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Abstract: The giant anteater (Myrmecophaga tridactyla) is a strictly myrmecophagous xenarthran
species that ranges from Honduras to northern Argentina, occupying various habitats, from grass-
land and floodplains to forests. According to the IUCN, it is a vulnerable species mainly threatened
by poaching, habitat loss and fragmentation, and road kills. Here, we investigate the phylogeography,
distribution, ecology, and historical demography of Brazilian populations of the giant anteater. We
analysed two mitochondrial (mtDNA) and three nuclear (nDNA) markers in 106 individuals from
the Cerrado, Pantanal, Atlantic Forest, and Amazon Forest biomes through analyses of population
structure and demography, phylogeography, and ecological niche modelling. Two divergent mtDNA
clusters were found, one in the Amazon (AM) and another in the Cerrado, Pantanal, and Atlantic
Forest biomes (CEPTAF). At the population level, CEPTAF presented higher mtDNA haplotype
richness than AM and a unidirectional mtDNA gene flow was identified from AM to CEPTAF, which
could be linked to more favourable habitat conditions for the species in Cerrado and Pantanal. Pale-
odemographic reconstructions with mtDNA and nDNA data indicate a large population expansion
of the species starting at the end of the Pleistocene. Finally, the integrative phylogeographic analyses
of giant anteater populations reinforce the importance of the Brazilian Cerrado as a priority biome
for the species’ conservation.

Keywords: Cerrado; conservation genetics; ensemble forecasting; population expansion; population
structure; Xenarthra

1. Introduction

Genetic-based information can be used to define priorities for conservation and man-
agement [1]. In this context, phylogeographic methods can be used to evaluate the response
of species to past environmental changes, helping to foresee the conservation impact of
future events [2,3]. In recent years, the integration of phylogeographic analyses and ecolog-
ical niche modelling has increased the predictive power of these inferences and their usage
in biodiversity conservation [4]. However, few conservation biology studies have evaluated
the phylogeographic history of threatened species in Latin America so far [1]. This also
holds true for many species of the Xenarthra, an ancient lineage of placental mammals
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that includes armadillos (Cingulata), anteaters (Vermilingua), and sloths (Folivora)—all
quintessential species of the neotropical fauna [5].

Among the Xenarthra, the anteaters are highly specialized for myrmecophagy (i.e., feed-
ing on ants or termites), with morphological adaptations reflecting this feeding habit, such
as the complete absence of teeth and the presence of an elongated protractile tongue [6,7].
The giant anteater (Myrmecophaga tridactyla) is the largest anteater species and currently
ranges from Honduras southwards to northern Argentina [8,9], occupying various habitats,
such as grasslands, floodplains, and forests [10,11]. Foraging anteaters are usually observed
in grasslands or shrub savannahs, whereas covered habitats, such as forest patches and
shrubs, are used for resting, temperature buffering, and protection against predators [12,13].
The abundance of food resources accessible at the ground level is higher in dry open
biomes, such as the Chaco and the Cerrado, compared to moist forests; thus, dry open
biomes should potentially support a higher abundance of giant anteaters [14]. Moreover,
M. tridactyla seems to benefit from heterogeneous landscapes, as observed in the Cerrado
and Pantanal of Brazil, or the Llanos of Venezuela and Colombia [13–15].

There is a limited number of studies on the phylogeography and population genetics of
anteaters in the Neotropics, and only half-a-dozen such studies have been reported for the
giant anteater [5,16–20]. According to Clozato et al. [18], the species shows a high overall
genetic diversity and signs of population expansion in the Brazilian Cerrado, but some
studies have found evidence of moderate diversity, local inbreeding, and demographic
reduction in certain populations [17,20]. This indicates the need for a better picture of the
species’ population dynamics. Clozato et al. [18] suggested that the genetic structure of
M. tridactyla may be related to the vegetative landscape, with populations differentiated
according to their habitats—i.e., forests or savannahs/grasslands. This raises questions
regarding the level of isolation between those populations and the extent to which the
current species’ distribution and population structure are influenced by either the vegetative
landscape or past climatic history.

Concerning its conservation, M. tridactyla seems to tolerate a certain level of human
impact, such as cattle ranching and moderate fires [21]. Likewise, habitat fragmentation
does not seem to affect the abundance and probability of occupancy of giant anteaters in the
Cerrado of central Brazil [22]. However, the species tends to avoid heavily disturbed areas
in which the presence of humans, cattle, and dogs is high, and benefits from conserved
forest vegetation in non-preferred areas [23,24]. Poaching [25–27], habitat loss [28–30],
wildfires [31], and road kills [32–34] pose a constant threat to M. tridactyla over much
of its range and are thought to be the main causes of its recent population decline [8].
Furthermore, the species has likely become extinct in Belize, El Salvador, Guatemala,
Uruguay, and the Brazilian states of Espírito Santo, Rio de Janeiro, Rio Grande do Sul, and
Santa Catarina [8]. For these reasons, the giant anteater is considered ‘vulnerable’ by the
International Union for Conservation of Nature (IUCN) [8] and appears in Appendix II
of the Convention on International Trade in Endangered Species of Wild Fauna and Flora
(CITES) (http://www.cites.org (accessed on 15 May 2022)).

