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Abstract: Fipronil is a pyrazole insecticide used to control undesirable insect populations. Due to
its large-scale application, there is the potential for surface waters’ contamination, with toxic action
for non-target organisms, and consequent impacts on aquatic ecosystems. Planarians are potential
non-target aquatic invertebrates to these insecticides. They are widespread in tropical freshwaters and
have been proposed as good candidates to assess the toxic effects of freshwater systems contaminated
by insecticides. Thus, the present study aims to evaluate the sublethal concentrations of a fipronil-
based insecticide that may affect the planarian physiology. After chronic exposure to Regent 800 WG®,
a significant decrease in locomotor velocity (LOEC—6.25 mg·L−1), regeneration of the auricles and
photoreceptors (LOEC—3.13 mg·L−1), and reproduction (fecundity—LOEC 12.5 mg·L−1) were
observed. The results of our study demonstrate that long-term exposure to a pyrazole insecticide can
compromise non-target aquatic invertebrates while reinforcing the need for a better investigation of
complementary parameters (such as behavior, regeneration, and reproduction) for a more accurate
risk assessment of commercial pesticide toxicity in freshwater systems.

Keywords: reproduction; regeneration; freshwater ecosystems; turbellaria; chronic exposures

1. Introduction

The industrialization and modernization of agriculture have allowed for increased
productivity and reduced losses in the production process, while they may result in a
system dependent on the use of pesticides [1]. These compounds, especially when misused
and without proper technical support, can negatively impact the natural ecosystems and
their biodiversity (water, soil, air, and human health) [2–5].

Numerous active ingredients and metabolites of pesticides have been reported to
reach or have been found in freshwater ecosystems, and the toxicity of these compounds
can affect the aquatic ecosystem’s health. For example, the insecticide fipronil belongs to
the chemical group of phenylpyrazoles and is used in the agricultural sector to control
insect plagues. The fipronil-based insecticides used in agriculture and livestock can reach
freshwater ecosystems, and concentrations up to 465 µg·L−1 have been reported for surface
waters [6]. In agriculture, different doses of fipronil are applied to different crops, such
as cotton (48 g for product compound·ha−1), potato (175 g product compound·ha−1),

Diversity 2022, 14, 698. https://doi.org/10.3390/d14090698 https://www.mdpi.com/journal/diversity

https://doi.org/10.3390/d14090698
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diversity
https://www.mdpi.com
https://orcid.org/0000-0002-5801-2288
https://orcid.org/0000-0001-9839-6290
https://orcid.org/0000-0001-9962-3889
https://doi.org/10.3390/d14090698
https://www.mdpi.com/journal/diversity
https://www.mdpi.com/article/10.3390/d14090698?type=check_update&version=2


Diversity 2022, 14, 698 2 of 10

sugarcane (408 g product compound·ha−1), corn (100 g product compound·ha−1), and
soybean (40 g product compound·ha−1) [7]. These doses are considerably high and can be
leached into surface water.

Scientific research has been developed to quantify pesticides with active ingredients
based on fipronil in aquatic ecosystems. Some studies report that the high toxicity of
fipronil-based insecticides contaminates aquatic systems and promotes lethal and sublethal
effects in non-target aquatic organisms, such as fish, reptiles, and arthropods [8,9]. These
facts result in an imbalance in these ecosystems [10–12].

Fipronil is a neurotoxic insecticide that acts by causing paralysis and neural excitation,
leading to the death of insects. The compound comes into contact with the body through
the skin and/or by ingestion. When bound to the chlorine channel, this insecticide prevents
its activation by gamma-aminobutyric acid (GABA) (a substance that controls the entry
of chloride ions through the nerve cell membrane). When there is no synaptic inhibition,
hyperexcitation of the central nervous system is provoked, causing the death of the or-
ganism [13]. The toxicity of fipronil varies from species to species. Several fish species
are quite sensitive to the effects of fipronil; for example, the gills of Caspian whitefish are
affected by this compound [14]. Furthermore, changes in physiology and behavior were
analyzed in Daphnia magna by exposure to fipronil [15]. Moreover, fipronil accumulates in
Nile tilapia tissue, leading to toxicity for cells and genes, and-mortality, which characterizes
the compound as very toxic for this species [16].

