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Abstract: The pelagic ecosystem in the Ross Sea has one central component that is very important for
energy exchanges between upper and lower trophic levels: the Middle Trophic Level. Krill species
are the most important and abundant organisms within this level. Several acoustic surveys were
conducted in the western Ross Sea over the past 25 years, revealing that Euphausia superba is by far the
most abundant species of krill in the Ross Sea during austral summer, and that its core distribution
is concentrated in the northern part, bordering the Southern Ocean. Euphausia crsytallorophias, the
second most abundant krill species, is more concentrated in the central Ross Sea, generally near
the coast. Data on krill biomass were collected in December and January from 1994 to 2016 and
analyzed together with key environmental parameters by means of two-way ANOVA in order to
explain species behavior and identify possible environmental drivers. Temperature and dissolved
oxygen influenced the biomass of both species of krill, while other environmental parameters only
affected one species. In conclusion, the biomass of both species has varied over the years, possibly
due to a complex synergy of environmental drivers.

Keywords: krill; marine acoustics; biomass; spatial distribution; environmental data

1. Introduction

Krill is a fundamental resource in the Ross Sea, sustaining the survival and wellness of
many species of marine mammals and birds inhabiting this region [1,2]. Past studies have
attempted to deepen our knowledge of the dynamics of the Ross Sea marine ecosystem
at various trophic levels [3–5]. However, many aspects need further study. The recent
establishment of a Marine Protected Area (MPA) in the Ross Sea and surrounding areas,
which has been in effect since 1 December 2017 [6], has made specific studies on these very
important animals even more interesting, allowing researchers to compare their population
dynamics with those recorded in other areas around the Antarctic continent where specific
fisheries are conducted.

Following a pilot survey in 1989–1990, eight acoustic surveys targeting Antarctic
krill (Euphausia superba) and crystal krill (Euphausia crystallorophias) in the western Ross
Sea were conducted between 1994 and 2016, yielding some intriguing information on
the krill populations of the Ross Sea [7–9]. Taking into account ice coverage and krill
spatial distribution, it was clearly evident that both E. superba and E. crystallorophias were
concentrated around latitude 74◦ S in November, when ice coverage was quite dense and
diffused. The situation differed in December-January when polynyas (ice-free areas) are
typically much larger; both species traveled north, but to varying degrees, with E. superba
reaching farther north, close to the shelf break than E. crystallorophias. These two species
are probably in competition, having similar feeding appendages and a similar diet based
primarily on phytoplankton [10,11], but with a non-negligible quota of zooplankton [12,13].
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In the Ross Sea, however, E. superba appears to prefer water mixing at the shelf break and
continental slope, while E. crystallorophias generally prefer shallow waters or areas close to
ice [8,9], thus reducing overlap and competition for food.

There is evidence that environmental factors can influence krill populations around the
Antarctic continent, resulting in changes in their abundance and spatial distribution [4,14].
For instance, phytoplankton blooms originating from ice melting through released algae
appear to promote an increase in krill biomass [15,16]. Therefore, krill abundance may
be locally favored by low salinity conditions and high chlorophyll a concentration, which
means ice melting and consequent phytoplankton bloom [1]. Moreover, the ice edge may
be a favorable environment for krill due to its high productivity conditions, also providing
protection to early developmental stages from predators [17,18]. Other environmental
factors, such as dissolved oxygen, especially if considered in conjunction with the general
rise in temperature, which reduces the amount of oxygen in the water, with potential conse-
quences for krill swarm formation and relative packing density, could also be important for
krill dynamics [19]. This factor may also represent a direct threat to the survival of these
species [20].

The Ross Sea has witnessed significant changes in recent years, including an increase
in mean summer air temperature and a decrease in shelf water salinity from the 1950s to the
present day [21]. On a decadal time scale (1995–2006), these factors affected the formation
of Antarctic Bottom Water (AABW) in the western and central Ross Sea [22,23], as well
as Ice Shelf Water (ISW) and High Salinity Shelf Water (HSSW). All these changes, and
eventually others, may have influenced the behavior of krill.