Predictions of species’ niche distributions are frequently derived from Ecological
Niche Modelling (ENM) [35]. In general, species spatial distribution records are associated
with environmental data to characterize the conditions experienced by species and to
predict their potential geographic distribution during the baseline period [36]. By assuming
niche conservatism within the current climate conditions, areas of climatic stability for
species may play a fundamental role in protecting species diversity in the future [37,38].
Identifying such areas helps to protect the current biodiversity from possible shifts in
species distributions that are to be expected due to global warming [39].

To understand how the evolutionary history of giant anteater populations in Brazil is
linked to their current distribution and to identify priority areas for conservation, we used
an integrative framework of phylogeographic analyses and ecological niche modelling [4].
Our initial hypothesis was that the geographic distribution and demographic history of
M. tridactyla were shaped by the environment and influenced by the Quaternary climatic
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oscillations. If this hypothesis is correct, the spatial genetic structure and diversity of
populations can be explained by environmental factors, such as vegetation cover and local
climate [18], being additionally affected by periods of isolation in climatic refugia during
the Quaternary [40]. Additionally, biased dispersal and/or limited gene flow between
populations in distinct environments are also expected [41]. Testing this hypothesis will
provide valuable information on both the evolutionary history and conservation of the
giant anteater—a vulnerable and still poorly known species.

2. Materials and Methods
2.1. Biological Samples, DNA Data Obtention and Processing

We used DNA samples from 69 individuals of M. tridactyla also used by Clozato et al. [18]
and added 28 new tissue samples. These were mainly muscle, blood, skin, or hair samples
from road-killed animals and museum specimens, but a few were originally derived from
wild and captive individuals of known origin, all previously deposited in the tissue collec-
tion of the Centro de Coleções Taxonômicas of the Universidade Federal de Minas Gerais
(UFMG) in Belo Horizonte, Brazil. Samples of road-killed animals were collected under
SISBIO permits #13381 and #53798-4. In total, we analysed genetic data for 106 individuals
representing the Brazilian biomes of Cerrado (CE; n = 78), Pantanal (PT; n = 11), Atlantic
Forest (AF; n = 8), and Amazon Forest (AM; n = 9). The AM data comprised only mtDNA
sequences published in Clozato et al. [18] and an additional French Guiana specimen
retrieved from GenBank (accession KT818549). Details on sampling localities are presented
in Figure 1 and Supplementary Table S1.
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DNA was isolated from tissue samples preserved in 70% ethanol by standard phenol-
chloroform extraction and concentrations were measured in a NanoDrop 2000 (Thermo
Fisher Scientific, Waltham, MA, USA). For data compatibility with Clozato et al. [18], we
sequenced the same set of DNA loci, namely, the hypervariable region I (HVI; which
also included both tRNAThr and tRNAPro) and Cytochrome b (Cytb) mtDNA markers
and the recombination-activating 2 (RAG2) gene. Cytb and RAG2 sequences published
in Clozato et al. [18] were included in our dataset. We also added two new nuclear
(nDNA) markers: exon 28 of the von Willebrand factor (VWF) gene and the brain-derived
neurotrophic factor (BDNF) gene. Primers used for amplification and sequencing are
presented in Supplementary Table S2. PCR conditions varied between samples as follows:
a final volume of 15 or 25 µL containing 20–100 ng of template DNA, 1× reaction buffer,
1.5 or 3.0 mM MgCl2, 100 µM dNTPs, 0.2 µM of each primer, 0.5 mg/mL of BSA adjuvant,
and 0.2 or 0.3 U of Platinum® Taq DNA Polymerase. Thermocycler programs started with
3 min at 95 ◦C; followed by 35 cycles of 30 s at 95 ◦C for denaturation, 45 s at 52 ◦C (HVI
and Cytb), 57 ◦C (RAG2 and VWF) or 49 ◦C (BDNF) for annealing; 1 min at 72 ◦C for
extension; and 5 min at 72 ◦C. Adjustments to the primer annealing temperatures were
necessary in some cases. PCR products were visualized in 1% agarose gel, purified through
polyethylene glycol 20% precipitation and sequenced in an ABI 3130xl Genetic Analyzer
(Applied Biosystems, Waltham, MA, USA).

Electropherograms were interpreted, assembled, and pre-aligned in SeqScape v2.6 (Ap-
plied Biosystems, Waltham, MA, USA). Consensus sequence alignments were constructed
with ClustalW [42] implemented in MEGA7 [43], and haplotype phasing of nuclear markers
in heterozygous individuals was accomplished with Seqphase [44] and Phase v2.1.1 [45,46].
To check for phasing consistency, we performed three independent runs for 1000 iterations
for each marker with a phase threshold of 0.9.

2.2. Assessing Spatial Genetic Patterns and Gene Flow

Inference of genetic clusters was performed with Geneland v4.0.6 [47–49] using the
concatenated mtDNA alignments (HVI + CytB). We used the spatially explicit uncorrelated
allele frequencies model to detect the more pronounced population structure. We ran
20 independent MCMCs for 10,000,000 iterations, thinning each 1000, from which we chose
the one with the highest value of average log posterior probability (PP). Uncertainty of
coordinates was set to 0.36 (~40 km) to accommodate the largest estimates of the species’
home range [15,50] and the approximations of some geographic coordinates. The number
of simulated populations varied from 1 to 10, the maximum rate of the Poisson process was
set equal to the number of individuals, and the maximum number of nuclei was set to the
triple of that [47].

