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Abstract: Harmful cyanobacterial blooms in eutrophic water bodies pose a major threat to the envi-
ronment and to human health. The morphological functional traits of cyanobacteria play important
roles in maintaining their competitive advantages. To explore the regulatory mechanisms of the mor-
phological functional traits of different bloom-forming cyanobacteria, we performed a one-year-long
phytoplankton survey from November 2016 to October 2017 in Lake Chaohu, China. The colony
size and cell diameter of the dominant cyanobacteria were measured, and their relationships were
analyzed. The results showed that Dolichospermum flos-aquae and Microcystis aeruginosa were the
dominant cyanobacteria in the lake. Microcystis was the dominant species during the summer; the
growth of Dolichospermum growth surpassed that of Microcystis, and Dolichospermum became the
dominant species in the late autumn, winter and spring. From winter to spring, the colony size of
Dolichospermum decreased from 222.25 µm to 10.51 µm, and the individual cell diameter increased
from 6.5 µm to 7.4 µm. From summer to autumn, Dolichospermum showed enlarged colony sizes and
reduced cell diameters. The Microcystis colony size increased from 83.71 µm in the spring to 196.71 µm
in the summer and autumn, while cells diameter remained essentially at 3–4 µm from March to
October in Lake Chaohu. The relationship between colony size and cell diameter in Dolichospermum
was significantly positive, while that of Microcystis was not significant. These results suggest that
Dolichospermum may maintain biomass through a trade-off between cell diameter and colony size,
and that a flexible morphological regulatory mechanism exists. This study seeks to improve our
understanding of how bloom-forming cyanobacteria maintain their dominance by regulating their
morphological traits.

Keywords: Dolichospermum; Microcystis; cell diameter; colony size; trade-off

1. Introduction

Cyanobacterial blooms are a major global problem that affects water quality and
aquatic organisms, as well as animals and humans, by producing cyanotoxins and different
malodorous compounds. The formation and maintenance of cyanobacterial blooms are
considered to be a synergistic result of their internal physiological and morphological
features and external driving forces, i.e., nutrients, temperature, and underwater available
light [1]. When the external driving forces change, the regulation of functional traits in
these cyanobacteria may play an important role in the maintenance of blooms, e.g., through
trade-offs in morphological traits. However, our understanding of the trade-offs in terms
of the morphological traits of these bloom-forming cyanobacteria is limited.
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In some eutrophic lakes, cyanobacterial biomasses were found to be insensitive or
lagged in response to a decrease in nutrient levels [2–4]. Factors related to global changes
are usually considered to be the main variables regulating their responses. Moreover, the
relative importance of these factors in promoting cyanobacteria is taxon dependent [5,6]. In
addition to external environmental factors, the functional traits of bloom-forming cyanobac-
teria may also contribute to their responses. Functional traits have been shown to be
effective factors that drive the response of these cyanobacteria to changes in nutrients or in
variables related to global changes [7]. In particular, cyanobacteria can modify their morpho-
logical functional traits to adapt to environmental changes and maintain their biomass [8].

In recent years, much effort has been directed toward functional trait-based approaches
to community ecology in order to elucidate the ecological mechanisms of phytoplankton
community succession and biomass maintenance. Trade-offs between functional character-
istics, such as the trade-off between growth rate and cell size of the red tide alga Alexandrina,
have been shown to play an important role in biomass maintenance [9]. A growing number
of studies have focused on the trade-offs between functional traits of phytoplankton. A
study in Bodensee Lake found that there were distinct trade-offs between defense and
growth speed for phytoplankton, which is called the defense–growth trade-off. Defense
and growth rate represent key characteristics of Bodensee phytoplankton; their defense
and growth rate of change can effectively prevent competitive exclusion [10]. Li et al.
studied the effects of temperature and macronutrients on phytoplankton colonies in three
different lakes and analyzed the spatiotemporal trade-off characteristics of temperature,
eutrophication and cyanobacterial growth in different lakes during different periods. The
study showed that Microcystis benefited directly from climate warming and eutrophication,
which reveals the mechanisms for spatiotemporal trade-offs [11]. Among bloom-forming
cyanobacteria, Dolichospermum and Microcystis can regulate their morphological character-
istics, such as cell diameter and chain length, and their photosynthetic characteristics to
maintain their growth and biomass, which indicates that trade-offs among the traits may
play important roles in the maintenance of cyanobacterial blooms [8].