In this paper, we analyzed Antarctic krill and crystal krill biomass data and satellite
environmental data to determine whether recent environmental changes have altered the
abundance and distribution of E. superba and E. crystallorophias in the western Ross Sea. We
also investigated the potential ramifications for other levels of the local pelagic food web.

2. Materials and Methods
2.1. Acoustic and Biological Data

This study focuses on the western Ross Sea area (GSA 88.1, Figure 1). A stable presence
of E. superba and E. crystallorophias populations was observed in this region following several
acoustic surveys [8,9]. This region approximates a rectangular area delimited by latitudes
69◦30′ and 78◦6′ S (955 km) and longitudes 164◦30′ E and 175◦30′ W. This area has been
surveyed acoustically eight times since 1989 under different ice coverage conditions. The
six surveys selected from the total were all conducted between December and January
during the austral summer.

Acoustic monitoring was carried out every 24 h from 15 to 200 m to obtain a more
complete picture of krill abundance in the water column and avoid missing any krill
aggregations due to nictemeral movements, which were not particularly significant in
the study area [9]. In general, there was no discernible decline in schooling behavior.
After noise testing, the vessel’s speed during the survey was generally set between 8 and
9.5 knots, depending mainly on water current and wind intensity conditions. Survey routes
deviated from the original plan in the presence of ice.

The dB difference methodology [24,25] was used to identify krill swarms, taking into
account specific dB intervals between pairs of available frequencies for the target species,
verified with the help of pelagic hauls.

Acoustic density estimates per nautical mile were expressed as nautical area scattering
coefficients (NASC; m2/nm2). NASC values at 120 kHz (generally the lead frequency
for krill) of swarms identified as E. superba or E. crystallorophias were used for subsequent
abundance calculation using the fluid sphere model [8,26–28]. A density contrast coefficient
(g) of 1.0357 and a sound speed contrast coefficient (h) of 1.0279 were taken from the
literature [29] and used for the two species; the average tilt angle was set to 15◦. Acoustic
data acquisition followed CCAMLR guidelines [30]. As regards data processing, the fluid
sphere model [28] was applied in all the acoustic surveys carried out in the Ross Sea
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since 1989. This methodology [31–34] for estimating krill biomass has been validated and
improved over time.
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Figure 1. The Ross Sea, the reference study area.

During acoustic surveys, pelagic hauls were also conducted to aid in the analysis of
echograms, to differentiate between target krill swarms and non-target organisms, and to
collect length-weight data of krill samples. Hauls along the acoustic survey routes were
conducted using a 5 m2 Plankton Hamburg Net (HPN) in 1994, 1997, and 2000 [26], while
HPRI-1000, a new plankton net designed at the CNR in Ancona (Italy), has been used
since 2004 [27]. The net’s mesh size, which was 0.5 mm in 1994, changed to 1 mm from
1997 onwards. The number and position of the hauls were not fixed, depending on target
visualization on the echosounder screen and ice coverage. Capture precision, that is, the
capture of acoustically identified schools, was enhanced by connecting the echosounder to
the SIMRAD ITI trawl positioning and monitoring system. Moreover, during the last two
surveys [9], it was possible to plot the depth data flow on the sounder screen; this made
it easier to check in real time whether the net was indeed catching the targeted schools,
adjusting the depth stratum as necessary. During towing, net opening and trawl depth
were displayed in real time on the screen, enabling accurate sampling in correspondence
with echo traces. The total catch weight of each species was established after the catch
was sorted. Total length, carapace length, weight, diameter of the compound eye, and
sex were determined in 100 individuals per species. The length was measured using a
gauge to the nearest millimeter, and the weight of each individual was measured with a
high-precision scale (0.1 g) equipped with a motion compensation device (PL1020 Marel,
Gardabaer, Iceland). In general, trawling was conducted horizontally in the stratum of
interest between approximately 15 and 150 m; krill swarms were not very common below
this depth. Haul duration was of one hour during the first expeditions and subsequently
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shortened to a duration of half an hour which, given the technological improvements in
trawling operations, was considered to be sufficient to obtain a good sample for biometric
measurements. The average vessel speed during pelagic trawling was 2.5 knots. The length-
weight equation was computed using the best fit methodology from the specific graph.