Patterns of concatenated mtDNA diversity were assessed in Arlequin v3.5 [51] through
an analysis of molecular variance (AMOVA) [52] and estimations of both haplotype (h)
and nucleotide (π) diversities. Calculations were performed with the Kimura-2P distance
method [53]. Integrated rarefaction and extrapolation (R/E) accumulation curves for
haplotype richness were computed and plotted with iNEXT v2.0.12 [54,55] to compensate
for the bias introduced by discrepant sample sizes between clusters in the results of genetic
diversity analyses. Three types of curves—a sample size-based, a coverage-based, and
a sample completeness curve—were constructed for a reference sample size equal to the
number of individuals of the largest genetic cluster. We chose the largest cluster size as
the reference to visualize possible trends in estimates of genetic diversity for the smaller
cluster with increasing sample sizes. The 95% confidence interval (CI) for each asymptote
was assessed through 1000 bootstrap replicates.

Haplotype networks of concatenated mtDNA and each nDNA marker were con-
structed in PopART v1.7 [56] using the median-joining algorithm [57]. Furthermore, a
multiple regression on distance matrices (MRM) [58] was performed with ecodist v2.0.1 [59]
to assess the relative roles of both geographic distance and environment (i.e., the same
climatic variables used to construct the ecological niche models; see below) on the genetic
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structure of M. tridactyla. The dissimilarity matrices for genetic, geographic, and ecological
data were generated using ape v5.1 [60] and vegan v2.4-6 [61]. Manhattan distances were
used for both spatial and environmental explanatory data, whereas the Kimura-2P distance
was used for the genetic data. Significance was assessed through 10,000 permutations.

We follow the rationale proposed by Magalhães et al. [62] of using phylogeographic
model selection to validate the delimitation of populations by testing between scenarios
of split populations versus a single cohesive population. Historical patterns of mtDNA
gene flow for different migration models were estimated under a Bayesian coalescent
framework in Migrate-n v3.6.11 [63]. For these analyses, we focused on the mtDNA due
to the absence of nDNA sequences for AM individuals. Our models consisted of (1)
a null hypothesis of a single panmictic population, (2) all possible migration scenarios
between populations identified by Geneland, and (3) a model in which these populations
were isolated (Table 1). We set an empirical transition/transversion ratio (RmtDNA = 2.44)
calculated in MEGA7 with the GTR substitution model [64] and estimated the migration
parameters in terms of mutation-scaled effective immigration rate M (m/µ) and mutation-
scaled effective population sizes θ (Neµ). Initial runs with a full migration matrix model
allowed us to set adequate parameter bounds. For the final runs, we assumed a uniform
prior for θ (min. = 0, max. = 0.015, delta = 0.0015) and an exponential prior for M (min. = 0,
mean = 1500, max. = 3500). All other parameters were left as default. Three parallel
replicates were run for each model using a static heating scheme with 20 heated chains in
which “temperatures” increased according to the program’s suggested range of values. For
each run, we discarded 15,000 steps and recorded 150,000 with a sampling increment of
1000. Convergence was checked by unimodality of parameters’ posterior distributions and
by assessing both effective sample sizes (ESS) and acceptance ratio values. Model selection
was performed by comparing the marginal likelihood of each model, calculated through
thermodynamic integration with cubic Bézier-spline approximation, by means of Bayes
factors (BF) [65]. Analyses were run on the CIPRES Science Gateway v3.3 [66].

Table 1. Migration model selection through Bayes factors (BF) comparison. BFs were calculated
as exp[ln(P(D|Mi)) − ln(P(D|Mj))], where exp denotes the exponential function, ln(P(D|Mi)) is the
marginal likelihood of the current model, and ln(P(D|Mj)) is the marginal likelihood of the model
with the highest marginal likelihood. Model probability was calculated as, where BFi is the BF of the
current model and is the sum of the BFs of all models.

Model Description Marginal
Likelihood BF Model

Probability

I Panmixia −1901.6788 <1 × 10−5 <1 × 10−5

II Bidirectional migration −1892.3102 0.1051 0.0891
III Migration from AM to CEPTAF −1890.0575 1 0.8476
IV Migration from CEPTAF to AM −1892.6514 0.0747 0.0633
V Isolated populations −1927.6109 <1 × 10−16 <1 × 10−16

2.3. Historical Demography Reconstruction

To include a time scale in our demographic inference, we first conducted a molecular
dating analysis using BEAST v2.4.5 [67] to estimate a reference clock rate for the partial
Cytb sequences. For this, we included only unique Cytb haplotypes of M. tridactyla and
the two Tamandua species (GenBank accession KT818551 and KT818552) as outgroups.
We used the transition/transversion split option of the bModelTest package [68], a strict
clock with a birth–death tree prior and a lognormal prior on the calibration (mean in real
space = true, offset = 7.0, mean = 6.35, and standard deviation = 0.398). Hard minimum and
soft maximum age constraints for the Myrmecophagidae node were based on the 95% CI
(7.0–19.8 Ma) from Gibb et al. [69]. We ran three independent MCMCs for 50,000,000 gen-
erations, sampling each 5000, and checked trace files on Tracer v1.7 [70] to ensure chain
convergence and good ESS values. Log files from all runs were combined with a 50% burn-
in using LogCombiner from BEAST2 and the mean value of the “clockRate” parameter
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was recovered with Tracer. A maximum clade credibility (MCC) tree was summarized
in TreeAnnotator from BEAST2 with a 33% burn-in. The MCC tree was visualized with
FigTree v1.4.4 [71] and is shown in Supplementary Figure S1.

