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Abstract: This study determined the transcriptomes of eight Oedogoniales species, including six
species from Oedogonium and two species from Oedocladium to conduct phylotranscriptomic and
evolutionary analyses. 155,952 gene families and 192 single-copy orthogroups were detected. Phylo-
transcriptomic analyses based on single-copy orthogroups were conducted using supermatrix and
coalescent-based approaches. The phylotranscriptomic analysis results revealed that Oedogonium is
polyphyletic, and Oedocladium clustered with Oedogonium. Together with the transcriptomes of the
OCC clade in the public database, the phylogenetic relationship of the three orders (Oedogoniales,
Chaetophorales, Chaetopeltidales) is discussed. The non-synonymous (dN) to synonymous substi-
tution (dS) ratios of single-copy orthogroups of the terrestrial Oedogoniales species using a branch
model of phylogenetic analysis by maximum likelihood were estimated, which showed that 92 single-
copy orthogroups were putative rapidly evolving genes. Gene Ontology enrichment and Kyoto
Encyclopedia of Genes and Genomes pathway analyses results revealed that some of the rapidly
evolving genes were associated with photosynthesis, implying that terrestrial Oedogoniales species
experienced rapid evolution to adapt to terrestrial habitats. The phylogenetic results combined with
evolutionary analyses suggest that the terrestrialization process of Oedogoniales may have occured
more than once.

Keywords: Oedogoniales; phylotranscriptomic analysis; rapidly evolving genes; phylogenetics;
dN/dS ratios; terrestrialization

1. Introduction

The order Oedogoniales belonging to the OCC clade (consisting of the Oedogoniales,
Chaetophorales, and Chaetopeltidales) of Chlorophyceae, which is within the single family
Oedogoniaceae, includes three genera: Oedogonium Link ex Hirn, Oedocladium Stahl, and
Bulbochaete Agardh based on the conventional morphological criteria [1–4]. More than
600 species have been described in this order, with most occurring in fresh waters globally,
although Oedocladium species and a few Oedogonium species are terrestrial, predominantly
found on soil surfaces [4–14]. The taxonomy of Oedogoniales is mainly based on mor-
phology, and phylogenetic analyses with regard to the group remain limited. Previous
studies revealed that Oedogoniales were monophyletic and that Bulbochaete may be a
sister to the other two genera [15–18]. Using nuclear 18S rDNA of 10 Oedogonium species,
Alberghina et al. [19] suggested that Oedogonium might not be monophyletic; therefore,
morphological characteristics may not define phylogenetic groups. Mei et al. [20] analyzed
18S rDNA sequences and observed that Oedocladium formed a separate clade within Oedo-
gonium, whereas Bulbochaete was relatively distant from the other two genera. However,
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the researchers suggested that the phylogeny required further investigation based on larger
sampling of such taxa, particularly those of Oedocladium and Bulbochaete. Phylogenetic and
evolutionary analyses based on chloroplast genome protein-coding genes have showed
that both Oedocladium and Oedogonium are polyphyletic groups [21,22].

Although phylogenetic analyses based on one or a few genes have been performed
extensively in recent decades, they have a few limitations, such as the existence of par-
alogues, varying evolutionary rates, incomplete lineage sorting, horizontal gene transfer,
and gene duplication [23–28], which implies that gene trees may not represent species trees
in some cases. Generally, an increase in the information in a dataset and the use of a more
appropriate analytical method reduces the influence of such errors [29–32]. With the rapid
development of next-generation sequencing technology, transcriptome data is increasingly
being applied for phylogenetic analysis, being used widely in plants [33,34], protists [35,36],
algae [37–39], and animals [40,41]. However, phylotranscriptomic analysis of Oedogoniales
has not been performed yet due to lack of transcriptome data.

Nucleotide substitution rates are often used as a criterion to reflect the selection
pressure. According to Yang [42], dN/dS < 1, =1, >1, denote a negative purifying selection,
neutral evolution and positive selection, respectively. The dN/dS ratios can be used to
determine whether genes are evolving under purifying selection [43,44]. An excess of
nonsynonymous substitutions over synonymous ones can be used to detect changes in
proteins that provide higher fitness in a given circumstance (e.g., low light) at the molecular
level [45]. It has been reported that organisms in energy-rich habitats are often characterized
by higher evolutionary rates [46,47], organisms living in low-energy areas, like shaded
habitats, have relatively slower rates of molecular evolution [48]. The genus Oedocladium
(terrestrial) was presumed to have partly originated from Oedogonium species, which
grow on moist soil surfaces and present underground filaments with slightly unbranched
rhizoids [9]. The Oedocladium and the terrestrial Oedogonium species were detected to have
positively selected positions in psbA, suggesting that terrestrial Oedogoniales taxa may
have undergone adaptive evolution to adjust to the variations in light intensity between
aquatic and terrestrial habitats [21,22]. dN/dS analysis in Oedogoniales would further
contribute to revealing the evolutionary relationships in this group of algae.