Biomass estimates derived from acoustic surveys are expressed as the mean krill
density in tons per square nautical mile per Elementary Statistical Sampling Rectangle
(ESSR) [27]. The ESSR method was employed in all the above-cited surveys, given its
suitability for the acoustic monitoring of large areas [28]. Consequently, the western
Ross Sea was subdivided into rectangular grid cells that were spaced at intervals of 1◦

in longitude but varied in latitude following the Earth’s curvature variation at the poles,
resulting in rectangles with a constant area of 600 nm2. Species abundance and biomass
were calculated for each rectangle by considering the average NASC value of the portion
of acoustic transects that lay within the rectangle. Biomass was estimated by referring to
the depth stratum from 15 to 200 m. The first 15 m were excluded in order to account for
vessel noise, noise owing to the presence of ice, and near field issues on the basis of the
transducer draft.

Table 1 contains additional information on the acoustic surveys considered in this paper.

Table 1. Specific details of the selected acoustic surveys. The EK echosounders are SIMRAD
scientific equipment.

Year
(yyyy)

Month
(MON) Vessel Subarea

Survey
Area (km2)

Echosounder Lead Freq.
(kHz)

Other
Available Freq.

(kHz)

Target
Identification

Method
TS Model Used Analysis Depth

Range (m) Time of Day Survey
Design

1994 Dec Italica 88.1 37,200 BioSonics
102 120 38 dB difference Fluid sphere

model 15–200 Day and night Parallel
transects

1997 Dec Italica 88.1 39,600 EK500 120 38, 200 dB difference Fluid sphere
model 15–200 Day and night Parallel

transects

2000 Jan Italica 88.1 60,600 EK500 120 38, 200 dB difference Fluid sphere
model 15–200 Day and night Parallel

transects

2004 Jan Italica 88.1 58,800 EK500 120 38, 200 dB difference Fluid sphere
model 15–200 Day and night Parallel

transects

2014 Jan Italica 88.1 16,800 * EK60 120 38, 200 dB difference Fluid sphere
model 15–200 Day and night Parallel

transects

2016 Jan Italica 88.1 12,000 * EK60 120 38, 200 dB difference Fluid sphere
model 15–200 Day and night Parallel

transects

* reduced coverage due to time constraints.

Acoustic data and associated pelagic haul data are stored in a database at the CNR
IRBIM in Ancona (Italy) and can be obtained by submitting a request to the scientist
responsible for the project.

2.2. Satellite Data

Satellite data were downloaded from the Copernicus Marine Service. Monthly means
of temperature [35], salinity, and ice coverage variables at 1◦ of horizontal resolution
for 75 vertical levels were selected and analyzed together with krill biomass data. For
temperature and salinity, only superficial levels from the surface to around 200 m were
selected for the analyses, since these are the strata monitored by the acoustic survey. An
attempt was made to take into account the average values for the entire stratum; the values
at 0.5, 97, and 199 m were then analyzed. Also selected were the monthly means of total
chlorophyll a, total primary production, dissolved oxygen, and total phytoplankton at a
horizontal resolution of 0.25◦ for 75 vertical levels, with the same depth levels as above.
Temperature, salinity, water velocity, and ice coverage data were acquired from the new
Mercator Ocean (Toulouse, FR) Global Ocean Ensemble Reanalysis [36]. These data consist
of a numerical ocean model constrained with satellite data and in situ observations. The
multi-model ensemble approach allows for the estimation of uncertainties in the ocean
state. This reanalysis uses altimetry data observations that began in 1993. These data
were obtained from the CMCC Global Ocean Physical Reanalysis System (C-GLORS),
which simulates the state of the ocean over the past decades [37,38]. Ice coverage data
were obtained from the same source as temperature and salinity and were expressed as
a percentage of area coverage, i.e., sea ice area fraction (SIC). Total chlorophyll a, total
primary production, dissolved oxygen, and total phytoplankton data use the PISCES
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biogeochemical model available on the NEMO [39] modeling platform. The forcings used
were FREEGLORYS2V4 ocean physics generated at Mercator-Ocean and ERA-Interim [40]
atmosphere produced at ECMWF on a daily basis. 3D mean fields were interpolated on a
standard regular grid in NetCDF format.