Colony formation is often thought of as a passive aggregation of individual cells
driven by cell adhesion and as an effective way to reduce predation risk [12,13]. The
competitive advantage of cyanobacteria is attributed to their ability to migrate rapidly
through the water column by virtue of their buoyancy. In addition, they achieve high
resistance to zooplankton predation by forming large colonies [14]. Floating colonies can
efficiently harvest light and store nutrients at specific depths [15]. Cell diameter is likely to
directly affect colony size [16]. The cell diameter and colony size of cyanobacteria show
seasonal changes. The effect of these changes on the maintenance of the cyanobacterial
biomass is unclear, and the trade-offs between cell diameter and colony size have not been
fully studied [17].

In this study, we hypothesized that bloom-forming cyanobacteria could regulate their
individual diameters and colony sizes to maintain their competitive advantages, which
could be a mechanism driving the maintenance of cyanobacterial blooms. To explore the
spatiotemporal transformation processes of different dominant cyanobacteria and their
trade-off mechanisms, we conducted a one-year-long survey in Lake Chaohu to analyze
the seasonal and spatial variations in the phytoplankton community and the relationship
between individual diameter and colony size.

2. Materials and Methods
2.1. Study Lake

Lake Chaohu, the fifth-largest freshwater lake in China, is located in the middle of
Anhui Province, China (117◦116′46′′–117◦151′54′′ E, 30◦143′28′′–31◦125′28′′ N). The surface
area of the lake is approximately 750 km2, but this varies according to the water level
(maximum depth: 6 m; mean depth: 3 m). Lake Chaohu is in a state of severe eutrophication,
and cyanobacterial blooms (primarily consisting of Microcystis and Dolichospermum) have
dominated the lake over the past few decades [18,19].
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2.2. Sampling Method

To investigate the seasonal shifts in cell diameter and colony size of the dominant
bloom-forming cyanobacteria, we performed a monthly investigation from November
2016 to October 2017 in Lake Chaohu, China. The six sites located in the east lake area
(sites 1 & 2), central lake area (sites 3 & 4) and west lake area (sites 5 & 6, Figure 1) represent
an increasing trend for nutrient levels from east to the west. At each site, integrated water
samples were collected by mixing the surface (50 cm below the surface), middle (half of the
water depth), and bottom (50 cm above the lake bottom) water using a Ruttner sampler. The
environmental parameters (temperature, pH, conductivity and dissolved oxygen) at every
sampling site were measured using a multiparameter meter (Model 6600; Yellow Spring
Instruments, OH, USA). Total nitrogen (TN) and total phosphorus (TP) were analyzed by
peroxydisulfate oxidation, and permanganate index (CODMn) was measured using the
most recent method reported in the literature [20]. Transparency (SD) was measured with
a Secchi disk. A total of 72 Phytoplankton samples (500 mL) were collected and fixed
with an acid Lugol solution. After being left undisturbed for 48 h, the supernatant was
removed and concentrated to a volume of approximately 30 mL, and the phytoplankton
were identified and counted under a 40 x-magnification microscope (Imager A2 x, ZEISS,
Oberkochen, Germany) [21]. Identification and counts were performed at the species or
genus level using the most recent literature and updated information from the AlgaeBase
website [22,23]. The biovolume was calculated from the measurements of 30 organisms of
each species at each site [24]. The biomass was determined as the algal volume for each site
and converted to fresh weight, assuming a specific gravity of 1 g/cm3 [25].
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Figure 1. Map of Lake Chaohu showing the locations of six sampling sites.

