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Abstract: Abundant food resources in riparian zones provide efficient foraging sites for waterbirds.
Herbivory is a key ecosystem process that has widely recognized effects on primary production
and vegetation structure and composition. However, there is limited understanding of impacts of
waterbird herbivory on riparian zone vegetation. In this study, a bird exclosure experiment with
five levels of foraging intensities (no foraging, very little foraging, light foraging, moderate foraging
and heavy foraging) was set up in Shengjin Lake to study the effects of waterbird foraging on the
community structure of sedge meadows and individual traits of the dominant plant Carex thunbergii.
Foraging intensity had little effect on community structure. The dry mass of C. thunbergii decreased
with the increasing foraging time. Waterbird foraging reduced leaf dry mass under heavy foraging
by 27.7% and root dry mass by 45.6% compared to CK (no foraging). Waterbird foraging increased
allocation to shoot growth but had a weak effect on elemental allocation of C. thunbergii. The foraging
intensity significantly affected the morphological traits of C. thunbergii. The results of structural
equation modeling showed that RSR (root: shoot ratio represents the ratio of dry mass) and RL (root
length) are key traits in driving the dry mass decline in the presence of bird foraging. This study
may contribute to a better understanding of the adaptability of perennial herb plants to waterbird
foraging and maintain the healthy development of wetland ecosystems.

Keywords: bird foraging; Carex thunbergii; functional trait; community structure; riparian zone

1. Introduction

As a part of wetland ecosystems, the riparian zone is the transition between aquatic
and terrestrial ecosystems, playing significant roles in resisting floods, regulating climate
and controlling water runoff [1,2]. During the dry season, lowering of water levels and
surface cover will aggregate food resources in the riparian zone, which provides extremely
efficient foraging sites [3]. The major factors that drive plant diversity and ecosystem
function in wetlands are hydrology, nutrient availability and herbivores. However, there is
limited understanding of the impacts of herbivores on riparian zone vegetation [4,5]. Most
research of herbivory in wetlands has been conducted on insects, while other organisms,
such as crayfish, fish and waterbirds, lead to a large decrease in plant biomass [6,7]. The
lake wetlands in the middle and lower reaches of the Yangtze River are unique in the
world, with many short-lived lakes, which are important stopover and wintering sites
for migratory waterbirds on the East Asian-Australasian flyway [8]. It provides winter-
ing grounds for more than 900,000 waterbirds, especially great amounts of herbivorous
waterbirds [9]. Many studies have focused on the distribution of vegetation-influenced
herbivorous waterbirds in the shallow lake riparian zone of the middle and lower reaches
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of the Yangtze River [10]. However, the effect of waterbird foraging on plant vegetation is
little known.

Herbivores can profoundly influence plant community structure and diversity in
riparian zones [11–13]. The research of Veen showed that aquatic grazers, mostly waterbirds,
reduced biomass of Phragmites australls and Stratiotes aloides by an average of 25% and
60%, respectively [14]. Herbivores in Shark Bay—which include dugongs, sea turtles and
fishes—would selectively forage on high nutrient content, fast-growing tropical species
when given a choice [15]. Some studies suggested that moderate grazing can maintain
the productivity level and increase the species richness [16]. The dominant species with
good palatability were preferred to be foraged under moderate grazing, thus providing
more opportunities for slow-growing species [17]. Therefore, studying how waterbird
foraging affects vegetation growth is helpful for us to understand the changes in plant
community composition.

Plant functional traits are the features (morphological, physiological, or phenological)
that represent ecological strategies and determine how plants respond to environmental
factors, affect other trophic levels, and influence ecosystem properties [18]. Several studies
have demonstrated that functional traits can reflect the contribution of plants to different
ecosystems under grazing treatments [19,20]. While the riparian zone vegetation is mainly
composed of clonal plants, few studies have considered how these root traits of dominant
perennial herbs respond to herbivores [21]. Previous studies have mostly focused on leaf
traits of plants [22,23]. However, root traits play important roles in nutrient absorption and
transportation, and in ecosystem processes [24]. The dominant species in wetland plants are
mostly clonal plants, and their underground (root system, rhizome, stolon, etc.) traits can
determine plant fitness and better reflect plant responses to the external environment [25,26].
Our current study of Carex thunbergii in wetlands showed that roots play a crucial role
in their growth. Therefore, when studying the functional traits of dominant plants in
wetlands, more consideration should be given to the changing of related underground
functional traits.