Planarians belong to the tubelar group and reproduce both asexually and sexually (in
some species, reproduction occurs in both ways). Planarians found in lakes and streams
have a high capacity for regeneration. Tubelars have unique characteristics, such as a
nervous system similar to the vertebrate brain, which makes them essential organisms for
several areas of research, due to the varied parameters that can be evaluated in response to
chemical stress, and the high sensitivity to toxic compounds [17].

Planarians occur naturally in several freshwater environments (lakes, streams, and
rivers) that are frequently located close to agricultural areas, and can be directly exposed to
insecticides, as well as exhibit sensitivity to various toxic agents [18]. These flatworms have
important roles in freshwater food webs by being predatory invertebrates, as well as food
for other organisms (prey). In addition, planarians are organisms that are easy to maintain
in the laboratory, which reduces the cost and facilitates the collection of ecotoxicological
data [19]. Due to these factors, planarians become suitable candidates for test organisms
in ecotoxicology [20,21]. Studies indicate that organisms exposed to contaminants have
shown changes in the reproductive system, as well as in fecundity [22]. In the field of eco-
toxicological freshwater, planarians of the species Girardia tigrina (Paludicola, Dugesiidae)
have been recently used as bioindicator organisms of environmental contamination. These
aquatic invertebrates allow for the measurement of behavioral (locomotion and feeding), re-
generative (head, auricles, and photoreceptors regeneration), and reproductive (fecundity)
parameters to assess the toxicity of pesticides [23–26]. Thus, this study aims to evaluate the
potentially sub-lethal effects of the commercial Regent 800 WG (fipronil-based insecticide)
using sensitive endpoints at the behavioral, regenerative, and reproductive levels on the
non-target freshwater planarian G. tigrina.

2. Materials and Methods
2.1. Girardia tigrina

Planarians (G. tigrina) were obtained from established cultures at the Laboratory of
Applied Studies in Plant Physiology—in partnership of CAE (Conservation of Agroecosys-
tems and Ecotoxicology) group, in the Instituto Federal de Educação, Ciência e Tecnologia
Goiano—Campus Rio Verde. Planarians were grown in American Standard Test and Ma-
terials (ASTM) aqueous media (a medium composed of solutions of sodium bicarbonate,
magnesium sulfate, potassium chloride, calcium sulfate, and distilled water), under a
controlled temperature of 22 ± 1 ◦C, in the dark [27].
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Once a week, the planarians were fed, ad libitum, bovine liver, and the medium was
renewed two hours after feeding. One week before the experiments, the organisms were
deprived of food to avoid contamination by digesting food and guaranteeing homogeneity
in the physiological state between organisms [28].

For the assays, the planarians were measured in a checkered mesh and animals with
no signs of injuries were selected. For the chronic toxicity test (locomotion and regenera-
tion), organisms with 1.0 ± 0.2 cm were selected. For the chronic test (reproduction), the
planarians were 1.5 ± 0.1 cm long.

2.2. Preparation of the Fipronil-Based Insecticide

A stock solution of insecticide based on fipronil was prepared using 6250 mg·L−1 of
the Regent 800 WG® granulated of the equivalent compound of fipronil/L (with a final
concentration of 5000 mg·L−1), in distilled water. This proportion was performed through
the proportion calculation. The formulated compound was chosen due to environmental
relevance, since in agricultural areas it is more common to use the commercial compound
than the active ingredient in a pure state.

The stock solution was kept in the absence of light at 4 ◦C to avoid the degradation of
the active ingredient. The experimental solutions were prepared by diluting stock solution
in ASTM medium. This solution was prepared based on a proportionality rule, so that the
solution had 100% of the active ingredients of fipronil.