2.3. Statistical Analyses

After preliminary data exploration with the statistical software R [41], biomass data
were log-transformed (log10(x + 1), where x is the biomass) since they presented much
higher absolute values than satellite environmental data. For each statistical rectangle
used to estimate krill biomass, the corresponding environmental parameters were cut
inside them by means of R software. This provided the most coherent information in each
rectangle. If one of the rectangles lacked data and this was therefore deemed “not available”
(=NA), data from that rectangle were discarded. This approach enabled us to compile the
most complete dataset possible.

Two-way ANOVA (Analysis of Variance) was used to examine potential correlations
between krill biomass and environmental data, based on four main case studies involving
the selection of environmental data:

• Environmental data averaged from 0 to 200 m
• Environmental data at surface stratum
• Environmental data at a 97 m stratum
• Environmental data at a 199 m stratum

The selection of three case studies at fixed depths, in addition to the one addressing the
entire water column from 0 to 200 m, was intended to determine whether the influence of
certain environmental parameters on krill could be localized, preferably at specific depths.
Separate ANOVA tests were conducted for each species, and the final reported results are
those obtained by retaining only the statistically significant parameters from the first run.

The final models presented in this paper were chosen from a wide number of models.
The best available models were identified by using the Q-Q plot technique, one of the well-
known and widely used graphical techniques for testing conformity between empirical
distribution and the given theoretical distribution [42]. Analyzing ANOVA model residuals
to check normality for all groups at once is easier, and particularly useful when there are
many groups, as in this case [43,44]. Levene’s test for homogeneity of variances was used
to test the hypothesis of equality of group variances [45]. Finally, a post-hoc Tukey’s Honest
Significant Difference test [46] was performed to highlight differences over the years.

3. Results

Figures 2 and 3 depict Antarctic krill and crystal krill biomass, respectively, estimated
acoustically for the ESSR covered by the six surveys held in the western Ross Sea. The
bathymetry reference for these figures is [47], while the land is based on [48].
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3.1. Mean Environmental Data in the Water Column Relevant for Krill Biomass Estimation
(0–200 m)

The ANOVA results for E. crystallorophias, leaving the significant environmental pa-
rameters, are reported in Table 2, while the residuals’ histograms and QQ plots are shown
in Figure 4.

Table 2. Two-way ANOVA for E. crystallorophias and averaged environmental parameters.

Parameters Df Sum Sq Mean Sq f -Value p-Value Signif.

Month 1 0.00 0.00 0.01 0.926
Year 4 5.62 1.41 6.95 0.000 ***
Ice 1 4.37 4.37 21.61 0.000 ***

Salinity 1 1.79 1.79 8.85 0.003 **
Water velocity 1 1.00 1.00 4.94 0.027 *

Dissolved oxygen 1 3.04 3.04 15.02 0.000 ***
Phytoplankton 1 1.33 1.33 6.59 0.011 *

Residuals 282 56.98 0.20 - -

Signif. codes: ‘***’ p < 0.001 ‘**’ p < 0.01 ‘*’ p < 0.05.
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The ANOVA results for E. superba, including only the significant environmental pa-
rameters, are reported in Table 3; residuals’ histograms and QQ plots are shown in Figure 5.

Table 3. Two-way ANOVA for E. superba and averaged environmental parameters.

Parameters Df Sum Sq Mean Sq f -Value p-Value Signif.