The Shengjin Lake is an important wintering place and stopover site for migratory
waterbirds on the East Asian-Australasian flyway [27]. Waterbirds generally arrive in
late October and fly away in early April. The species and number of overwintering
waterbirds reached the maximum from December to January of the following year. Seasonal
fluctuations in water level have formed a large riparian zone in Shengjin Lake, providing
many food resources and habitats for waterbirds. C. thunbergii is a common and dominant
species in the riparian zone of Shengjin Lake and is a dominant food type for the wintering
geese, mainly composed of bean geese (Anser fabalis) and greater white-fronted geese
(A. albifrons) [27,28]. This study analyzes the effects of bird foraging on the community
structure of sedge meadows and individual traits of the dominant plant C. thunbergii by a
bird exclosure experiment. In this context, we addressed the following questions: (1) What
is the effect of different foraging intensities on plant community composition? (2) What
are the effects of different foraging intensities on functional traits? (3) How do foraging
intensities affect dry mass changes?

2. Materials and Methods
2.1. Study Site

This study area was located at the Shengjin Lake (30◦15′N–30◦30′N, 116◦55′ E–117◦15′ E)
(Figure 1), a shallow lake connected to the Yangtze River on the East Asian-Australasian
flyway. The region belongs to a humid subtropical monsoon climate, with an average
annual temperature of 16.4 ◦C and annual precipitation of 1600 mm. There is a clear
separation between the rainy and dry seasons. The rainy season is from April to October,
and the dry season lasts from November to March in the following year [29]. In the dry
season, large areas of mudflats and exposed sedge (Carex spp.) meadows supply foraging
habitats for the migratory waterbirds. Dominant plants in the lake are the Carex and
C. thunbergii, accounting for 80–90% of the vegetation cover of the total plant community.



Diversity 2022, 14, 331 3 of 13

The periodical change of hydrology in Shengjin Lake makes the riparian zone have a
seasonal plant growth cycle. The Carex community has two growing seasons per year, the
first from October to November. When the temperature started to rise in mid-February,
the Carex began to grow again on the fluctuating zones [30]. Shengjin Lake provides
abundant food resources to attract waterbirds for foraging and become important habitats
for waterbirds.
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Figure 1. The location of the study area. Different colors represent different foraging intensity (CK,
no foraging; VF, very little foraging; LF, light foraging; MF, moderate foraging; HF, heavy foraging).

2.2. Experimental Design

To test for waterfowl effects, a bird exclosure experiment with 5 treatments and
4 replicates, making a total of 20 plots, was established in October 2020 [31]. Sixteen
exclosure plots consisted of stone pillars and nets (mesh size: 5 cm × 5 cm) to keep
waterfowl from getting in and protecting the vegetation. There were 4 bird accessible
plots only with stone pillars but without a net. The treatments were 5 levels of different
exclosure time: (CK, no foraging; exclosure from 19 November 2020 to 24 March 2021;
VF, very little foraging; exclosure from 19 November 2020 to 21 February 2021; LF, light
foraging; exclosure from 19 November 2020 to 19 January 2021; MF, moderate foraging;
exclosure from 19 November 2020 to 19 December 2020; HF, heavy foraging; no exclosure)
(Table 1). We harvested the leaves and roots of C. thunbergii on 24 March 2021.

Table 1. The parameters of foraging intensity and the measurement index.