The cell diameters of M. aeruginosa and D. flos-aquae, the two dominant cyanobacterial
bloom-forming species, were measured and analyzed by collecting at least 50 individuals
from each sample. Photomicrographs of the samples were taken using a ZEISS AxioCam
HRc digital camera (ZEISS, Oberkochen, Germany) coupled with a microscope at ×100
and ×400 magnification and were analyzed using Image-Pro Plus 6.0 software (Media
Cybernetics, Inc., Rockville, USA). Colony size was measured with a laser particle size
analyzer (Mastersizer 2000, Malvern, UK).
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2.3. Statistical Analysis

Statistical analysis and related graphs were performed on Origin 2017 and the R
language platform R. 4.2.0 [26]. The differences in the cell diameters for Dolichospermum
and Microcystis over the various months were determined using one-way analysis of
variance (ANOVA). Differences were considered significant at p < 0.05. The colony sizes for
Dolichospermum and Microcystis were extracted by combining the results for colony size and
phytoplankton composition. The relationships between cell diameters and colony sizes in
Dolichospermum and Microcystis were assessed by linear regression and a generalized linear
model. Before analyzing the corresponding relationships between cell diameter and colony
size, the colony size of each taxon was log-transformed to minimize differences in scale
and to achieve normality and variance homogeneity.

3. Results
3.1. Monthly Variations in Environmental Factors

The means and standard deviations of environmental parameters and nutrients from
monthly water samples collected at three regions are shown in Table 1. The spatial and
temporal distribution characteristics of TN, TP, CODMn and water temperature are pre-
sented in Figure 2. In space, the nutrients showed decreasing trends from west to east.
These parameters also showed obvious seasonal variations. TN concentration was higher
in winter than those in other seasons. TP concentration and CODMn usually were lower in
spring than those in other seasons.

Table 1. Environmental parameters summarized as the mean values ± standard error in Lake
Chaohu from November 2016 to October 2017. The letters indicated the significance of the differences
among the lake regions. TN: Total nitrogen, TP: total phosphorus, CODMn: permanganate index, SD:
Transparency and Depth: water depth.

TN (mg/L) TP (mg/L) CODMn (mg/L) pH SD (cm) Depth (m) T (◦C)

East 2.01 ± 1.10 c 0.10 ± 0.06 c 4.49 ± 2.29 b 7.31 ± 0.76 12 ± 6.62 3.54 ± 0.35 17.66 ± 7.84
Central 2.28 ± 1.03 b 0.13 ± 0.10 b 4.67 ± 1.51 b 7.46 ± 0.83 9.75 ± 5.27 3.62 ± 0.39 17.47 ± 7.79

West 4.11 ± 3.87 a 0.27 ± 0.34 a 6.60 ± 6.99 a 7.56 ± 0.90 13.04 ± 7.77 3.25 ± 0.41 17.62 ± 7.41
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3.2. Seasonal Shift in Phytoplankton Composition

According to the phytoplankton composition results, the Lake Chaohu phytoplankton
usually consisted of Dolichospermum, Ankistrodesmus, Chlorella, Cryptomonas, Cyclotella,
Melosira, Microcystis, Navicula, Pediastrum, Scenedesmus and others (Figure 3). Over the
entire lake, Dolichospermum flos-aquae and Microcystis aeruginosa were the dominant species
of phytoplankton and the main contributors to cyanobacterial blooms.

