by year. The pathogeny of Lophodermium piceae is Lophodermium uncinatun Darker.
It is also called spruce speckled shell fungus, belonging to the subclass ascomycetes.
The Ascot disk is in the black Ascot and the Ascot is solitary. Its top is combined with
a host epidermis to form a shield cover. After the Ascot disk is mature, the shield cover
is broken, and the seed layer is exposed. Ovary is clavate, shortly stipitate. The lateral
filaments are linear, and the tip is slightly thick and curved, slightly longer than the ovary.
Ascospores are colorless and linear. The asexual stage is Leptostroma sp. In the conidia
produced by the pathogen, there is colorless single-celled cylindrical conidia. Generally,
Lophodermium piceae pathogens first infect young needles of Picea asperata, invading through
stomata. Then, they cause infected areas of yellow-brown spots. As they spread, needles
turn yellow completely. In severe cases, the needles will fall off and eventually the entire
plant will die [15]. In addition, ascospores of pathogens can also be transmitted by wind,
rain, insects and birds, or directly invade from wounds of needles. Infections of this forest
disease usually occur once a year, mostly in summer from June to August [16], since high
temperature, heavy rain and strong wind may contribute to life activities of pathogenic
spores. The period for pathogen spores to release their ascospores can last from mid-to-
late May to early August. The peak of pathogen infections is from June to late August,
and diseased needles begin to fall off in September. Typical symptoms of Lophodermium
piceae are displayed in Figure 2b,c.
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Figure 2. The distribution of Picea asperata in Li County and the typical symptom of Lophodermium
piceae: (a) the distribution of Picea asperata; (b) a healthy Picea asperata forest; (c) an infected Picea
asperata forest. The dots represent locations of the county, village or town governments.
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Since needles infected with Lophodermium piceae will wither and fall off, these symp-
toms will be reflected in canopy spectra, mainly as spectral reflectance decreases the needles,
especially in the near-infrared band. This kind of spectral phenomenon is primarily mani-
fested as changes in pixel values and anomalies of image textures in remote sensing images.
Accordingly, combinations of various vegetation indices and different image channels can
be utilized to enhance information of damaged forests, thereby achieving remote sensing
investigation of the forest disease.

2.3. Data Sources
2.3.1. Satellite-Borne Multi-Spectral Remote Sensing Images

In this study, multi-spectral remote sensing images are applied to investigate Lopho-
dermium piceae of Picea asperata forests. However, the quality of optical remote sensing
data depends on photographing conditions to large extent. For example, if there is a large
area of cloud occlusion, the acquired image is useless. Actually, our study area, Li County,
is mountainous and often covered by clouds for most of the year. In virtue of coverage
range, spatial resolution and actual quality of satellite remote sensing images collected from
the study area, we found some historical Landsat 8 satellite multi-spectral data acquired
in 2014, after the Wenchuan Earthquake, as the main data sources for remote sensing inves-
tigation of Lophodermium piceae. Moreover, in order to research the forest disease in detail,
it is necessary to compare the remote sensing images of the same sensor from the study
area at two time points in the same year. Therefore, the chosen Landsat 8 data should
also satisfy the following requirements: the image acquisition time should be before and
after the occurrence of the disease, during Picea asperata flourishment, and there is slight
cloud cover and snow coverage. According to the local experience, Picea asperata forests
grow vigorously from May to June. The climax period of disease lasts from June to August,
and the disease begins to stabilize in September. Hence, the images obtained from May to
June can serve as a reference benchmark, and September to October is the most effective
time for the remote sensing investigation of Lophodermium piceae. Through sifting, there are
two scenes of Landsat 8 in 2014 that can meet the above requirements. They were obtained
from the study area on 1st June and 23 October, respectively. Finally, the near-infrared band
and red band of Landsat 8 multi-spectral data are adopted, whose resolution are all 30 m.