We proceeded with the historical demography reconstruction for M. tridactyla using
the extended Bayesian skyline plot (EBSP) [72] and our complete dataset (mtDNA + nDNA)
in BEAST2. Site and clock models were left unlinked, and trees were linked only for the
mtDNA. The transition/transversion split option of bModelTest was used in combination
with strict clocks for all loci. Time calibration was included as the Cytb clock rate estimated
previously, whereas clock rates of other loci were estimated relative to that. The weights
of the operators affecting the population function were increased by a factor of four to
even out their frequency of proposals to that of the operators changing the trees during the
MCMCs. Three independent MCMCs were run for 1,000,000,000 generations, sampling
each 100,000, on CIPRES Science Gateway. We checked both convergence and ESS values
on Tracer. EBSPs were plotted in R v3.4-patched [73] with a 10% burn-in.

2.4. Ecological Niche Models (ENMs)

We built ENMs for each observed genetic cluster separately [2,3]. Climate data were
taken at 5 min spatial resolution from Hijmans et al. [74]. Following Terribile et al. [38], we
used the same five bioclimatic variables (i.e., annual mean temperature, temperature annual
range, precipitation of wettest month, precipitation of driest month, and precipitation of
warmest quarter) to build our models in order to minimize collinearity problems among
bioclimatic variables. We calibrated our models on current climate conditions (~1960–1990)
and then projected on Last Glacial Maximum (LGM; 22 ka ago), Mid-Holocene (6 ka
ago), and future (2070) climatic layers derived from two coupled General Circulation
Models (GCMs): CCSM4 and MIROC-ESM. For future conditions, we used the intermediate
representative concentration pathway (RCP4.5) simulated for the Fifth Assessment Report
(AR5) of the International Panel on Climate Change (IPCC) [75], which corresponds to
radiative forcing levels stabilizing at 4.5 W/m2 before 2100 by the employment of a range
of technologies and strategies for reducing greenhouse gas emissions [76].

For each discriminate cluster of M. tridactyla, we combined the aspects of climate with
occurrence records to define spatially explicit predictions about their environmental and ge-
ographical space [36]. We modelled the species distribution under an ensemble forecasting
approach, which generates more accurate, or at least more conservative, projections [77].
Four modelling methods implemented in dismo v1.1-4 [78] were used to build the ENMs,
including two distance methods based on presence records: Bioclim [79] and Gower dis-
tance [80]; and two machine-learning methods based on presence–background records:
Support Vector Machines (SVM) [81] and Maximum Entropy (Maxent) [82]. All models
were first generated for current climate conditions and then projected onto the LGM, the
Mid-Holocene, and the future to predict the potential species geographical distributions in
all climate periods.

We randomly divided all species occurrence records into 10 training–testing subsets
(75:25 of the occurrence, respectively). Model performance was assessed by the area
under the receiver-operating curve (AUC) and only models with AUC > 0.7 were used
in the ensemble procedure [83]. For the population with few occurrence records, we
used the leave-one-out method described as a variation of the k-fold partitioning method,
on which jackknife sampling is imposed by excluding one record every time [84–86].
In summary, we applied the lowest presence threshold to test the ability to predict the
deleted occurrences (k−1) for each prediction. If an ENM successfully predicts both a
small area and the deleted occurrence record, it is better than a random model (p < 0.05).
However, if the model predicts a large area and fails to predict the deleted occurrence
record, it is not considered a good model (p > 0.05). Therefore, the p-value is calculated
from the success and failure ratio of the prediction [84]. Only good models were used in
the ensemble procedure. This threshold-dependent metric accounts for omission rates with
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a 10% calibration omission rate. The low omission rate informs a high proportion of test
localities successfully predicted [84].

Our consensus model resulted in 80 binary maps (4 ENM algorithms × 2 GCMs ×
10 cross-validations) for each period. For ENMs assessed by the jackknife method, the
number of resultant suitability maps depended on population occurrence records (k). Here,
we combined outputs weighted by their AUC scores (or p-values) [78]. To disentangle and
map the uncertainties in hindcast/forecast ensembles, we performed a two-way ANOVA
for each grid cell using suitability maps as response (ENM, GCM, and their interaction) [38].
The predictive maps combining ENMs and GCMs expressed the uncertainty about species
geographical ranges.