2.3. Planarians Exposure for Locomotion and Regeneration Evaluation

Assessment of locomotion and regeneration was performed by using planarians,
which were previously exposed for eight days at different nominal concentrations of
fipronil insecticide: 1.56, 3.13, 6.25, 12.5, 25 mg (active ingredient)·L−1, and the control
experiment (ASTM). The tests were carried out at a temperature of 22 ± 1 ◦C, in a static
system and in the absence of light. The exposure was carried out with 30 organisms
per treatment, divided into three replicates (with 10 planarians per replicate), in glass
beakers containing 100 mL of experimental solution. After the fourth day of exposure, the
experimental solutions were renewed. At the end of the exposure period, the effects on
locomotion and regeneration were evaluated (adapted from [28–30]).

2.3.1. Planarian Locomotor Velocity—pLMV

The locomotor velocity of the planarian (pLMV) was evaluated using a round shape
(25 cm in diameter) covered with millimeter paper (lines spaced at 0.5 cm) and glued with
transparent sticky paper. After 8 days of exposure to pLMV, the planarians were evaluated
at all concentrations. The bottom of the mold was covered with ASTM medium, and the
planarians’ behavior was evaluated individually. After thirty seconds of adaptation, the
locomotor behavior of the planarians was monitored by counting the millimeters traveled
for two minutes. Each time the planarians crossed a line, 5 mm was counted (adapted
from [28–30]).

2.3.2. Regeneration

In the regeneration step, fifteen planarians per concentration were decapitated by
a single precise cut behind the auricle, using a previously sterilized scalpel blade. After
decapitation, the planarians were individually transferred to a polyethylene terephthalate
(PET) flask containing 20 mL of ASTM medium. Then, the regeneration was analyzed by
monitoring the number of hours (every 24 h) until the formation of new photoreceptors
and auricles, as well as the complete regeneration of the head by using a magnifying glass
Magnifier Lamp (adapted from [28–30]).

2.3.3. Reproduction

At the beginning of the reproductive phase (1.5 ± 0.1 cm in total length), adult
planarians were exposed to different concentrations of fipronil (Regent 800 WG) for 3 weeks



Diversity 2022, 14, 698 4 of 10

to assess fecundity, and for 4 weeks to assess hatching cocoons (fertility). They were exposed
at five different concentrations of fipronil (1.56, 3.13, 6.25, 12.5, and 25 mg·L−1), and control
treatment (only ASTM medium), in triplicate, each replicate containing 10 organisms. These
organisms were exposed to 100 mL of experimental solution in PET flasks. Weekly, after
feeding the organisms with bovine liver (ad libitum), the solutions of each concentration
were replaced by new solutions. The experiment was carried out at a temperature of
22 ± 1 ◦C, in the absence of light, and the animals were observed daily. Each deposited
cocoon was placed in a PET container with 20 mL of experimental solution. Fertility was
assessed by the number of cocoons produced per day divided by the number of planarians
exposed. The fecundity rate was determined by the number of offspring (planarians born
from the cocoons), divided by the number of cocoons deposited (adapted from [28,31]).

2.4. Statistical Analysis

The sublethal toxicity data were evaluated by analysis of variance (ANOVA), and
Dunnett’s post hoc test was applied to assess whether there were significant differences
between treatments. In order to verify whether the data were in accordance with ANOVA’s
assumptions, the data were analyzed for homogeneity of variances and normality, using the
Bartlett and Kolmogorov–Smirnov tests, respectively. Data obtained from the regeneration
tests did not follow the assumptions of the ANOVA analysis; therefore, it was necessary to
use nonparametric statistics using the Kruskal–Wallis test (Dunn’s post hoc test). Statistical
analysis was performed using GraphPad Prism software version 7.0 (GraphPad Software,
La Jolla, CA, USA).