In the present study, we sequenced the transcriptomes of eight Oedogoniales species
and subsequently conducted phylotranscriptomic analysis to understand the phyloge-
netic relationship of this group and the OCC clade (Oedogoniales, Chaetophorales and
Chaetopeltidales). In addition, dN/dS ratios of gene families in Oedogoniales were esti-
mated to explore the evolutionary relationship between the aquatic and terrestrial habitats,
which could provide valuable information with regard to the phylogenetic and evolutionary
relationships of Oedogoniales.

2. Materials and Methods
2.1. Cultures

Eight Oedogoniales species, namely, Oedogonium crispum (FACHB-3310), Oedogonium
dentireticulatum (FACHB-3309), Oedogonium sp. (FACHB-3311), Oedogonium sp. (FACHB-
3313), Oedogonium sp. (FACHB-3317), Oedogonium capilliforme (FACHB-3312), Oedocladium
prescottii (FACHB-2452), and Oedocladium carolinianum (FACHB-2453) were obtained from
culture collections of previous studies and stored in the Culture Collection of Freshwater
Algae at the Institute of Hydrobiology, Chinese Academy of Sciences. All the strains
were cultured in liquid BG11 medium at 25 ◦C under a 12–12 h light–dark cycle and light
intensity of 15–30 µmol/(m2·s).

2.2. Library Preparation and Sequencing

Total RNA was extracted using TRIzol reagent (Thermo Fisher Scientific, Waltham,
MA, USA), and poly-A+ mRNA was isolated using oligo dT magnetic beads. The mRNA
was fragmented using divalent cations under a high temperature in NEBNext First Strand
Synthesis Reaction Buffer (5×) and was used as a template for random hexamer-primed
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first-strand cDNA synthesis. Afterward, the second strand of cDNA was synthesized.
The sequencing library was generated via the NEBNext Ultra RNA Library Prep Kit for
Illumina (New England Biolabs, Ipswich, MA, USA) and sequenced on the NovaSeq 6000
platform (Illumina, San Diego, CA, USA). Finally, 150 bp paired-end reads were generated.

2.3. Quality Control, De Novo Assembly, and Sequence Annotation

The quality of the raw reads was initially checked using FastQC v0.11.6 (http://
www.bioinformatics.babraham.ac.uk/projects/fastqc/ accessed on 24 June 2021) and the
raw reads were subjected to quality control using Trimmomatic v0.39 [49] (LEADING:5,
TRAILING:5, SLIDINGWINDOW:4:5, MINLEN:25). Trinity v2.8.5 [50] was used to conduct
de novo assembly of the clean reads with default parameters. BUSCO v3.0.2 [51] was used
to assess the completeness of the final transcripts. Subsequently, TransDecoder v5.5.0 was
used to predict the open reading frame (ORF) of each transcript. BLASTP [52] searches of
the longest ORFs (the longest coding region in each transcript) were conducted against
the Uniref90 database using Diamond v0.8.22.84 [53]. In addition, Pfam searches of the
longest ORFs in the Pfam database were conducted using HMMER v3.1b2 [54]. Finally,
TransDecoder v5.5.0 was used to integrate the BLASTP and Pfam search results into coding
regions. The nucleotide sequences (CDS) and amino acid sequences (PEP sequences) of
the regions were used for subsequent analyses. Additionally, CDS and PEP sequences
of Chlamydomonas reinhardtii were downloaded from NCBI using the assembly accession
number GCF_000002595.1. All raw reads were deposited in the NCBI Sequence Read
Archive (BioProject PRJNA771938).

2.4. Orthologous Group Identification and Phylotranscriptomic Analysis

Single-copy orthologues were determined using OrthoFinder v2.5.2 [55], and PEP
sequences of single-copy orthologues were selected for phylotranscriptomic analysis. The
PEP sequences of each single-copy orthologue were aligned using MAFFT v7.394 [56],
with the options -maxiterate 1000 and -globalpair. Regions showing poor alignment were
trimmed with TrimAl v1.2 [57] using the parameter -automated1. The trimmed alignment
of orthologous groups was used for subsequent phylotranscriptomic analysis. Supermatrix
and coalescent-based analyses were used to construct the phylogenetic tree. With regard to
supermatrix analysis, PhyloSuite [58] was used to concatenate all orthologous groups, the
concatenate sequence including 35,684 amino acids, and PartitionFinder 2 [59] was used
to determine the evolutionary models and partitioning of the concatenated PEP dataset.
Supermatrix analysis was conducted based on Bayesian inference (BI) and maximum like-
lihood (ML) methods. Bayesian analysis was conducted using MrBayes v3.2.6 [60], and
the dataset was partitioned as shown in Table S1 (Supplementary Materials). Markov
chain Monte Carlo analyses were run with four Markov chains (three heated, one cold)
for 3,000,000 generations, and trees were sampled every 1000 generations. In each round
of calculation, a fixed number of samples (burn-in = 1000) was discarded at the begin-
ning of the chain. ML analysis was carried out using the IQ-TREE web server [61] with
1000 ultrafast bootstraps [62] and 1000 SH-aLRT tests [62,63] to test nodal support. For the
coalescent-based analyses, RAxML [64] was used to conduct ML analysis of each single-
copy orthologue based on the PROTGAMMA GTR model. Furthermore, ASTRAL [65]
was used to infer coalescent-based species tree (ST) phylogeny. The 18S rDNA sequences
were aligned using MAFFT v7.0 [56], and ambiguous regions were manually edited and
adjusted by eye using MEGA7 [66]. The 18S rDNA sequences were determined using
jModelTest2 [67] and the best model was GTR + I + G. Similarly, ML and BI methods were
used to infer phylogenies. To understand the phylogenetic relationships of the OCC clade,
the transcriptomes of the three orders were downloaded from the public database, with
the same methods as above, we conducted phylotranscriptomic analyses based on the
single-copy orthologues by BI and ML analyses (the concatenate sequence including 8,
291 amino acids), and the assembly accession numbers are listed in Table S2.