3. Results
3.1. Sequencing and Haplotype Phasing

We sequenced both HVI (450 bp) and Cytb (534 bp) for all 28 new samples. How-
ever, nDNA loci exhibited lower amplification efficiency. RAG2 sequences were obtained
for 21 specimens, but only 12 spanned the maximum length of the external primers
(745 bp), while the other 9 were only amplified and sequenced with nested primers (481 bp).
VWF (546 bp) was sequenced for 60 individuals, whereas BDNF (579 bp) was sequenced
for 65 individuals. For AM specimens, only mtDNA sequences were available from
Clozato et al. [18] and GenBank.

Phasing of nDNA haplotypes was consistent and only in the following cases were our
initial standards not matched. RAG2 genotypes of four individuals (LabBMC0122, M0696,
M1678, and SCMT04) could not be resolved at 0.9 phase threshold; therefore, we kept the
allele combinations with the highest probability. The BDNF genotype of one individual
(TBC013) could not be determined by any means due to two allele combinations with equal
probabilities. In this case, we retained the ambiguous base symbol. Short RAG2 sequences
and the ambiguous BDNF genotype were removed from the haplotype networks.

3.2. Spatial Patterns, Genetic Diversity Characterization, and Evidence for Unidirectional
Gene Flow

The mtDNA network exhibited 33 closely related haplotypes (Figure 2A), mostly
differing by a single mutation step, with total h = 0.7623 and π = 0.0021 (Table 2). We
observed a largely predominant haplotype occurring mainly in the CE and some level
of haplotype sharing between individuals from all biomes (Figure 2A). Moreover, AM
haplotypes were clustered in the network, except for the one from French Guiana that
was retrieved from GenBank, suggesting some degree of genetic structure. On the other
hand, nDNA networks, which lacked AM representatives, did not show any geographic
correlation, and many haplotypes were shared among the sampled biomes (Figure 2B–D).
RAG2 presented 9 haplotypes, while VWF exhibited 10, and BDNF showed 5 haplotypes.
Due to the high number of missing data and the absence of AM specimens among nDNA
sequences, the remaining spatial analyses focused on mtDNA data.

Table 2. Summary of concatenated mtDNA diversity parameters estimated for each cluster of
Myrmecophaga tridactyla. n: number of samples; H: number of haplotypes; h: haplotype diversity; π:
nucleotide diversity; SD: standard deviation.

Cluster n H h ± SD π ± SD

AM 9 6 0.8889 ± 0.0910 0.0027 ± 0.0018
CEPTAF 97 29 0.7204 ± 0.0512 0.0019 ± 0.0012

Total 106 33 0.7623 ± 0.0445 0.0021 ± 0.0013
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Geneland results (Figure 3) agreed with the mtDNA network patterns and consistently
indicated two clusters with the highest probability (Supplementary Figure S2), grouping
AM individuals in one cluster, hereafter AM, and the remaining CE, PT, and AF individuals
in another cluster, named CEPTAF. Consequently, we have genetic clusters with largely
discrepant sample sizes: 9 for AM and 97 for CEPTAF. PP values for cluster membership
were >0.7 for CEPTAF and mostly >0.9 for AM, with only one AM individual (M0705), geo-
graphically intermediate between the two clusters, showing PP = 0.56 for the latter group.
The AMOVA showed a ΦST = 0.3275 and we follow Meirmans [87] in not reporting its
p-value, since it would be meaningless due to the non-independence of data. Furthermore,
CEPTAF presented h = 0.7204 and π = 0.0019, whereas AM had h = 0.8889 and π = 0.0027
(Table 2).
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Figure 3. Map of posterior probabilities of membership for the two most likely clusters detected by
Geneland using concatenated mtDNA data. AM: Amazon cluster; CEPTAF: Cerrado, Pantanal, and
Atlantic Forest cluster.

The sample size-based R/E curve (Figure 4A) showed that, for estimated sample sizes
<20 individuals, the haplotype richness is expected to be higher for AM. However, after
that point, the AM curve starts to plateau, while it continues to grow for CEPTAF. Hence,
we expect that, for larger sample sizes, the haplotype richness will be higher for CEPTAF.
Nonetheless, the extrapolated asymptote for AM presented a large 95% CI, illustrating
the difficulties imposed by its small sample size. The sample completeness R/E curve
(Figure 4B) indicated that our estimated current sample coverage for AM haplotypes
was ~58%, whereas for CEPTAF it was ~83%. Although the 95% CI was also large, the
expected number of samples needed for AM to achieve the same level of coverage of
CEPTAF would be around 25, which contrasted with our current sampling. The coverage-
based R/E curve (Figure 4C), which integrates the two previous curves, evidenced that
increasing sample coverage beyond 50% greatly increased haplotype richness for CEPTAF.
Despite that, a continued increase in sample coverage for AM would result in a much less
pronounced gain in that index. Moreover, considering the 95% CI, significant differences
in haplotype richness between the two clusters are expected to arise for sample coverages
>65%, with CEPTAF showcasing higher values than AM, in contrast with the observed
diversity metrics.
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Finally, the MRM revealed a slight positive correlation between genetic and both
geographic (1.098 × 10−4, p = 0.001) and environmental distances (2.798 × 10−6, p = 0.008),
with R2 = 0.0907 (p = 0.001) and F = 277.507 (p = 0.001). In short, although the null hypothesis
of genetic distances explained by chance was discarded, both isolation by distance and
isolation by environment explained little of the observed genetic structure.