Terms Explanation Terms Explanation

CK no foraging SLA specific leaf area
VF very little foraging RL root length
LF light foraging RD root diameter
MF moderate foraging RSA root surface area
HF heavy foraging RV root volume
C carbon NL number of links
N nitrogen NT number of tips
P phosphorus RSR root: shoot ratio

LC leaf carbon RC root carbon
LN leaf nitrogen RN root nitrogen
LP leaf phosphorus RP root phosphorus
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2.3. Community Structure

In each plot, 1 m × 1 m quadrat was randomly laid down. In each quadrat, plant
species were identified and the number of individuals of each species were counted. To
assess differences in species diversity under different foraging intensities, we measured
species richness, the Shannon–Wiener diversity index and the Simpson index in March
2021 [32].

2.4. Morphological Trait of C. thunbergii

In each 1 m× 1 m quadrat, a random 25 cm× 25 cm sub-quadrat was dug out carefully.
The plants were carefully uprooted, roots were thoroughly washed three times to remove
impurities, and samples were then stored at −4 ◦C and brought to the laboratory. Five
C. thunbergii plants were randomly selected and labeled in each plot for height measurement
and subsequent analysis. All the plants were then separated into different tissues of leaves
and roots, and they were oven-dried at 65 ◦C for 48 h and weighed [33]. We randomly
selected five plants to measure leaf area with a leaf area meter (Li-3000, Li-COR). The
specific leaf area (SLA) was calculated as the leaf area/leaf dry mass [34]. Meantime, each
root from the same individuals was spread out on paper to reduce root overlap and scanned
using a flatbed scanner (EPSON Perfection V700 Photo, Seiko Epson Corp., Suwa, Japan)
at a resolution of 400 dpi. Root measurements were conducted using Win-RHIZO image
analysis software (Regent Instruments Inc., Quebec, QC, Canada). Root traits including
root length (RL), root diameter (RD), root surface area (RSA), root volume (RV), number of
links (NL) and number of tips (NT) were calculated.

2.5. Chemical Traits of C. thunbergii

The samples of leaf and root were ground and homogenized with a mill (MM400,
Retsch, Germany). The leaf and root carbon (C), and nitrogen (N) were determined using
an elemental analyzer (vario MICRO cube; Elemental, Germany). After digestion in a
mixture of H2SO4 and H2O2, a TU-1901DS ultraviolet spectrophotometer UV-2300 (Tec
comp Com, Shanghai, China) molybdenum antimony colorimetric method was used to
quantify leaf and root phosphorus (P) [35].

2.6. Data Analysis

Statistical analyses were performed with version 26.0 of the SPSS software (SPSS Inc.,
Chicago, IL, USA). We used one-way analysis of variance (ANOVA) to test the differences
in community composition, biomass of C. thunbergii, morphological traits, and chemical
traits among the different foraging intensities. When the ANOVA results were significant,
we performed the least significant difference (LSD) test to identify differences between
foraging treatments. Differences were considered statistically significant when p < 0.05. The
principal components analysis (PCA) was conducted on the traits of C. thunbergii to analyze
the relationships between the functional traits and the foraging intensities. PCA were
performed with version 4.0.5 of R (R Core Team, 2021) [36]. Structural equation modeling
(SEM) was also employed to explore how foraging intensities affected C. thunbergii dry
mass through traits. The analysis was performed with AMOS (AMOS, v18, IBM, Chicago,
IL, USA) and the best model based on multiple indicators were chosen with standardized
correlation coefficients, including chi-square (χ2), p, comparative fit index (CFI), root mean
square error of approximation (RMSEA) [37]. We produced the figures using version 8.0 of
the Origin Pro software (Origin lab Corporation., Northampton, MA, USA).