Month 1 25.47 25.47 62.42 0.000 ***
Year 4 17.72 4.43 10.86 0.000 ***

Salinity 1 3.22 3.22 7.88 0.005 **
Water velocity 1 3.78 3.78 9.27 0.003 **
Chlorophyll a 1 13.39 13.39 32.83 0.000 ***

Dissolved
oxygen 1 34.37 34.37 84.22 0.000 ***

Residuals 283 115.47 0.41 - -

Signif. codes: ‘***’ p < 0.001 ‘**’ p < 0.01.
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To summarize the most important results, crystal krill biomass presented highly
statistically significant correlations with the survey year, ice coverage, and dissolved oxygen,
whereas significant correlations were found with salinity. Antarctic krill showed highly
significant correlations with the survey month, survey year, chlorophyll a concentration,
and dissolved oxygen, whereas significant correlations were found with salinity and water
velocity. This indicates that both species are sensitive to dissolved oxygen levels and that
their biomass has altered over the years. As regards crystal krill, ice coverage also seems to
be important, while the E. superba biomass has a significant association with chlorophyll a
concentration and the survey month.

3.2. Environmental Data at the Surface Layer (0.5 m)

The E. crystallorophias ANOVA results for this case study are reported in Table 4, while
the residuals’ histograms and QQ plot are reported in Figure 6.

Table 4. Two-way ANOVA for E. crystallorophias and environmental parameters at the surface
layer (0.5 m).

Parameters Df Sum Sq Mean Sq f -Value p-Value Signif.

Month 1 0.40 0.40 2.01 0.158
Year 3 2.75 0.92 4.62 0.004 **
Ice 1 0.78 0.78 3.95 0.048 *

Temperature 1 8.51 8.51 42.93 0.000 ***
Water velocity 1 0.97 0.97 4.87 0.028 *
Chlorophyll a 1 1.95 1.95 9.81 0.002 **

Phytoplankton 1 0.84 0.84 4.23 0.041 *
Residuals 206 40.84 0.20 - -

Signif. codes: ‘***’ p < 0.001 ‘**’ p < 0.01 ‘*’ p < 0.05.
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The E. superba ANOVA results analyzed together with environmental parameters at
the surface layer are reported in Table 5; residuals’ histograms and QQ plots are shown
in Figure 7.

Table 5. Two-way ANOVA for E. superba and environmental parameters at the surface layer (0.5 m).

Parameters Df Sum Sq Mean Sq f -Value p-Value Signif.

Month 1 16.39 16.39 36.03 0.000 ***
Year 3 13.57 4.52 9.94 0.000 ***

Temperature 1 18.66 18.66 41.01 0.000 ***
Salinity 1 4.03 4.03 8.86 0.003 **

Water velocity 1 1.33 1.33 2.91 0.089
Residuals 208 94.65 0.46 - -

Signif. codes: ‘***’ p < 0.001 ‘**’ p < 0.01.
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Crystal krill biomass presented highly significant connections with temperature and
significant correlations with the survey year and chlorophyll a concentration. Antarctic
krill exhibited highly significant connections with the survey month, survey year, and
temperature, while a significant correlation was found with salinity. At the surface layer,
both species were shown to be influenced by temperature, with Antarctic krill biomass
being the only one to also vary in accordance with the survey year and month, as was the
case for averaged environmental parameters throughout the water column.

3.3. Environmental Data at the 97 m Layer

The ANOVA results for the E. crystallorophias case study are reported in Table 6, while
the histograms and QQ plots depicting residuals are reported in Figure 8.

Table 6. Two-way ANOVA for E. crystallorophias and environmental parameters at the 97 m layer.

Parameters Df Sum Sq Mean Sq f -Value p-Value Signif.

Month 1 0.40 0.40 2.13 0.146
Year 3 2.75 0.92 4.90 0.003 **
Ice 1 0.78 0.78 4.20 0.042 *

Temperature 1 4.44 4.44 23.76 0.000 ***
Water velocity 1 1.35 1.35 7.25 0.008 **
Chlorophyll a 1 1.66 1.66 8.92 0.003 **

Dissolved oxygen 1 7.18 7.18 38.46 0.000 ***
Residuals 206 38.47 0.19 - -

Signif. codes: ‘***’ p < 0.001 ‘**’ p < 0.01 ‘*’ p < 0.05.
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Figure 8. (a) Histogram of the residuals for the E. crystallorophias biomass case study and environ-
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The E. superba ANOVA results analyzed together with environmental parameters at
the 97 m layer are reported in Table 7; residuals’ histograms and QQ plots are shown in
Figure 9.
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Table 7. Two-way ANOVA for E. superba and environmental parameters at the 97 m layer.