2.3.2. Forest Resources Data

The forest resource data of Li County is constructed and updated according to the his-
torical records and an artificial ground survey by the local forestry department every five
years. A later survey after the Wenchuan earthquake is in 2009. Its results are employed
in this study. The data include tree species, forest stand status, age group, origin, soil type
and thickness. As indicated in Figure 2a, Picea asperata forests in Li County are scattered
in thirteen villages or towns, and mostly gathered in the western region of this county,
such as Miyaluo Town, Putou Village and Guergou Town. In the forest resource data,
environmental and stand factors, such as age group, soil type, soil-layer thickness, slope,
and aspect, are denoted as different attributes corresponding to the vector data of Picea
asperata forest patch maps, whose different values are numerically coded.

2.3.3. Ground Survey Data of Lophodermium piceae

The ground disease survey is performed by the local forestry department. Due to
the limitation of geographical and environmental conditions in subalpine forest areas,
the ground survey of Lophodermium piceae in Li County is mainly implemented through
the combination of route inspection by walking and fixed-point observation. There are
43 routes and 15 fixed points covering all the stands, with Picea asperata as the dominant
tree species in the forest areas of Li County. The survey time is from March to October
every year, with an interval of 30 days, and the survey frequency is 5 times per route or
point. Considering different site conditions and forest types, the size of standard plots
is 20 m × 20 m in the same sort of stand. The site intervals, standard plot specifications,
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sampling inspection methods, and relevant technical standards refer to Chinese national
forest pest survey technical scheme [17]. In the final step, the ground survey data of
the disease in the whole county were summarized and counted, including distribution
scope, damage degree and damage area. The Chinese grading protocol of forest harmful
biological disasters was referred to in this study [18]. According to this protocol, there are
four grades: normal (damaged trees≤ 10%), light (10–29%), moderate (30–59%), and severe
(>60%). To keep consistent with the acquired satellite images, we employed the ground
survey data in 2014 to establish our remote sensing investigation model. The 123 ground
survey sites distribution is illustrated in Figure 3. Some survey results of sites in 2014 are
given in Table A1 of the Appendix A.

Figure 3. The ground survey site distribution in Li County. The dots (points) represent the locations
of county, village or town governments.

2.3.4. Other Relevant Data

After the Wenchuan earthquake, the surface coverages in Li County have been changed
greatly. Therefore, the geographic information data of Li County came from a recent
national survey of geographic conditions, including the detail classification information
of land cover and terrain data in Li County. Meanwhile, the meteorological data used
in this study were downloaded from the National Meteorological Information Center of
China Meteorological Administration, including annual average values of relative humidity,
sunshine hours, temperature and wind speed, and annual total rainfall. Due to the remote
geographical location of Aba prefecture, the number of public meteorological stations is
limited. There is no meteorological station in Li County. In order to cope with this problem,
the data of Xiaojin and Maerkang meteorological station closest to Li County were utilized
in this study. The average values of the data from the two stations at same time served as
the weather data of Li County.

2.4. Remote Sensing Investigation Indicator of Lophodermium piceae

NDVI is a widely used vegetation parameter and can indicate both vegetation cov-
erage ratio and vegetation growth status. It can eliminate some radiation errors and is
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sensitive to changes of soil background. Thus, it can be regarded as the chief indicator to
reflect forest vegetation ecological environments [19]. According to the characteristics of
Lophodermium piceae, we chose an NDVI-based time-sequence indicator for Lophodermium
piceae investigation. In order to yield NDVI maps, the acquired multi-spectral images
need to be preprocessed. Due to the influences of sensor platform and terrain, geometric
distortion is usually inevitable in the acquired remote sensing images. Consequently, it is
essential to make geometric correction in advance [20]. Then, the raw Landsat data must be
radiometrically calibrated. That is, the digital quantization value (DN) of original remote
sensing images must be converted into actual physical quantities, such as radiance values.
In addition, due to atmosphere effects, the MODTRAN+ radiative transfer model was
applied to fulfil atmospheric correction. Finally, owing to their inconsistent coverages,
these remote sensing images were projected into CGCS2000 (China Geodetic Coordinate
System 2000) coordinate system and cropped according to the scope of our study area.
NDVI is calculated by Equation (1):

NDVI =
ρNIR − ρRED

ρNIR + ρRED
, (1)

where ρNIR and ρRED represent the reflectance of near-infrared and that of red band, re-
spectively. The range of NDVI value is −1 to 1. The generated NDVI map for Li County is
given in Figure 4. Then, the change rate of NDVI can be defined in the Equation (2):

VIrate =
VIT2 −VIT1

VIT1

× 100%, (2)

where VIT1 and VIT2 represent the NDVI maps at T1 and T2, respectively, namely before
and after infection, and VIrate represents the change rate of NDVI. Since the dynamic
ranges of NDVI change rate for non-vegetation-covered areas are uncertain, only an NDVI
difference map of two phases of remote sensing images in Li County is exhibited below.