3. Results
3.1. Plant Community Diversity

There were no significant differences in richness, Simpson index and Shannon–Wiener
diversity index between CK, MF and HF. (Figure 2A–C). The species richness under VF
was 3 and under LF was 5 (Figure 2A). The Shannon–Wiener diversity index of treatment
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VF was lower than in LF by 55.8%, whereas the Simpson index of treatment VF compared
with LF decreased by 57.4%.
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Figure 2. Diversity of plant communities in different foraging intensities (CK, no foraging; VF, very
little foraging; LF, light foraging; MF, moderate foraging; HF, heavy foraging) showing (A) richness,
(B) Simpson index, (C) Shannon–Wiener diversity index. In each graph, means with the same
lowercase letters are not significantly different among foraging intensity (p > 0.05); means with
different lowercase letters are significantly different among foraging intensity (p < 0.05). Capped lines
represent ± standard error.

3.2. Biomass of C. thunbergii

The root fresh weight decreased with the increase of foraging intensity (Figure 3A).
Root fresh weight was the highest under CK and the lowest under HF, which was 260.5.
There was no significant difference in leaf fresh weight (p > 0.05). Root dry weight also de-
creased with the increase of foraging intensity (Figure 3B). Root dry weight was significantly
higher than leaf dry weight. Leaf dry weight under HF was reduced by 27.7% compared
to CK, while root dry weight was reduced by 45.6% compared to CK (p < 0.05). As the
foraging intensity increased, the root: shoot ratio showed a downward trend (Figure 3C),
and under LF, MF, HF, it was significantly lower than CK (p < 0.05).
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Figure 3. Biomass of C. thunbergii in different foraging intensities (CK, no foraging; VF, very little
foraging; LF, light foraging; MF, moderate foraging; HF, heavy foraging) showing (A) fresh weight,
(B) dry weight, (C) root: shoot ratio. In each graph, means with the same lowercase letters are not
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3.3. Plant Morphological Traits

The foraging treatment had a significant effect on plant height (Figure 4A, p < 0.05).
The plant height was highest in CK, with a height of 89 cm, and was lowest in HF, with
a height of 71 cm. The differences in plant height of SF, LF and MF were not significant,
and were all higher than HF. SLA significantly decreased with increasing foraging intensity.
SLA under MF was 76.8 (Figure 4B). There was no significant difference in leaf area (LA)
among the treatments (Figure 4C, p > 0.05). Five root traits—RL, RSA, RV, NT, NL—were
strongly inhibited by foraging and declined with increased foraging intensity (Figure 4D–I).
RL under HF was 60% lower than CK.
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3.4. Chemical Traits

There was no significant difference in leaf C, N and P (Table 2). Leaf N and P were
significantly higher than that of the roots. The leaf N under HF was higher than CK. The
root N was 0.8 under HF, which was lower than CK. The leaf P was highest under CK and
was lowest under MF.

Table 2. C, N and P concentrations of leaf and root of C. thunbergii in different foraging intensity.

Parameters Foraging Intensity

CK VF LF MF HF

C (%)
Leaf 43.35 ± 1.06 a 44.38 ± 0.64 a 42.69 ± 1.22 a 42.97 ± 0.98 a 41.95 ± 1.39 a

Root 45.86 ± 0.64 a 43.80 ± 1.01 ab 41.70 ± 0.79 b 45.21 ± 0.83 a 44.35 ± 1.01 ab

N (%)
Leaf 2.14 ± 0.11 a 2.20 ± 0.18 a 2.18 ± 0.25 a 2.16 ± 0.13 a 2.23 ± 0.15 a

Root 0.97 ± 0.04 abc 1.06 ± 0.05 ab 0.93 ± 0.07 bc 1.12 ± 0.03 a 0.81 ± 0.04 c

P (%)
Leaf 0.27 ± 0.06 a 0.22 ± 0.04 a 0.20 ± 0.03 a 0.19 ± 0.03 a 0.22 ± 0.06 a

Root 0.13 ± 0.01 ab 0.12 ± 0.03 b 0.18 ± 0.01 a 0.12 ± 0.01 b 0.13 ± 0.02 ab

a,b,c rows with different superscript are significantly different (p < 0.05) for each treatments. The values are
mean ± standard errors. (CK, no foraging; VF, very little foraging; LF, light foraging; MF, moderate foraging; HF,
heavy foraging; H, plant height; C, carbon; N, nitrogen; P, phosphorus).
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3.5. PCA Analysis