Parameter estimates generally overlapped in alternative migration models (Supple-
mentary Table S3). The exception was θAM for the isolated populations model, which
explored values closer to zero possibly due to an uninformative amount of data imposed
by the small sample size of that population. In the scenarios that considered migration,
mtDNA gene flow was higher from AM to CEPTAF. Assuming an equal a priori probability
of 20% for each of the five models tested in Migrate-n and considering that probability
as a threshold for rejecting competing hypotheses through Bayes factors comparison, we
could discard four scenarios (Table 1). The best-fit migration model was the one that consid-
ered two separate populations with mtDNA gene flow from AM to CEPTAF (PP = 0.8476;
Table 1). For this model, we had mode values of θAM = 0.00086, θCEPTAF = 0.00345, and
MAM→CEPTAF = 1368.5 (Supplementary Table S3), which translated into an effective num-
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ber of migrants per generation (Nm) of 1.177 from AM to CEPTAF, through the equation
Nm = θM.

3.3. Historical Population Expansion

Both the mtDNA (Figure 2A) and RAG2 (Figure 2D) phylogeographic networks dis-
played a star-shaped pattern, with a common haplotype originating various low-frequency
and closely related haplotypes, suggesting recent population expansion. Furthermore,
the molecular dating of unique Cytb haplotypes resulted in a clock rate of 7.4513 × 10−3

substitutions/site/million years, which was used to produce a time-scaled EBSP with all
markers for the whole species (Figure 5). The plot revealed a population growth that started
slowly ca. 60 ka ago and largely increased since ca. 40 ka ago, reaching a present effective
population size (Neτ) much larger than the size of the original population when consider-
ing the graph’s median. As population structure can affect the outputs of demographic
inferences [88,89], we repeated the analysis without the samples from AM; however, the
result did not change (Supplementary Figure S3).
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Figure 5. Time-scaled extended Bayesian skyline plot (EBSP) with mtDNA and nDNA data for
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3.4. ENMs

Mapping the species distribution across time has shown climatic stability differences
between AM and CEPTAF. Consensus models for CEPTAF performed moderately well
(AUCmean = 0.894; Supplementary Table S4), probably due to the large number of presence
points used [90]. The ANOVA indicated that the ENM component had the highest median
proportion (84.3%; Supplementary Table S5) and amplitude (14.1–99.8%) of the total sum of
squares (SS), in comparison with other components (i.e., GCMs, ENM × GCM interaction,
and time). These uncertainties are geographically distributed (Supplementary Figure S4).

Since AM had few occurrence records, we built a consensus result from good models
(p < 0.05; Supplementary Table S6). Modest local changes were identified in the dis-
tribution of CEPTAF since the LGM (Figure 6A). While CEPTAF appears more stable
over time (Figure 6B), AM has expanded since the LGM until current climate conditions
(Figure 6C) and some connectivity is apparent in northeastern Brazil through all time pe-
riods (Figure 6D). The projection of the consensus model to future conditions results in a
considerable contraction and fragmentation of AM, with high climatic suitability in the
border areas of dry forests and savannahs (Figure 6C). However, the network of protected
areas (PAs) fails due to the lack of coverage in the most climatically stable areas or because
they are very small in such areas (Figure 6B,D).
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Higher values indicate pixels with higher potential for population occurrence. Climatic stability
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delimited by white lines [91].
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4. Discussion

We assessed the geographic patterns of genetic diversity, gene flow dynamics, and
ancestral demography of the giant anteater and modelled the distributional changes of
its populations across time, shedding some light on the species’ natural history and the
status of its populations. The clustering analysis indicated two main genetically distinct
clusters in M. tridactyla: one corresponding to individuals from the AM biome, AM; and
another equivalent to individuals from the CE, PT, and AF biomes, CEPTAF. Such spatial
configuration could be misleading if it were a consequence of the large sampling gap
between the north of AM and CE/PT. In that case, we would have captured two extremes
of a cline of allele frequencies in a scenario of isolation by distance. However, besides the
weak correlation between geographic and genetic distances demonstrated in the MRM, the
mtDNA phylogeographic network has also displayed a clustering of AM haplotypes,
supporting the AM–CEPTAF spatial structure. Additionally, the scenario of a single
panmictic population was discarded as one of the less likely models in the Migrate-n
model selection. Taken together, these mtDNA results reinforce the presence of population
structure in M. tridactyla, which seem to reflect environmental differences between the
occurrence areas of each genetic cluster: AM inhabits a forested biome and CEPTAF
occurs in mostly open vegetation biomes. However, because environmental (i.e., climate)
and genetic distances presented a weak correlation, landscape elements and evolutionary
history could both be responsible for the observed pattern of differentiation.