Figure 4. A NDVI difference map for Li County, where T1 is 1st June and T2 is 23 October.
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A remote sensing image-processing software is utilized to align the resources data with
NDVI change maps generated from remote sensing images, and then extract map patches
of the concerned tree species, so that two kinds of information are merged together. Then,
the extracted damage patches are imported into a GIS (Geographic Information System)
software and their damage degree is graded according to our remote sensing investigation
model, established by a model described in the next section, and corresponding damage
areas are calculated.

2.5. Establishment of Remote Sensing Investigation Model

Generally, as a result of different species of forest vegetation, the types of forest pests
are different, and damaged symptoms of plants are also different. Therefore, the remote
sensing investigation methods for different tree species pests are also different [21], which
can be summarized as follows: (1) difference or ratio method (i.e., direct subtraction or
division of two temporal images); (2) combining difference and principal component
analysis; (3) regression analysis; and (4) cross correlation analysis. Regression analysis
is similar to relative radiometric correction of remote sensing images. Thus, it can be
said that this method can, to some degree, reduce the influences of atmosphere, terrain
and illumination on remote sensing images at different times. Figure 5 is a scatter plot
that reveals the relationship between the NDVI change rate and damage degree over
all the ground survey sites. The horizontal axis represents the change rate of NDVI
and the vertical axis represents the damage level, where “0” represents normal, and “1”
represents light, “2” represents moderate and “3” represents severe. It can be seen that
there are clear correlations between the NDVI change rate and damage degree.
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In order to study quantitatively, a correlation analysis was performed between the dam-
age degree of Picea asperata forests and the NDVI change rate from the ground survey sites
to verify whether there is a significant correlation. The correlation analysis results showed
that there was a significant negative correlation between the NDVI change rate and damage
degree when R = −0.860 and significance level α is 0.01. According to Pearson statistical
theory, the two corresponding variables, x and y, are significantly correlative, and mathe-
matical models based on them are reliable. Thus, we randomly selected 100 ground survey
sites for regression analysis in order to obtain a disease estimation model, and the remaining
23 sites were taken as real values in accuracy verification. The semi-empirical estimation
model between the change rate of NDVI and damage degree is built as follows:

Y = −0.103×VIrate − 0.520. (3)

When Y is less than 0.5, the damage is normal; when Y is 0.5 to 1.2, the damage is light;
when Y is 1.2 to 2.1, the damage is moderate; and when Y is greater than 2.1, the damage
is severe. Then, consider a linear regression equation expressed in the form of y = ax + b,
where the independent variable x is the damage level estimated by the remote sensing
investigation model and y is the actual damage level obtained from the ground survey data.
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F-test method was adopted to verify the reliability and adaptability of this model. In the
light of F-test theory, if F > F(m, n-m-1, α), there is a significant linear regression relationship
between x and y, where m is the number of independent variables, n is the number of
samples, n-m-1 is the degree of freedom, and α is the significance level. The F-test results of
the established model are given in Table 1.

Table 1. The estimated model test results.

P R R2 a b MAE RMSE F

0.010 −0.860 0.740 −0.103 −0.520 32.657 5.715 344.715

Here, MAE represents mean absolute error, i.e., the mean absolute deviation of all
the estimated values and actual values for a parameter. RMSE is root mean-square error.
The results revealed that there is a significantly negative correlation between the NDVI
change rate and the damage degree, at a significant level of 0.010. Therefore, it is effective to
investigate diseases through the NVDI change rate. In Table 1, F = 344.715 > F(1, 98, 0.01),
and it is manifested that the model possesses high adaptability and reliability.