As shown in Figure 5, the first two principal components of the PCA for the functional
traits of C. thunbergii explained 51.7% of the variation under the different foraging inten-
sities. The first principal component explained 35.7% of the variation and was positively
correlated with height (H), RV, RSA, RL and NT (Figure S1). The second principal compo-
nent explained 16% of the variation and was positively correlated with LN, RP and LP. The
difference between CK and VF is not obvious, and CK can be clearly distinguished from
MF and HF.
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Figure 5. Principal components analysis (PCA) of C. thunbergii traits. (CK, no foraging; VF, very little
foraging; LF, light foraging; MF, moderate foraging; HF, heavy foraging; H, plant height; SLA, specific
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RC, root carbon; RN, root nitrogen; RP, root phosphorus.).

3.6. Pathways That Directly or Indirectly Affect Dry Mass

SEM indicated that 99% of the variation in root dry mass was explained by H, SLA,
RSR, RL, NL and leaf dry mass, with significantly correlated pathways from RSR (r = 0.87,
p < 0.001) and leaf dry mass (r = 0.81, p < 0.001) (Figure 6). There were also positively
correlated pathways from NL to height, and RL to NL. Foraging intensity mainly affected
height, SLA, RSR and RL in negative ways, and was significant with SLA, RSR and RL.

The SEM was created to quantify the direct and indirect effects of bird foraging and
plant traits on the dry mass of C. thunbergii. Bird foraging had a direct negative effect on leaf
dry mass and had a positive effect on root dry mass. In addition, bird foraging indirectly
reduced leaf dry mass through RL. Bird foraging indirectly affected root dry mass through
RL and RSR.
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and root dry mass through direct and indirect effects mediated by changes in height, SLA, RSR, RL,
and NL. Models show the direct and indirect effects of how bird foraging and plant traits on dry
mass of C. thunbergii. (chi-square (χ2) = 15.245, degree of freedom (df) = 13, p = 0.292, comparative fit
index (CFI) = 0.987, root mean square error of approximation (RMSEA) = 0.095). Red and black solid
arrows represent negative and positive pathways, respectively. Numbers are the standardized path
correlation coefficients (Pearson’s r). R2 denotes the proportion of variance explained by indicators of
the model. Significance at 95% confidence level: ** p < 0.01; *** p < 0.001.

4. Discussion

Our results showed that bird foraging was closely related to the changes in the root
traits of C. thunbergii. The height, SLA and root traits were the highest under CK, and
decreased with the increase of foraging intensity. However, we found that foraging intensity
had no significant effect on the C, N and P. Under heavy foraging, leaf dry mass was
reduced by 27.7% and root dry mass was reduced by 45.6% compared to CK. The dry mass
of C. thunbergii was influenced indirectly by RL and RSR. In future studies on perennial
herbs in riparian zones, we should pay more attention to root traits as they provide unique
information about how a plant is adapted to bird foraging.

4.1. Effect of Different Foraging Intensity on the Diversity of Carex Community

The vegetations are mostly Carex communities in sedge meadow, which are impor-
tant food stocks of wintering herbivorous geese in the middle and lower Yangtze River
floodplains, in particular A. fabalis and A. albifrons [38]. Herbivorous birds could lead to the
large reduction in plant standing crops, especially for the birds that are non-breeding and
gregarious [39]. In addition, the selective foraging pressure of herbivorous birds is a key
factor driving the changes of vegetation structure and species diversity [15]. Our exclosure
experiment showed that the moderate foraging increased the alpha diversity index of the
Carex community, and all three diversity indices were the highest under LF. This is consis-
tent with the previous research and is in line with the hypothesis of moderate interference
in the community [17]. Therefore, the higher species diversity observed under LF may be
related to fewer herbivore foraging choices [40]. Our results are inconsistent with the study
of Xiang, probably due to Shengjin Lake having a high level of productivity [41]. Compared