3. Results

3.1. Planarian Locomotor Velocity—pLMV after Exposure to the Regent 800 WG®

The planarians’ locomotor velocity (pLMV) decreased significantly after exposure
to Regent 800 WG®, when compared to the control treatment (F(5,84) = 11.1; p < 0.0001,
R = 0.3979), presenting a NOEC (no observed effect concentration) of 3.13 mg·L−1, and a
LOEC (lowest observed effect concentration) of 6.25 mg·L−1 (Figure 1).
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Figure 1. The pLMV of the G. tigrina, after eight days of exposure to sublethal concentrations of
the Regent 800 WG®. Concentrations refer to active ingredient of fipronil. Data are presented as
mean ± standard error, n = 15. * Significant differences are observed in comparison with the control
treatment (Dunnett’s post hoc test, p < 0.05).

3.2. Regeneration of Planarians after Exposure to Regent 800 WG®

As a result of the increase in Regent 800 WG® concentrations, the exposed planarians
suffered a significant delay in the auricles regeneration (F(5,84) = 87.89; p < 0.0001; R = 0.8394;
Figure 2b) compared to the control treatment. Similarly, the regeneration of photorecep-
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tors was significantly delayed with the increasing insecticide concentrations (H = 77.5;
p < 0.0001; Figure 2a). NOEC was set at 1.56 mg·L−1, and LOEC was set at 3.13 mg·L−1 for
the regeneration of photoreceptors and auricles.
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Figure 2. Effects of sublethal concentrations of Regent 800 WG® insecticide on the regeneration of the
G. tigrina. (a) Photoreceptor regeneration. (b) Auricles regeneration. Concentrations refer to active
ingredient of fipronil. The exposure time was sixteen days. Data are presented as mean ± standard
error, n = 15. * Significant differences are observed in comparison with the control treatment (Dunn’s
post hoc test).

3.3. Reproduction of Planarians Exposed to the Regent 800 WG®

The fecundity rate of G. tigrina decreased significantly with the increase of the Regent
800 WG® concentrations (F(5,10) = 4.875; p < 0.05; R = 0.7187; Figure 3a). The NOEC for
fecundity rate was established at the concentration of 6.25 mg L−1, and the LOEC at the
concentration of 12.5 mg·L−1. However, exposure to the tested concentrations of the
pesticide did not significantly affect the fertility rate of G. tigrina (F(5,9) = 1.886; p > 0.05;
R = 0.213; Figure 3b).
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presented as mean ± standard error, n = 30. * Significant differences are observed in comparison with
the control treatment (Dunn’s post hoc test).
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4. Discussion

Although studies on the impact of fipronil on non-target organisms have been more
notorious in recent years, there are still few studies addressing the sublethal effects of
fipronil-based insecticides in aquatic invertebrates [32–37]. It is noteworthy, however, that
concerning aquatic invertebrates, there is a pronounced lack of data on the effects of fipronil both
in the short and in the long term, which highlights the novelty and importance of this study.

Regarding the chronic effects on non-target organisms, fipronil altered the repro-
duction of the collembola species Folsomia candida at concentrations lower than those
recommended for use in agriculture [38]. It also was highly toxic to bees, impairing the
learning behavior of the species Apis mellifera [39]. In addition, aquatic organisms such as
amphibians, cladocerans, and oligochaetes showed harmful effects related to exposure to
fipronil [40].

Understanding and gaining deep knowledge about the changes due to chronic toxicity
at the organism level is important for understanding the long-term toxicity of xenobiotics
to populations and the structure and function of the natural communities. In this study,
locomotor behavior was evaluated using a traditional method, where the user made
observations by the naked eye and not by a video-tracking system. Despite the known
limitations of this method, evaluating only straightforward movements of planarians is a
very simple, rapid, and cheap method to apply with a good sensitivity to detect the sublethal
effects of the several toxicants reported [41]. The locomotor behavior of the planarians
was affected with a LOEC of 6.25 mg·L−1. This negative effect possibly occurred due to
fipronil affecting the nervous system of the planarians. In fact, the locomotor behavior
of the planarians is related to the proper functioning of the nervous system controlling
muscle contraction [42]. Furthermore, the feeding activity of the planarians is directly
related to their locomotor capacity. Planarians have an intermediate position in freshwater
food chains; thus, changes on their predator and escape behavior may compromise the
individual’s survival, ultimately generating both top-down and bottom-up imbalances in
these food chains [19,23].