Consider that the remaining ground survey data served as the true values to verifica-
tion the estimation model. The verification formula is:

Ei = (1− | xi − yi
yi
|)× 100% (4)

where Ei represents the estimation accuracy for the i-th ground survey site, xi represents
the estimated damage grade of the i-th ground survey site, yi represents the actual damage
grade of this site, and i is the order number of the current ground survey site used for
verification. Through analysis, it was found that among the 23 ground survey sites, the esti-
mated damage degree for 19 survey sites is consistent with the real values. The average
estimation accuracy of the model reaches 82.61% and can meet the accuracy requirements
of large-scale investigation in our study area.

2.6. Spatio-Temporal Analysis Methods for Lophodermium piceae

The emergence and evolution of forest pests depend on the growth environment and
natural geographical conditions. The planting areas of Picea asperata in Li County are large,
and the topography and climate there are also representative of typical subalpine areas.
Therefore, it is of great significance to study the influence factors of the disease in Li County
by the remote sensing investigation results and explore general emergence patterns of
diseases, which is of considerable reference value in guiding effective prevention and
control of pests. The occurrence and evolution of forest diseases are owing to a variety
of factors, and these factors generally can be divided into two aspects: one is the growth
status of forest plants itself, and the other is external factors, such as growth environment,
natural geographical conditions, and human influences [22–25]. Therefore, we focused on
meteorology, terrains, and forest stands in the spatio-temporal analysis of the disease.

2.6.1. Temporal Analysis Methods

In this study, a stepwise regression method was exploited to analyze the disease dam-
age in Li County by meteorological factors. The analysis purpose was to obtain an optimal
set of explanatory factors, which contributed most to the interpretation of response factors
and can be useful for explaining response variables. Its basic procedure is to add each
explanatory factor to the model and assess their significance by F-test; then, if the factor
is significant, evaluate all explanatory factors in the model by normal distribution test-
ing (t-test); and if all formerly added explanatory factors become insignificant because of
the later explanatory factors, delete them. When no significant explanatory factor is deleted
from or added to the regression equation, the process ends and the optimal set of explana-
tory factors can be obtained. According to the growth characteristics of pathogens and Picea
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asperata, five variables were chosen, including annual average temperature (◦C), annual
total rainfall (0.1 mm), annual average relative humidity (%), annual average sunshine
hours (0.1 h), and annual average wind speed (0.1 m/s).

2.6.2. Spatial Analysis Methods

Based on the remote sensing investigation results of Lophodermium piceae, canonical
correspondence analysis (CCA), also called multivariate direct gradient analysis, was
employed to analyze the disease damage by different environmental impact factors. Its
essence is to perform multiple linear regression analysis during the iterative process of
correspondence analysis. That is, regression analysis is carried out between the ranking
coordinate value of each sample and environmental impact factors. In CCA analysis,
there are two data matrices, corresponding to samples and environment factors [26,27].
The primary steps of CCA are as follows: first, the ranking values of a group of samples
from different species are calculated, and the ranking values of samples are combined
with environmental factors mainly by using regression analysis, which can not only reflect
the species composition of samples, but also reflect the impacts of environmental factors on
different species composition; then, the ranking values of species composition are obtained
from the weighted average of the ranking value of samples, which makes the species
ranking value relate to the environmental factors. The credibility of the results mainly
lies in the analysis of the correlation between environment factors and research objects
in the first two ranking axes, as well as the cumulative contribution rate of the ranking axes.