Diversity 2022, 14, 331 9 of 13

with LF, VF showed a decrease in plant diversity which may indicate that waterbirds began
to forage green, newly grown plants, instead of foraging C. thunbergii. Some studies showed
that grazing waterbirds, such as geese, often selected plants offering the highest nitrogen
intake [42], and nitrogen content generally decreases with increasing plant height [43]. In
addition, vegetation of intermediate height provides waterbirds with perches and shelter,
whereas extremely high vegetation interferes with foraging [44]. Under VF treatment,
waterbirds have entered the late migration stage, and A. albifrons have to replenish a lot
of energy for the return migration. At this time, C. thunbergii entered a period of rapid
growth, and the protein content drops, making the grass unpalatable. White-fronted geese
are selective foragers and they usually choose specific plant species to forage based on
the nutritional value of plant. Accordingly, waterbirds began to forage some companion
species, leading to a decrease in diversity under VF. Thus, more attention should be paid
to the selective foraging of herbivorous goose and consequent impacts on vegetation and
ecosystem function.

4.2. Dry Mass and Elemental Allocation of C. thunbergii under Different Foraging Intensity

Considering the greater premium on plant quality and limited ability to digest cellulose
and other highly recalcitrant plant parts, herbivorous bird species mostly foraged on the
fast-growing and energy-rich food items, these foods being mainly dominant plants [45,46].
Several reports have shown that Carex spp. dominate the diet of herbivorous geese in vari-
ous shallow lakes of the middle and lower Yangtze River floodplain [47]. Consistent with
the literature, this research found that the dry mass of C. thunbergii showed a downward
trend with increasing foraging time (Figure 3). Leaf dry mass under HF was reduced by
27.7% compared to CK. The root dry mass was reduced by 45.6% compared to CK. The root
dry mass decreased more than the leaf, probably because the leaves resumed growth after
birds’ migration. We harvested the plants on 24 March 2021. Wintering waterbirds depart
in March. Rising temperature and the migration of waterbirds have led to a recovery of
growth of C. thunbergii [48]; the leaves begin to grow and the roots continue to accumulate.
In addition, wetlands have high levels of productivity [49]. From the results of the diversity,
it can be found that birds foraging is not heavy, so leaf dry mass changes are not very
large. The root: shoot ratio reflects the proportion of photosynthates that are allocated
to the leaf and root [50]. The root dry mass of C. thunbergii was higher than the leaf dry
mass under different foraging intensities. This is because some wetland plants, such as
C. cinerascens have the characteristic of distributing more biomass to the root system to
adapt to the flooded environment [51]. As the foraging time increased, the root: shoot ratio
of C. thunbergii decreased significantly. Some literature suggests that increased allocation to
shoots following grazing may represent an evolutionarily adaptive trait for grazing toler-
ance [52]. This finding is contrary to previous studies and may be due to the fewer foraged
leaves at the end of migration as waterbird numbers decline [53]. Herbivory has often been
reported as contributing to enhanced tissue nutrient (N and P) concentrations in plants [54].
Our results showed that the leaf C, N and P concentrations of C. thunbergii (Table 2) was
not significantly affected by bird foraging. The N and P concentration of C. thunbergii
roots followed a unimodal curve with the increase of foraging intensity. Overall, herbivory
has a weak effect on the elemental allocation of C. thunbergii. The nutrient content of the
dominant species did not change significantly, indicating that the dominant species had
stress resistance and could self-balance [55]. A global meta-analysis also suggested that
the effect of increasing plant N and P concentration under herbivory is much weaker at
the species level compared to the community level and the major mechanism driving the
plant community level stoichiometric responses to herbivory was the change of vegetation
structure [56].