The observed ΦST for such population structuring was slightly smaller than that
obtained by Clozato et al. [18], but still moderate when compared to other phylogenetically
or ecologically related species. For instance, the giant anteater showed a ΦST higher than
that reported for the screaming hairy armadillo [92]; however, it was much lower than
those presented by arboreal xenarthran species, such as the maned sloth [93,94] and the
silky anteater [95], the latter having been recently split into seven distinct species [96].
Similar ΦST estimates were also found for incompletely isolated phylogeographic partitions
of the jaguar [97]. This finding is not surprising, as we expect M. tridactyla to have great
dispersal abilities because its home range can be quite large (up to 32.50 ± 7.64 km2 [15];
see also [13,21,50,98]). Furthermore, the giant anteater’s overall h and π for the mtDNA
were lower than those observed for non-threatened species, such as the nine-banded
armadillo [99] and the jaguar [97]. Nevertheless, the obtained h was higher than that
found for the similarly vulnerable maned sloth, whereas π was slightly lower [93,94]. In
this case, the widespread distribution and the ecological versatility of the giant anteater
may still be enough to secure moderate levels of diversity (h), even given the decreasing
population numbers—a situation that does not hold for the maned sloth, which has a highly
fragmented and restricted range in the AF [93,94].

When comparing the two genetic clusters of M. tridactyla, AM showed higher h and
π values than those estimated for CEPTAF and for the overall species. This result may
be likely overestimated, since the R/E curves of haplotype richness for AM suggest that,
although our sampling for this cluster was small, increasing the sample coverage would
result in only a limited gain in richness. On the other hand, CEPTAF exhibited h and
π values close to the overall obtained for the species and could be even more diverse
according to its R/E curves, which still showed signs of haplotype richness increase with
larger sample coverage. One possible explanation for this observation would be that
AM may have a population size much smaller than CEPTAF—a hypothesis that is also
supported by the θ values estimated for each cluster in Migrate-n.

Clozato et al. [18] suggested a past connection between giant anteater populations
from AM and AF due to haplotype sharing. Accordingly, we also observed a certain level
of haplotype sharing between CE, AM, and AF in the mtDNA network. Furthermore, our
migration model selection indicated mtDNA gene flow from AM to CEPTAF. Therefore, the
Migrate-n results may also reflect the species’ ecological characteristics, considering M. tri-
dactyla’s preference for heterogeneous landscapes, such as the savannahs of the CE [13–15],
which can also be associated with food availability and/or accessibility discrepancies be-
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tween open environments and moist forests [14]. Accordingly, Quiroga et al. [14] found
that M. tridactyla is more frequently recorded in dry forests and grassland savannahs than
in moist forests. The giant anteater was suggested to achieve its highest densities in the
CE [100], but detailed population density studies are only available for a small number of
sites [21,31,101], all of which have predominantly savannah-like vegetation containing a
few forest fragments, which hinders fair comparisons.

Although current giant anteater numbers are thought to be declining [8], the species
seems to have experienced a large population expansion in the recent past, beginning
ca. 40–60 ka ago. Additionally, both mtDNA and RAG2 networks show signs of recent
expansion, with various singletons and rare haplotypes derived from a much more frequent
haplotype—a feature mostly observed in the population of CE. This agrees with the findings
of Clozato et al. [18], which suggested a scenario of recent population expansion for the
giant anteater based on a star-shaped mtDNA network, a negative Tajima’s D value, and a
unimodal mismatch distribution plot. It is important to note, though, that our sampling
unintentionally favoured the CE when compared to other biomes. Nevertheless, these
results led us to think about a possible correlation between the giant anteater’s population
increase and the past expansion of open vegetation areas during the last glacial period,
including AM (ca. 12–110 ka ago) [102]. Recent modelling studies, however, indicate that
the CE achieved its maximum extent during the last interglacial period (ca. 115–130 ka ago),
which was then followed by a retraction during the last glacial period, possibly related to
both decreased precipitation and temperature [103,104].

A second hypothesis would be an increase in food availability (i.e., ants and termites)
in some periods in the Pleistocene. Indeed, genetic studies of termite species in North
America [105] and Southeast Asia [106] and of ant species in Europe [107] and Mexico [108]
have all shown signs of contraction (glacial periods) and subsequent population expansion
(interglacial) during the Pleistocene. The latter species is a neotropical ant that also inhabits
the Brazilian CE and shows a sign of large population expansion in the last 30 ka [108].

Finally, giant anteaters may have benefited from other species’ declines associated
with Late Pleistocene megafaunal extinction, occurring globally ca. 7–50 ka ago [109].
The population expansion in M. tridactyla could be associated with the extirpation of
contemporary predators and competitors. However, although the timing of extinction is
still poorly established in South America, growing evidence suggests that its pace only
accelerated between 11.2–13.5 ka ago, with some taxa lasting until ca. 7 ka ago [110–112].
These estimates largely post-date our obtained timing for the giant anteater’s population
expansion, but a local extinction (death event) of a gomphothere population in the Águas
de Araxá of the CE biome occurred about 55 ka ago [113].