Parameters Df Sum Sq Mean Sq f -Value p-Value Signif.

Month 1 16.39 16.39 41.83 0.000 ***
Year 3 13.57 4.52 11.54 0.000 ***

Temperature 1 6.84 6.84 17.46 0.000 ***
Water velocity 1 1.61 1.61 4.11 0.044 *
Chlorophyll a 1 5.59 5.59 14.26 0.000 ***

Dissolved oxygen 1 23.49 23.49 59.93 0.000 ***
Residuals 207 81.14 0.39 - -

Signif. codes: ‘***’ p < 0.001 ‘*’ p < 0.05.
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Temperature and dissolved oxygen were found to be highly significant for the
E. crystallorophias biomass. E. superba exhibited highly significant correlations with the
survey month and year, temperature, chlorophyll a concentration, and dissolved oxygen.
At around 100 m depth, the factors that seem to exert the biggest influence are temperature
and dissolved oxygen for both species. E. superba presented a highly significant connec-
tion with chlorophyll a concentration, survey month, and survey year. Other significant
correlations for E. crystallorophias were found to be the survey year, water velocity, and
chlorophyll concentration.

3.4. Environmental Data at the 199 m Layer

The ANOVA results for the E. crystallorophias case study are reported in Table 8, while
the residuals’ histograms and QQ plot are depicted in Figure 10.

Table 8. Two-way ANOVA for E. crystallorophias and environmental parameters at the 199 m layer.

Parameters Df Sum Sq Mean Sq f -Value p-Value Signif.

Month 1 0.42 0.42 2.39 0.123
Year 3 2.65 0.88 5.01 0.002 **
Ice 1 0.80 0.80 4.56 0.034 *

Temperature 1 10.02 10.02 56.80 0.000 ***
Salinity 1 1.88 1.88 10.67 0.001 **

Water velocity 1 0.82 0.82 4.67 0.032 *
Chlorophyll a 1 1.73 1.73 9.78 0.002 **

Phytoplankton 1 2.77 2.77 15.70 0.000 ***
Residuals 202 35.63 0.18 - -

Signif. codes: ‘***’ p < 0.001 ‘**’ p < 0.01 ‘*’ p < 0.05.
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The ANOVA results for E. superba analyzed together with environmental parameters
at the 199 m layer are reported in Table 9; residuals’ histograms and QQ plots are shown
in Figure 11.

Table 9. Two-way ANOVA for E. superba and environmental parameters at the 199 m layer.

Parameters Df Sum Sq Mean Sq f -Value p-Value Signif.

Month 1 16.78 16.78 42.07 0.000 ***
Year 3 12.90 4.30 10.78 0.000 ***

Temperature 1 26.46 26.46 66.36 0.000 ***
Chlorophyll a 1 3.26 3.26 8.17 0.005 **

Dissolved oxygen 1 2.54 2.54 6.37 0.012 *
Residuals 205 81.74 0.40 - -

Signif. codes: ‘***’ p < 0.001 ‘**’ p < 0.01 ‘*’ p < 0.05.
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Temperature and phytoplankton correlations with the E. crystallorophias biomass were
found to be highly significant. E. superba showed highly significant associations with the
survey month, survey year, and temperature. At a depth of 200 m, temperature appears to
influence both species. Phytoplankton concentration seems to be important for crystal krill,
while the survey month and year influence Antarctic krill. Other significant connections
were found with the survey year and chlorophyll a concentration for E. crystallorophias, as
well as chlorophyll concentration in the case of E. superba.

All the above results, limited to highly significant correlations, are summarized
in Table 10.

Table 10. Summary of highly significant correlations between the two krill species and environmental
parameters for each case study.