4.3. Functional Traits of C. thunbergii under Different Foraging Intensity

Plant functional traits which link to ecosystem functions are basic elements that adapt
to grazing [57]. As the main plant organ that is consumed by herbivores, leaves are strongly
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affected by grazing and are an important indicator organ for changes of plant growth [58].
In this study, we observed that all the leaf traits tested in this study, including plant height
and SLA, decreased with increasing foraging time (Figure 4). Similarly, the deer enclosure
experiment conducted by Herbering et al. also suggested that Maianthemum racemosum had
decreased SLA by 33% in deer access areas as compared to exclusion areas [59]. Our results
are inconsistent with the study of Wang, which may be because C. thunbergii mainly adopts
protection strategies when being eaten [20]. That is, lower SLA means thicker cell walls and
leaves that can increase the protection against herbivores [28]. Root traits are closely related
to nutrient absorption and plant adaption strategies to biotic and abiotic stress [60]. In our
study, C. thunbergii roots tended towards miniaturization in response to bird foraging. Five
root traits (RL, RSA, RV, NL and NT) decreased substantially when plants were subjected
to bird foraging. Root miniaturization inhibits the ability of roots to acquire nutrients and
water, which may explain the reduction in plant size and SLA [50]. Root miniaturization of
C. thunbergii will allow companion species to occupy more underground space, which may
also be a reason for changes in community diversity [61].

4.4. Mechanism of Bird’s Foraging-Induced Biomass Decrease

By analyzing a set of functional traits, we could distinguish the C. thunbergii with
heavy foraging from those of other treatments in a PCA (Figure 5). The first principal
component obtained by PCA was mainly related to shape and size of plants (e.g., height,
root volume, root surface area, root length, and numbers of tips). The PC1 distinctly
separated HF with lower height, root length and surface area from CK. However, CK and
SF cannot be separated clearly by the PCA analysis. The second principal component was
mainly related to plant elemental allocation (leaf N concentration, leaf P concentration
and root P concentration), represented by strong positive co-variation between LP and
RP. It suggested that the change of P concentration in C. thunbergii was independent of
bird foraging. Direct and indirect paths of C. thunbergii dry mass decline induced by bird
foraging were fitted using SEM (Figure 6). Bird foraging experiments showed that 99%
root dry mass of C. thunbergii were explained by height, SLA, RSR, RL, NL and leaf dry
mass, and bird foraging indirectly affected root dry mass through RL and RSR. Our results
highlight that RSR and RL are key traits in driving the dry mass decline in the presence of
bird foraging. These are inconsistent with the study of Zhao, which may due to root traits
being important adaptive characteristics of wetland plants [51,62]. Our results highlight
that root length plays an important role in dry mass decline than leaf traits. Considering the
above results, it will be necessary, in future studies on perennial herbs in riparian zones, to
place more consideration on root trait variation pattern as it provides unique information
about how a plant is adapted to bird foraging.

5. Conclusions

Our results showed that the foraging intensity significantly affected the morphological
traits of C. thunbergii. Waterbird foraging increased allocation to shoot growth but had a
weak effect on elemental allocation of C. thunbergii. Under heavy foraging, root dry mass
decreased more than leaf dry mass. The results of structural equation modeling showed
that RSR and RL are key traits in driving the dry mass decline in the presence of bird
foraging. This study may contribute to a better understanding of the impacts of waterbird
foraging on vegetation and ecosystem function.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/d14050331/s1, Figure S1: Quality of representation of Carex thun-
bergii. The larger the value, the greater the contribution of the variable to the principal components
analysis (PCA) result. H, plant height; SLA, specific leaf area; LA, leaf area; RL, root length; RSV, root
surface area; RV, root volume; RD, root diameter; NT, numbers of tips; NL, numbers of links; LC, leaf
carbon concentration; LN, leaf nitrogen concentration; LP, leaf phosphorus concentration; RC, root
carbon concentration; RN, root nitrogen concentration; RP, root phosphorus concentration.

https://www.mdpi.com/article/10.3390/d14050331/s1
https://www.mdpi.com/article/10.3390/d14050331/s1
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