In the eastern area, Dolichospermum formed the dominant phytoplankton population,
and its biomass was more than 70% for most months. The dominance of Dolichospermum
changed in April, and the population of Microcystis grew rapidly after May. The proportion
of Microcystis in April, June and October was more than 25%, and it became the dominant
phytoplankton population in the eastern area (Figure 3a). In the central area, Dolichos-
permum formed the main phytoplankton population except in July, August and October.
Microcystis accounted for more than 70% in August and October and became the dominant
species (Figure 3b). In the western area, Dolichospermum only showed a high proportion in
November, December, April, May, and June, and Microcystis was the dominant population
in January, July, August, September, and October. (Figure 3c)

The environment of Lake Chaohu was in a eutrophic state (Table 1). Compared with
the different lake areas, the TP and TN of the western lake were twice as high as those of
the eastern and central areas (p < 0.05). The CODMn of the western area was significantly
higher than those of the central area and eastern area (p < 0.05). There was no significant
difference in pH, SD or water depth among the three areas (p > 0.05).
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3.3. Cell Diameters in Dolichospermum and Microcystis

During the investigation period, Dolichospermum was present during each month in
Lake Chaohu. For the lake overall, the average cell diameter of Dolichospermum was 7.0 µm
in the winter, 4.6 µm in the spring, 3.9 µm in the summer, and 4.8 µm in the autumn
seasons. The values of the average cell diameter of the three lake areas were similar to those
of the entire lake (Figure 4). The cell diameter of Dolichospermum showed an increasing
trend from November 2016 to February 2017, increasing from 6.19 µm to 7.3 µm. Then,
the cell diameter decreased from 6.58 µm in March to 3.39 µm in April and remained at
approximately 4 µm from May to October. The values of cell diameter from November
2016 to February 2017 were significantly higher than those from May to October (p < 0.05).
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During the investigation period, Microcystis was present during most months in Lake
Chaohu except December, January, February, March, and April. For the lake overall, the
average cell diameter of Microcystis was 3.2 µm in the spring, 3.3 µm in the summer, and
4.3 µm in the autumn seasons. No Microcystis was present during the winter. The average
cell diameters of Microcystis were similar, and there was no significant difference among
the three lake areas (Figure 5). Microcystis generally was not present in December, January,
February, or March. The Microcystis cell diameter reached its highest value of 5.73 µm in
November. The values for cell diameters were significantly lower from April to October
than in November.
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3.4. Colony Size in Different Lake Regions

According to the frequency histograms of colony size, there were generally two
peaks for each lake area and each season. In the eastern area, the colony sizes during
the peaks were 174.11 µm and 15.16 µm in September, and the corresponding frequency
values were 7.33% and 0.70%, respectively (Figure 6a). By including the results of the
phytoplankton composition analysis, we found that Pediastrum was the main contributing
species for the small peak, and Dolichospermum was the main contributing species for the
large peak. In December, the colony sizes during the peaks were 8.23 µm and 196.71 µm,
and Dolichospermum was the dominant species for the large peak. In March, the colony
sizes during the peaks were 8.23 µm, 83.71 µm and 409.16 µm. Dolichospermum was the
main contributing species for the large peak, Microcystis contributed to the medium peak,
and the small peak was that of Cyclotella. In June, the colony sizes during the peaks were
5.71 µm and 174.11 µm; Microcystis was the main contributing species for the peak, and
other species were the main contributing species for the larger peak.

In the central area, the colony sizes during the peaks were 196.71 µm and 6.45 µm in
September. By including the results of the phytoplankton composition analysis, we found
that Dolichospermum was the dominant species, so both peaks were due to Dolichospermum.
In December, the colony sizes during the peaks were 196.71 µm and 6.45 µm, and Dolichos-
permum was the main contributor for the two peaks. In March, the colony size during the
largest peak was 10.51 µm, and Dolichospermum was the main contributing species for the
peak. In June, the main peaks were due to Dolichospermum and Microcystis, and the colony
sizes were 196.71 µm and 4.71 µm, respectively (Figure 6b).
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In the western area, the colony sizes during the peaks were 6.45 µm and 154.11 µm in
September. By including the results of the phytoplankton composition analysis, we found
that Dolichospermum was the dominant species, and both peaks were due to Dolichosper-
mum. In December, the large peak was due to Dolichospermum, and the colony sizes were
462.28 µm and 8.23 µm. In March, a peak was observed due to Cyclotella, whose colony
size was 8.23 µm, and other species. In June, the colony sizes at the peaks were 251.10 µm
and 3.1 µm, and Dolichospermum and Microcystis contributed to the two peaks, respectively
(Figure 6c).
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3.5. Corresponding Relationships between Cell Diameter and Colony Size