Species Depth Stratum 0–200 m Depth Stratum 0.5 m Depth Stratum 97 m Depth Stratum 199 m

E. cryst. survey year, ice, oxygen temperature temperature, oxygen temperature,
phytoplankton

E. sup. survey month, survey year,
chlorophyll a, oxygen

survey month, survey
year, temperature

survey month, survey
year, temperature,

chlorophyll a, oxygen

survey month, survey
year, temperature

The results of Levene’s test and the Tukey test for each of the above case studies can
be found in the Supplementary Materials.

4. Discussion

Crystal krill yielded very different results when environmental average values from
0 to 200 m were compared to values at fixed depth strata. In the former case, the most
significant correlations involve the survey year, ice coverage, and dissolved oxygen. How-
ever, when fixed depth strata are considered, the variable most strongly correlated with
krill biomass is temperature, followed by dissolved oxygen at a depth of 100 m and total
phytoplankton concentration at a depth of 200 m. The correlation between the survey year
and crystal krill biomass in the western Ross Sea suggests that the biomass has varied
significantly across the years in which the surveys were conducted. Previous studies
have revealed a correlation between E. crystallorophias biomass and ice coverage [9,49],
as this species prefers to inhabit coastal and ice-covered areas and should be sensitive to
ice dynamics. The relationship between crystal krill and sea ice can be explained by the
availability of food and the desire to protect eggs and early life stages [50–52].

As regards the synergistic relationship between temperature and dissolved oxygen,
we have already mentioned a general rise in water temperature in the Ross Sea, which
would result in a decrease in the water’s oxygen concentration. This may have a deleterious
impact on krill swarm formation and relative density [19], posing a potential threat to these
species’ survival rate [20]. Based on our results, this synergistic effect on crystal krill should
be stronger at a depth of around 100 m. In all fixed strata analyses, the temperature is by
far the most prominent environmental parameter with significant connections in the case of
crystal krill. This factor may be related to the importance of temperature in the regulation of
krill metabolism [53]. Some experiments [54] demonstrated that food and oxygen demands
tend to increase as temperatures rise, with a possible subtraction of energy from other
activities, such as reproduction, in a global warming scenario such as the one we are helping
to create. Temperature is also important for the stabilization of ice coverage, given that
ice is important as a reserve of food and shelter for the protection of krill larvae [55–58].
Moreover, ice-free areas often demonstrate the predominance of krill rivals such as Salpa
thompsoni [57]. Optimal summer temperatures seem to differ for these two krill species,
with E. superba preferring higher temperatures at the shelf break in the northern part of the
Ross Sea and E. crystallorophias preferring the shallower depths and colder temperatures
of the south-western neritic part [8,9,50]. At least during the austral summer, this factor
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contributes to the spatial separation of these species and significantly reduces competition
for food. The link between crystal krill abundance and phytoplankton has already been the
subject of prior research [1,9]; however, the significance of its availability at greater depths
(200 m), as demonstrated in this study, may not be as well documented. As also reported
in other Antarctic areas [58], our data revealed that this species is quite abundant even at
100 m or more. For this reason, crystal krill at depths between 100–200 m could be quite
influenced by the availability of phytoplankton in these or neighboring strata above.