3. Results
3.1. Remote Sensing Investigation Results of Lophodermium piceae

As mentioned before, an NDVI change-rate map was calculated by the two scenes
of Landsat 8 in 2014, which are obtained from the study area on 1st June and 23 October,
respectively. Then, the distribution map of Lophodermium piceae in our study area, Li County,
was generated by using the remote sensing estimation model, as presented in Figure 6.
It realizes geospatial visualization of damage position and degree.
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Town; (c) the investigation results for Putou Village.
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According to the results of the remote sensing investigation in Li County, the areas
infected with Lophodermium piceae were counted. The damage situation of Picea asperata
forests in Li County generated by remote sensing investigation is as follows: the area of
light damage is 346.14 hm2, the area of moderate damage is 268.92 hm2, the area of severe
damage is 258.66 hm2, and the total area of damaged Picea asperata forests is 873.72 hm2,
which is about 2.410% of the total area of this tree species in this county. From the ground
survey data of Li County, it can be seen that the damage situation of Picea asperata forests
in 2014 is: the area of light damage is 344.64 hm2, the area of moderate damage is 242.14 hm2,
the area of severe damage is 220.29 hm2, and the total area of damaged Picea asperata forests
is 807.07 hm2, which is about 2.226% of the total area of this tree species in this county.
The remote sensing investigation result is 66.65 hm2 more than the ground survey results.
In terms of distribution, the ground survey data Lophodermium piceae mostly occurred
in Miyaluo town and Putou village in Li County, and remote sensing investigation results
also indicated that Picea asperata infected by this disease mostly distributed there, which is
consistent with the ground survey data, as depicted in Figure 6b,c. Hence, it can be drawn
that the remote sensing investigation results coincide with the survey results in damage
degree and areas of Picea asperata forests. The feedback from the local forestry department of
Li County also confirmed that the spatial distribution of Lophodermium piceae in the remote
sensing investigation results also agree with their practice experience.

3.2. Temporal Analysis Results about Climate Variables

Figure 7 respectively exhibits fitting trends charts between the ground survey data
of the nine years after the Wenchuan earthquake and climate variables, such as annual
average temperature, annual total rainfall, annual average relative humidity, annual aver-
age sunshine hours, and annual average wind speed and damage areas of Lophodermium
piceae. Since Lophodermium piceae occurs repeatedly every year if there are infections, it is
difficult to cure this disease thoroughly. In order to help the local forestry department to
take preventive measures in advance, the annual climate variables are analyzed in this
work. Firstly, as can be seen in Figure 7a,b, pathogens of Lophodermium piceae often begin
their life activities when environment temperature is greater than 11 ◦C. As environment
temperature increases, their life activities become more and more strong, and they start
to emit a large number of spores, and only decay at high temperature or low temperature.
Thus, it can be deemed that the temperature has a direct influence on spore emissions of
pathogens, and indirect influence on the ascospore transmission of pathogens. Secondly,
the amount of rainfall has a direct effect on the humidity in soil and air, and also on water
absorption by Picea asperata and the life activities of pathogens. Consequently, the incidence
of Lophodermium piceae is also related to rainfall, which can be seen in Figure 7c,d. Moreover,
pathogens can be spread through rainfall. The greater the rainfall amount and the longer
the rainfall duration, the more booming the spread of pathogenic spores. Furthermore,
relative humidity has direct relationships with rainfall. From June to August, the average
relative humidity in Li County is about 75%, which is also favorable to the life activities of
pathogenic spores, such as reproduction and epidemic, as revealed in Figure 7e,f. Thirdly,
since sunshine time is very important to the growth status of plants, it also has a great
impact on the damage degree. Sunlight directly participates in the photosynthesis of Picea
asperata and has a strong influence on their growth. As implied in Figure 7g,h the better
Picea asperata forests grow, the less their susceptible is. The spread of pathogens generally
relies on winds, rains, birds and insects, thereby the wind speed is the important decisive
factor for the spread of pathogens. Finally, as depicted in Figure 7i,j because Picea asperata is
a kind of conifer, frictions between dense needles will result in abrasions [28]. The greater
the wind speed is, the more likely that needles are destroyed, which consequently provides
beneficial conditions for pathogen infection.
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Figure 7. The relationship between annual climate factors and the annual total damage area by
Lophodermium piceae: (a) the relationship between annual total damage area and annual average
temperature; (b) the trend obtained by fitting annual total damage area to annual average temperature;
(c) the relationship between annual total damage area and annual total rainfall; (d) the trend obtained
by fitting annual total damage area to annual total rainfall; (e) the relationship between annual total
damage area and annual average relative humidity; (f) the trend obtained by fitting annual total damage
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area to annual average relative humidity; (g) the relationship between annual total damage area and
annual average sunshine hours; (h) the trend obtained by fitting annual total damage area to annual
average sunshine hours; (i) the relationship between annual total damage area and annual average
wind speed; (j) the trend obtained by fitting annual total damage area to annual average wind speed.
The ground survey data of the nine years after the Wenchuan earthquake are listed in Table A2 of
Appendix A.