The regeneration of G. tigrina was the most sensitive parameter after exposure to
fipronil compared with the other parameters evaluated. There was a significant delay in
the regeneration of photoreceptors and auricles from the concentration of 3.13 mg·L−1 of
fipronil. These results reinforce the potential toxic action of fipronil towards the nervous
system of planarians. The regeneration of planarians depends on muscle contraction and the
extension of the epidermis in the wound, a process that leads to the closure of the lesion. As
a result of these changes, the cells identified as blastema are organized under the epidermis
and the replacement of missing segments is initiated [43,44]. As a consequence of the delay
in the regeneration of photoreceptors, planarians can suffer changes in the perception of the
intensity and direction of light. Similarly, the delay in the regeneration of auricles can limit
the perception of the chemical detection from the surrounding environment, including
chemical clues to detect preys as well as predators [18].

There was also a reduction in the fertility rate of planarians, presenting a LOEC of
12.5 mg·L−1. In a study carried out with Danio rerio, it was found that when exposed to
concentrations of 2.5 mg·L−1, their incubation capacity (in the embryo stage) is affected [45].
This toxic action of fipronil through neural damage, hepatotoxic, nephrotoxic, cytotoxic,
and reproductive effects in both vertebrates and invertebrates were observed [46].

Surface waters can be contaminated by pesticides as a result of leaching and surface
runoff, due to the overdose and misuse of these products. These events facilitate insec-
ticide spread to the aquatic environment, and can cause impacts on aquatic ecosystems,
and consequently affect non-target organisms (such as the planarians) [47]. In sum, our
study highlights that prolonged exposures to fipronil-based insecticides might impair the
behavior, regeneration capability, and reproduction of G. tigrina in similar concentration
ranges, despite regeneration being the most sensitive parameter. Furthermore, these pa-
rameters are the visible outcome of a series of biochemical and physiological changes in
response to exposure to stressors, therefore indicating changes at higher levels of biolog-



Diversity 2022, 14, 698 7 of 10

ical organization [48]. In the present study, we use the commercial formula containing
around 80% fipronil and 20% other components. The presence of this 20% of a mixture
of compounds can cause some discussion about their possible toxic action on planarians.
However, evaluating the toxicity of the commercial formula, we present more relevant data
for a realistic risk assessment of fipronil-based insecticides to non-target freshwater animals
nearby agricultural areas. Although fipronil has low to moderate water solubility, due to its
widespread use, the insecticide is currently present in soils and surface and groundwater,
and direct or indirect effects on aquatic organisms can be expected [49]. Thus, we speculate
the potential deleterious effects of the commercial compound Regent 800 WG® on tropical
freshwater planarians, considering that in an aquatic environment, without the presence of
light (places inhabited by planarians), the half-life of fipronil may be relatively long—with
a half-life ranging between 36 h and 7.3 months depending on substrate and conditions [50].
In addition, fipronil has slight mobility in soil, a bioconcentration factor within the limit of
concern, a leaching rating—GUS Index of 2.06 (considered transitional range), and high
toxicity to sediment-dwelling aquatic organisms [51]. These results are thus of concern
regarding natural population dynamics, since planarians’ development and reproduction
success might be decreased, leading to changes in freshwater communities.

5. Conclusions

Fipronil-based insecticide has been shown to cause chronic effects in planarians (G. tig-
rina), such as delay in locomotion (from concentration 6.25 mg·L−1), regeneration (from
concentration 3.13 mg·L−1), and reproduction (fecundity, from concentration 12.5 mg·L−1).
These results will certainly contribute, with important ecotoxicological data, to the research
about the chronic effects of fipronil on tropical freshwater invertebrates, contributing to a
more sensitive approach to the analysis of the ecological risk in these climates represented
by fipronil or other insecticides of the pyrazole group. In addition, this study reinforces
the importance of sublethal tests and evaluations of individual parameters (locomotion,
regeneration, and sexual reproduction of planarians), which tend to be much more sensitive
than survival bioassays.
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