In the ANOVA results, Antarctic krill presented a main difference with respect to
crystal krill: the survey month and survey year had significant correlations with biomass in
all case studies. This factor highlights the considerable variability of Antarctic krill biomass
over the years, as well as a major difference between the situation in December, when ice
is denser, and January, when most of the area is typically ice-free. The different levels of
abundance and spatial distribution of Antarctic krill between December and January, as
discussed in this paper, were also reported in previous studies [8,9]. In fact, a comparison
of the beginning of austral summer with full summer reveals quite a diverse picture for
these creatures, with the bulk of Antarctic krill distribution shifting northwards throughout
the summer period. Even in the case of Antarctic krill, temperature appears to be a highly
significant parameter for similar reasons as those reported for crystal krill; analogous
considerations may also be made in this case, but taking into account these two species’ dif-
ferent preferences. Another, less-studied phenomenon connected to the rise in temperature
and consequent increase in ice melting, is the stranded Antarctic krill individuals found
in certain regions of Antarctica, such as Potter Cove [59], where the creatures’ guts were
found to be full of particles suspended in the floods originating from melted ice. The latter
is another example of the importance of a balance between temperature, ice presence, and
marine organisms in Antarctic ecosystems. A significant association between E. superba
biomass and dissolved oxygen was observed in the average values of the first 200 m and
the 100 m depth strata. This factor reinforces the notion that both these krill species are
sensitive to the same environmental parameters, despite their different preference ranges,
as observed for temperature. Similarly, chlorophyll a concentration had an impact on
Antarctic krill biomass when environmental parameters were averaged from 0 to 200 m and
100 m depth strata. This element highlights the trophic factor’s importance for Antarctic
krill, particularly the availability of phytoplankton [60,61], in addition to boosting krill
recruitment [62]. The ANOVA results suggest that the 100 m depth stratum has the highest
phytoplankton concentration. Looking at the CTD profiles reported in [63], which were
performed at the positions of pelagic hauls during the 2004 acoustic survey in the western
Ross Sea, a peak in fluorescence can be seen at a 40–50 m depth, and in one case, even
deeper. This suggests that chlorophyll concentration in these depth strata could exert a
relevant influence on Antarctic krill. In any case, the analyses of fluorescence data from
CTD sampling should be improved in order to support this hypothesis. Some authors
also discovered an increase in Antarctic krill lipid reserves in conjunction with increasing
levels of chlorophyll a concentration, estimated from remote sensing data collection and a
decrease in sea surface temperature [11]. The present results showed significant associa-
tions between Antarctic krill biomass, chlorophyll a concentration, and temperature at a
depth of 100 m, suggesting that something similar to the reported instance could also have
happened in our study.

This paper demonstrates that acoustic estimations of krill biomass combined with
satellite-derived environmental data can provide intriguing insights into the environmental
variables that exert an influence on krill and, consequently, the Ross Sea’s local pelagic
ecosystem. These preliminary results may provide an avenue for expanding our under-
standing of the spatial and temporal variations of krill biomass in the Ross Sea. The
inclusion of krill spatial distribution and data on krill recruitment and krill predators
should improve the precision of these conclusions.
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5. Conclusions

The analyses in this paper have highlighted the importance of certain environmental
parameters for Antarctic krill and crystal krill biomass and demonstrated that the levels of
these stocks vary significantly from one summer to another. Temperature and dissolved
oxygen are some of the parameters that are common to both species, and although chloro-
phyll a concentration was shown to be important for E. superba, ice coverage is a critical
factor for E. crystallorophias. These preliminary analyses should be explored further in
order to understand the complex intricate links between krill and the environment in the
Ross Sea.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/d14060433/s1, Table S1: Levene’s Test of Homogeneity of Variance
(center = mean) for all E. crystal-lorophias case studies; Table S2: Levene’s Test of Homogeneity of
Variance (center = mean) for all E. superba case studies; Table S3: Tukey multiple comparisons of
means with a 95% family-wise confidence level for E. crystallorophias and averaged environmental
parameters; Table S4: Tukey multiple comparisons of means with a 95% family-wise confidence level
for E. crystallorophias and environmental parameters at 0.5 m; Table S5: Tukey multiple comparisons of
means with a 95% family-wise confidence level for E. crystallorophias and environmental parameters
at 97 m; Table S6: Tukey multiple comparisons of means with a 95% family-wise confidence level for
E. crystallorophias and environmental parameters at 199 m; Table S7: Tukey multiple comparisons of
means with a 95% family-wise confidence level for E. superba and averaged environmental parameters;
Table S8: Tukey multiple comparisons of means with a 95% family-wise confidence level for E. superba
and environmental parameters at 0.5 m; Table S9: Tukey multiple comparisons of means with a
95% family-wise confidence level for E. superba and environmental parameters at 97 m; Table S10:
Tukey multiple comparisons of means with a 95% family-wise confidence level for E. superba and
environmental parameters at 199 m.
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