Meanwhile, through the trend-fitting analysis of the total damage area of Li County by
Lophodermium piceae recorded in the ground survey data of the nine years after the Wenchuan
earthquake, with annual average temperature, annual total rainfall, annual average relative
humidity, annual average sunshine hours, and annual average wind speed, the fitting
results are not acceptable and the determination coefficients are all below 0.5. Especially,
the determination coefficient for annual total rainfall R2 is only 0.0923. This means that
the influences of all the five climate factors on this forest disease are not obvious. The reason
is that the five climate variables collaborate together, rather than work alone. As a result,
we exploited a stepwise regression analysis method to analyze the forest disease by the five
climate variables, where the annual average sunshine hours (X1), annual average tempera-
ture (X2), annual average relative humidity (X3), annual total rainfall (X4), annual average
wind speed (X5), and damage area (Y) by Lophodermium piceae were examined simultane-
ously. By this means, the factors that have significant effects on Lophodermium piceae can be
screened out. Then, it is found that only annual average temperature and annual average
wind speed are closely associated with the infection area of Lophodermium piceae, where
the correlation coefficient R is 0.879 and the determination coefficient R2 is 0.773.

Thus, a prediction model can be built based on the two significantly relevant climate
variables for the damage area by Lophodermium piceae (Y). It can be expressed as below:

Y = −3037.888 + 49.902× X5 + 299.739× X2 (5)

From this prediction model, it can be clearly seen that the higher temperature is and
the faster wind speed is, the larger the damage area of Picea asperata forests. The F-test
results of this prediction model are presented in Table 2, where MSE represents mean
square error, i.e., the expectation value of square deviation of the estimated value and
actual value for a parameter, and P is significance level. It is indicated that the two climate
variables are remarkably relevant to the damage area.

Table 2. The F -test results for the prediction model of damage area.

P R R2 MSE RMSE F

0.020 0.879 0.773 38.497 6.204 10.207

3.3. Spatial Analysis Results about Other Environmental Impact Factors

Some growth environmental factors of Picea asperata, such as age group, soil type,
slope and aspect, can be extracted from our collected forest resource and geographic in-
formation data for the spatial analysis of Lophodermium piceae based on CCA. The CCA
two-dimensional ranking chart for ground survey sites and environmental impact fac-
tors is given in Figure 8. Every coordinate axis is a complex function combination of
environmental factors. The quadrant that each red arrow belongs to reflects positive or
negative correlations between an environmental factor and ranking axes, and the lengths
of arrow lines correspond to the abundance of impact factors. As described in Figure 8, it is
revealed that the impacts of altitude, soil-layer thickness and slope, are mainly reflected
on the horizontal axis, which is positively correlated with slope and negatively correlated
with altitude and soil-layer thickness. The vertical axis is positively correlated with soil
type and negatively correlated with age group and aspect. Its correlation with soil type
and age group are more obvious. In addition, the CCA quantitative values indicate that
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the contribution rates of the first two ranking axes are 72.90% and 13.63% with F = 12.6,
P = 0.002, and the cumulative contribution rate reaches 86.53%. It means that the first two
ranking axes are extremely significant and can explicate the 86.53% of the damage degree
data of Picea asperata forests and the ranking results are ideal to some extent.

Figure 8. The CCA ranking chart for the ground survey sites and impact factors. The horizontal axis
corresponds to the first ranking axis, the vertical axis corresponds to the second ranking axis, black
circles are damage degree data of survey sites and red arrows represent environmental impact factors.

Similarly, the CCA two-dimensional ranking chart for the damage degree of Picea
asperata forests and environmental impact factors are shown in Figure 9, where black arrows
represent different levels of damage degree and red arrows represent environmental impact
factors. The angles between arrow lines of different colors illustrate the correlation between
environmental impact factors and different levels of damage degree. An acute angle means
that there is a positive correlation between two environmental factors, and an obtuse angle
means a negative correlation.

Figure 9. The CCA ranking chart for the damage degree of Picea asperata forests and impact factors.