According to the results of linear regression and the generalized linear model, there
was a significant relationship between cell diameter and colony size for Dolichospermum
(p < 0.05). The correlation coefficient of the generalized linear model was higher than that
of linear regression. There was no significant relationship between cell diameter and colony
size for Microcystis (Figure 7).
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and Microcystis ((b), the squsre). The solid lines on the left panel were significant fitting lines with
linear regression and generalized linear model. The dashed line on the right panel indicated that the
linear regression was not significant.
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4. Discussion
4.1. Spatiotemporal Variation in Algal Composition

According to the community composition of phytoplankton, Dolichospermum and
Microcystis were the dominant cyanobacterial genera of phytoplankton in Lake Chaohu.
The biomass of Dolichospermum and Microcystis exceeded 75% of the total biomass during
each month. Dolichospermum dominated the phytoplankton community in the spring, when
the average temperature was lower than 25 ◦C. Dolichospermum blooms mainly occurred
simultaneously in the eastern area and central area of Lake Chaohu. During the same time,
Microcystis was not detected in any of the areas of Lake Chaohu. This phenomenon was
consistent with other studies [27]. In the summer and autumn, Microcystis grew rapidly with
increasing temperatures and became the dominant cyanobacterium. Microcystis blooms
were concentrated in the western area. After October, the dominant species gradually
shifted to Dolichospermum with the decrease in temperature. Microcystis blooms in the
western area gradually decreased, and Dolichospermum blooms dominated the eastern area
of Lake Chaohu. These findings were consistent with those of our previous study [28],
which indicated that there has been no observable change in the community composition
of phytoplankton in recent years.

The spatial characteristics of cyanobacterial blooms were directly related to the spatial
variation of eutrophication in the lake. The concentrations of nutrients, such those of total
phosphorus and total nitrogen, in the western area were higher than those of the central
and eastern areas, which was primarily attributed to the input from river runoff in the
western region of the catchment [29]. There was a significant positive relationship between
TP and Microcystis biomass [30,31]. Therefore, it is possible that Microcystis was limited
by the relatively low TP in the eastern lake area and flourished in the high TP western
lake areas. Dolichospermum was predominant when nitrogen levels were limited or when
the TN/TP ratio was low, because Dolichospermum is able to fix N2 when nitrogen is in
short supply [32]. However, few heterocysts were observed in the sample dominated by
Dolichospermum, suggesting that nitrogen availability may have been sufficiently high, and
that nitrogen fixation by heterocysts was not unnecessary for Dolichospermum dominance.
Therefore, the variations in the TN/TP ratio or in the low TN concentration regions may
not have been the primary factor driving the dominance of Dolichospermum in Lake Chaohu.
In this study, Dolichospermum primarily dominated in the spring, autumn and winter, when
the temperature was generally relatively low, which indicates that they might have a
competitive advantage in the low-temperature niche.

4.2. The Variation in Colony Size and Cell Diameter

In this study, Dolichospermum cell diameter increased from 6.5 µm to 7.4 µm during the
period from November 2016 to March 2017 and then decreased significantly from approxi-
mately 7 µm during the period from November 2016 to February 2017 to approximately
4 µm during the period from May to October. The Microcystis cell diameter values were
also significantly lower from April to October than in November. The increase in cell
diameter during a period of relatively low temperatures may be attributed to a growth
strategy in which cyanobacteria store energy to survive low temperature conditions, which
is confirmed by the finding that spermidine promotes gene expression in cyanobacteria and
promotes the absorption of nutrients to improve cyanobacterial ability to overwinter [33].