Our ENMs revealed that the areas of predicted suitability for the CEPTAF population
have had historically more stable climatic conditions than areas of predicted suitability
for the AM population. Assuming an optimistic carbon emission scenario, similar climate
conditions should persist at least until 2070 in areas occupied by CEPTAF. In turn, the
ENMs of the AM population showed an increase in suitable areas from the LGM until the
present and fragmentation of potential occurrence areas in the future. Arruda et al. [114]
also found that biome changes in Brazil occurred mostly in ecotonal areas, except for
the AM region, which displayed remarkable vegetation dynamics greatly influenced by
climatic instability during the LGM and Mid-Holocene. The predicted increase in suitable
areas for AM despite genetic data suggesting a smaller effective size for that population
may reflect lower population densities throughout the AM biome. Although this is only
speculative, it would fit the expectations of higher giant anteater densities occurring in
the CE.

From a conservation standpoint, Brazilian Reserves for Integral Protection (IPs) cover
less than 10% of the giant anteater’s suitable areas modelled for both the present and the
future under climate change [115]. The species can only be considered adequately protected
when Reserves for Sustainable Use (SUs) and Indigenous Reserves (IRs) are also considered,
but these are mostly located in the AM [115]. The AM cluster identified here is also located
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in the AM and this population is more likely to suffer from loss of genetic diversity due
to stochastic processes as a result of its apparent small population size [116]. Despite the
existing PAs in AM, our limited sampling and the lack of information about the species in
that region prevents us to assume adequate maintenance of the genetic diversity for AM.
On the other hand, besides the apparently larger population size for CEPTAF, the number
of PAs within its occurrence area is much smaller [115]. Françoso et al. [117] showed that
PAs represent only 6.5% of the native CE remnants and that SUs are ineffective in protecting
the biodiversity. In addition, Diniz and Brito [118] demonstrated that, of the 18 federal PAs
in the CE where the giant anteater occurs, only 11 can maintain viable populations for the
next 100 years under an optimistic population density scenario, whereas only 3 accomplish
this in a pessimistic one. Beyond that, both CE and AF have been massively devastated
with only about 45% of the original CE [26] and 11.7% of the original AF [30] vegetation
remaining. Zimbres et al. [115] stressed the ecological importance of CE for the conservation
of xenarthran species, particularly M. tridactyla, and suggested both PT and northern CE as
priority areas for future conservation. Our findings highlight the urgency of increasing the
number and extent of IPs in these regions, so that the maintenance of the genetic diversity
of CEPTAF can be ensured.

Our results and interpretations are not free of caveats. One must bear in mind that
extrapolations of richness measures can only be made reliably up to double the size of a
population due to increasing bias towards underestimation with larger sample sizes [54,55].
Therefore, the early plateauing of the AM haplotype richness asymptote may be an artifact
of the method, which is reflected in its large 95% CI. Furthermore, the apparent isolation-
by-environment pattern observed for the population structure could be due to the biased
dispersal and gene flow [41], which are influenced by the giant anteater’s ecology. It is
important to note, however, that Migrate-n assumes that “population sizes are constant
through time or are randomly fluctuating around an average population size” [119]. Our
dataset violates this assumption. With growing populations, as the EBSP showed to be the
case for M. tridactyla, Migrate-n tends to underestimate effective population size [119]. This,
together with the hugely different sample sizes of AM and CEPTAF, may have exerted
some influence on the results. Finally, the ENMs for the AM population were based on
only a few occurrence points, which could lead to a lack of accuracy and predictive power.
Thus, these results should be interpreted with caution.

Obtaining a representative sampling of a widespread animal species is an arduous
task, even more so when such species present low population densities in most of their
range. Concerning the current sampling, we cannot discard the possibility that our AF
samples were from wandering CE individuals because they were collected from individuals
within the original distribution of the AF biome, though sampling localities were closer to
CE spots in the Paraná state. In addition, native forested areas in the AF were drastically
transformed by human activity and its remnants are largely fragmented [30]. Furthermore,
the large difference in sample sizes imposed by the sparse sampling of AM individuals
conducted here may have biased some of the analyses. Although we tried to alleviate
the problem using R/E techniques and demographic models, these approaches are not
infallible; for this reason, our results should be interpreted carefully. Thus, new studies with
increased sampling efforts are needed, mainly in the AM and other neotropical countries,
to paint a more complete picture of the species’ evolutionary history.

5. Conclusions

Our study presented, for the first time, a question-driven analysis of the geographic
structure of the giant anteater allied to ecological niche modelling. Despite our sampling
limitations, especially regarding the limited number of individuals and the lack of nuclear
genes in the AM cluster, several results converged on the importance of the CE and adjacent
areas in the conservation of M. tridactyla. Estimates of θ and haplotype richness point to
greater genetic diversity in the CE, PT, and transition areas with the AF than in the AM.
Allied to this, these populations have experienced greater climatic stability over the last
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21 ka and they are unlikely to suffer the consequences of future climate change scenarios.
On the other hand, the network of PAs in the CE is not enough to safeguard the integrity
of the species’ populations either in the present or in the future [115]. For these reasons,
adopting a precautionary attitude, we point to CE, PT, and transition areas with the AF as
priorities to guarantee the maintenance of genetic diversity of the giant anteater. We do
not rule out the AM and other areas of the Neotropics as important strongholds of genetic
diversity for the species. For this reason, we emphasize the need for greater geographic
sampling in northern South America and Central America, in addition to the use of genomic
markers, to refine the delimitation of management units, test the connectivity between
them, and assess the levels of genetic diversity and adaptative potential of the species.
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