As shown in Figure 9, the thicker the soil layer is and the higher the altitude is, the less
infected spruces are. The primary reason is that thick soil layers can preserve much water
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and nutrients, which is favorable for the growth of Picea asperata forests and enhances
their disease resistance. Meanwhile, higher altitudes mean lower temperatures, which
can restrain the life activities of pathogens. On the other hand, the distribution of light,
moderate and severe damage to Picea asperata forests is primarily associated with slope,
aspect, age group, and soil type. In terms of correlativity, the damage degree of Picea asperata
forests presents a comprehensive gradient distribution along soil-layer thickness, slope
and altitude, while the influences of soil type, age group and aspect are not remarkable.
Thinner soil layer, lower altitude, and steeper slope are more likely to lead to a more severe
damage degree. The distribution of light and moderate damage degree are mainly affected
by the aspect and age group, with few differences.

In terms of visualization, based on the remote sensing disease-investigation results
and geographic information data, it is found that the occurrence regions of Lophodermium
piceae is mainly distributed between 3000 to 3300 m above sea level; an example is displayed
in Figure 10. It can be summarized that to some extent, the lower the altitude is, the more
damaged the Picea asperata forest is, which coincides with the ranking chart for the damage
degree of Picea asperata forests and impact factors.

Figure 10. The relationship between altitude and Lophodermium piceae: (a) the altitude distribution of
Putou Village; (b) the disease-investigation results of Putou Village.

As for slope, it is remarkable in Figure 11 that Lophodermium piceae more commonly
occurs in steep terrains, mostly in steep slopes (26 to 35◦), urgent slopes (36 to 45◦) and
dangerous slopes (≤46◦). The steeper the slope is, the greater the damage degree is,
which can also be drawn from the CCA ranking chart for ground survey sites and impact
factors that damage degree is strongly negatively correlated with slope. The reason is
that the larger the slope, the more difficulties there are in the development of spruce root
systems. At steeper slopes, water and nutrients in the soil are more likely to be lost, which
has disadvantages for the growth of Picea aswperata.

In general, thick soil is more suitable for Picea asperata. As illustrated in Figure 12,
it can be noticed that Lophodermium piceae mainly occurs at the areas where the thickness
of the soil layer is 70 or 80 cm. This kind of soil layer is relatively thin and lacks water
and nutrients, which is also unfavorable to the growth of Picea asperata. From the CCA
ranking chart of damage degree and impact factors, we can also find that damage degree is
strongly negatively relevant to soil-layer thickness, and the thicker the soil layer is, the less
susceptible spruces are. The primary reason is that the thicker the soil layer is, the more
water and nutrients are in the soil, so the better the spruces grow and the less susceptible
they are.
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Figure 11. The relationship between slope and Lophodermium piceae: (a) the slope distribution of
Miyaluo Town; (b) the disease-investigation results of Miyaluo Town.

Figure 12. The relationship between soil-layer thickness and Lophodermium piceae: (a) the soil-layer
thickness distribution of Putou Village; (b) the disease-investigation results of Putou Village.

Last but not the least, it can be observed from Figure 13 that Lophodermium piceae
mostly occurs in young or over-mature forests. Some reasons can be employed to interpret
this phenomenon. One is that the plants of young forests are newly reforested and of
young age. Owing to weak root systems and tender needles, their capability to resist
forest diseases is low. The other is that physiological functions of over-mature forests are
degrading, and their needles start to get sparse, promoting the spread of pathogens by
strong winds. Moreover, continuous accumulations of pathogens and repetitive infections
make over-mature spruces more susceptible. Of course, the possibility that some foliage
of over-mature stands have no Lophodermium piceae, but are simply declining due to age,
cannot entirely be excluded. For mid-aged forests, near-mature forests and mature forests,
they are very robust. If no special natural disasters happen, they normally grow well with
strong root systems and sound physiological functions. Hence, these spruces are not easy to
get infected. Also, it can be seen from the CCA ranking charts that the positive correlation
between age group and damage degree is not significant. The reason is that Lophodermium
piceae often infects young forests and over-mature forests and the distribution of ground
survey sites is uneven, so that ranking charts are not applicable in this case.
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Figure 13. The relationship between age group and Lophodermium piceae: (a) the age group distribution
of Putou Village; (b) the investigation results of Putou Village.