The cell diameters of the two cyanobacteria decreased primarily during the growing
season. Before the growing season, the two cyanobacteria experienced a few months of
overwintering, which depleted the energy stores of the cyanobacteria [34]. Therefore, as
the cyanobacteria began to enter their breeding process after dormancy, their cell diameters
detected in April were significantly smaller than before. In addition, as the cyanobacteria
began to growth, the energy absorbed from nutrients was mainly used for their growth
process rather than being stored in the cell for rapid reproduction. This regulation in
nutrient utilization strategies might contributed to the variation of cell diameters.
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The colony sizes in Lake Chaohu showed distinct seasonal variations. The cyanobac-
teria colony size decreased from September 2016 to March 2017 and then increased from
March to June. The increases in the colony sizes of the two bloom-forming cyanobac-
teria were helpful for improving their floatation ability and for reducing predation by
zooplankton. Buoyancy facilitates light acquisition and reduces predation [35]. The verti-
cal distribution of the cyanobacterial species reflects the autecological preferences of the
cyanobacteria for the prevailing environmental conditions and also reflects the minimiza-
tion of negative interactions and exploitation of positive interactions [36]. The decrease in
colony size might be due to sinking after flourishing or due to the shedding of individual
cells from the colony.

The formation and growth of colonies was considered to be due to the incomplete
separation and due to adhesion of daughter cells after cell division [37]. When a colony
grows to a certain size, some cells separate and become propagules for new colony growth.
This is also consistent with our previous studies showing that single-celled Microcystis
form colonies under predation pressures from zooplankton, and the formation and growth
of these colonies is also the result of incomplete separation after cell division [38]. Envi-
ronmental factors, such as light, nutrients and temperature, have important effects on the
formation and size of cyanobacterial colonies [39]. The colony size of Microcystis is known
to decrease with increasing temperature or nutrient concentrations despite faster growth of
unicellular cells [40,41]. Higher light intensities led to a faster growth rate of cells, which
accelerates the consumption of intracellular polysaccharides and other substances, and
decrease the propensity to form colonies [42]. In the study, however, no significant differ-
ences in the cell diameters or colony size of Microcystis and Dolichospermum were observed
among the lake regions with obvious different nutrient levels. This is not consistent with
the previous study, perhaps due to the gradient of nutrients or combined effect of multiple
variables. As such, this aspect requires further study in the future.

In this study, we found that there were positive relationships between the colony size
and cell diameter of Dolichospermum, while there were no such significant relationships for
Microcystis. During cyanobacterial blooms, the biomasses of Microcystis and Dolichospermum
were highly correlated with cell diameter. These results indicate that Dolichospermum and
Microcystis may absorb more nutrients by adjusting colony size and cell diameter, thus
gaining competitive advantages. With the increase in Dolichospermum biomass, the available
nutrient concentrations decreased, which decreased access to nutrients. We speculate
that Dolichospermum changes its growth strategy, growing rapidly while maintaining low
cell diameters to increase cell content and colony size. This strategy could facilitate the
maintenance of a higher biomass level; therefore, Dolichospermum and Microcystis might
maintain their biomass by inducing a trade-off between cell diameter and colony size.

5. Conclusions

In summary, Dolichospermum and Microcystis were found to be the dominant species of
the cyanobacterial blooms in Lake Chaohu. Colony size and cell diameter in Dolichosper-
mum were significantly and positively correlated, while no such relationship was observed
for Microcystis. The regulation of cell diameter and colony size in Dolichospermum might be a
mechanism by which it gains a competitive advantage and maintains biomass. Differences
in cell diameter and colony size in response to variations in seasonal environment changes
may be due to the unique physiological advantages that Microcystis and Dolichospermum
developed during their respective evolutions. Our study highlights the importance of
morphological regulation in maintaining bloom-forming cyanobacterial biomass. How-
ever, our understanding of the mechanism of the trade-offs among morphological traits
is still limited. It is necessary to further investigate the process and factors affecting
these trade-offs.
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