4. Discussion

This study verifies that space-borne multi-spectral remote sensing is suitable for
Lophodermium piceae large-scale investigation in subalpine areas. Our study area covers
16 forest farms, villages or towns in the whole county of Li County, instead of a single
forest farm, several sampling yards or plots in general vegetation disease monitoring
research [29,30]. By downloading the historical remote sensing images of the research areas
in a specific period of time, a regression model of Lophodermium piceae damage degree and
the change rate of NDVI was established. The correlation coefficient of the model R is
−0.860 and the determination coefficient of the model R2 is 0.740. The investigation results
largely agree with the ground survey data in quantity and spatial distribution. The accuracy
of the model can reach 82.61%, which is acceptable in the large-scale investigation of forest
diseases in mountainous and dangerous slope areas, where humans cannot reach. Generally,
Lophodermium piceae will occur repeatedly every year if there are infections and it is difficult
to cure this disease thoroughly. Artificial ground surveys are to determine the approximate
range and degree of this disease occurrence through sampling. However, the spatial
distribution and damage degree can be exactly explored by the means of multi-spectral
remote sensing. On the basis of remote sensing investigation results, through spatio-
temporally analyzing, more influential environmental factors are summarized. According
to the characteristics of the study area and life activities of Lophodermium piceae pathogens,
five climate variables, including annual average temperature, annual total rainfall, annual
average relative humidity, annual average sunshine hours, and average wind speed, were
utilized in temporal analysis of this forest disease. Based on the stepwise regression analysis
method, it can be concluded that annual average temperature and annual average wind
speed are significantly correlated with Lophodermium piceae in the study area. Moreover,
the spatial comprehensive analysis of this forest disease by soil, forest, and topographical
factors based on the CCA method revealed that the distribution of Lophodermium piceae is
primarily determined by altitude, slope, and soil-layer thickness, and is slightly affected by
aspect, soil type, and age group. We found that the damage will be more severe in the places
with lower altitude, thinner soil layers and steeper slope.

In effect, this study not only solved the problem of large-scale accurate investigation
and visualization representation of Lophodermium piceae in Western Sichuan subalpine areas,
but also provided an important scientific reference for the prevention and control of this
forest disease, and effectively promoted the ecological restoration of the areas seriously de-
stroyed by the “5.12” Wenchuan earthquake in 2008. However, we aimed at the large-scale
investigation of Lophodermium piceae in subalpine areas by using satellite multi-spectral
remote sensing technology. Although regression analysis can describe the linear differences
between two images by defining linear relationships between the same pixels at different
times, the growth and the change of forest vegetation are nonlinear because of the non-
uniform distribution of forest stand factors and site conditions. Consequently, the accuracy
of linear methods is usually lower than that of non-linear models. In subsequent research,



Diversity 2022, 14, 727 18 of 20

we can take improved measures to establish more-accurate remote sensing investigation
models in unevenly distributed forest stands. Furthermore, the 30-m resolution of the ap-
plied Landsat 8 images also has an effect on the investigation results. Other remote sensing
images with higher spectral, spatial, and temporal resolution can be used in future research
to improve investigation accuracy and accomplish dynamic monitoring. At the same time,
since only the dominant tree species in each region is presented in our forest resources
data, mixed pixels are not taken into consideration of tree species classification. The pixel
unmixing methods are also helpful in enhancing investigation accuracy.
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Appendix A

Table A1. The data of some ground survey sites in 2014 (survey time: 1 May to 31 October 2014).

Site Number Longitude Latitude Damage Degree

1 102.71 31.86 Light
2 102.68 31.78 Light
3 102.88 31.53 Normal
4 102.79 31.29 Light
5 102.96 31.33 Serious
6 102.90 31.40 Serious
7 103.22 31.54 Moderate
8 103.03 31.73 Normal
9 103.18 31.62 Normal

Table A2. The total damage area (hm2) by Lophodermium piceae of the nine years after the
Wenchuan earthquake.

Years 2009 2010 2011 2012 2013 2014 2015 2016 2017

Total Damage Areas 520.26 1000.5 867.1 867.1 867.1 807.07 940.47 1113.89 973.82

http://www.gscloud.cn/
http://www.gscloud.cn/
http://cmdp.ncc-cma.net/cn/index.htm
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