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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2.5. Evolutionary Analyses Based on Phylogenetic Analysis by Maximum Likelihood

The CODEML program of PAML v4.9 [42] with the ML model (runmode = −2, Codon-
Freq = 2) was used to measure the values of dS and dN. The analysis was based on all
single-copy orthologues and orthologues with dS values > 5 were excluded from further
analyses. The branch model was employed in the calculation of dN/dS ratios for terrestrial
Oedogoniales species and aquatic ones with Oe. Prescottii, Oe. Carolinianum, and O. sp.
FACHB-3313, were labeled as foreground branches. A null model (model = 0), where
one dN/dS ratio was fixed across all strains, was compared with an alternative model
(model = 2), where Oe. Prescottii, Oe. Carolinianum, and O. sp. (FACHB-3313), were allowed
to have a different dN/dS ratio. Likelihood ratio tests were performed to examine model fit,
a chi-squared test was used to analyze p values, and multiple testing was corrected using
false discovery rate (FDR). The genes were considered putative rapidly evolving genes
if they had an FDR-adjusted p value < 0.05 and a higher dN/dS ratio in the foreground
branch than in the background branches.

2.6. Gene Ontology Enrichment and Kyoto Encyclopedia of Genes and Genomes Pathway Analyses
of Rapidly Evolving Genes

After acquiring the putative rapidly evolving genes, gene ontology (GO) functional
and KEGG pathway enrichment analyses were performed to determine the functions
of the genes. For GO enrichment analysis, all the PEP sequences were imported into
InterProScan [68] for GO term mapping. In addition, all PEP sequences were subjected
to KEGG pathway analyses using EggNOG-mapper [69]. Both analyses were performed
using clusterProfiler [70], with a p value cutoff of 0.05, and the FDR method [71] was used
for multiple testing.

3. Results
3.1. De Novo Transcriptome Assembly and Ortholog Detection

The assembly and annotation statistics of the eight Oedogoniales species are listed
in Table 1. The raw reads of each species generated by Illumina paired-end sequencing
technology ranged from 49,070,110 to 69,832,706. After filtering for adapters and low-
quality sequences using Trimmomatic v0.39 [49], the number of clean reads ranged from
49,038,062 to 69,639,876. Afterward, de novo assembly was conducted using Trinity v2.8.5.
The number of assembled contigs ranged from 69,335 to 143,592 and the average contig
length and N50 values for all species were greater than 750 bp and 1000 bp, respectively.
After the removal of redundant transcripts using TransDecoder v5.5.0, BUSCO [51] was
used for further quantitative assessment of assembly and annotation completeness. A
search of BUSCO genes defined for Chlorophyta revealed that the percentages of conserved
genes in the transcriptomes of eight Oedogoniales species recovered via BUSCO analysis
were >89%, indicating a high completeness level. Finally, TransDecoder v5.5.0 was used to
predict coding sequences from the assembled transcripts, and the results revealed that the
number of coding sequences ranged from 29,750 to 118,126. The nucleotide coding sequence
(CDSs) and amino acid sequence (PEP sequence) of the coding sequences were used for
subsequent analysis. The PEP sequences of the eight species were used to detect orthology.

The number of orthogroups was 155,952, where each orthogroup represented a gene
family, and all orthogroups were subjected to GO and KEGG enrichment analyses. The num-
ber of single-copy orthogroups was 192, and all single-copy orthogroups were subjected to
evolutionary analyses. Similarly, the PEP sequences of C. reinhardtii were downloaded from
the NCBI database as an outgroup, in addition to the eight Oedogoniales species; the PEP
sequences of the nine species were used to detect orthology and all single-copy orthogroups
were used for phylotranscriptomic analyses. The number of single-copy orthogroups was
99. When analyzing the phylogenetic relationship of the OCC clade, with C. reinhardtii as
outgroup, and all the PEP sequences of the three orders were used to detect orthology and
the number of the single-copy orthogroups was 29.
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Table 1. Summary of sequencing and assembly.

Species Number of
Raw Reads

Number of
Clean Reads

Sequence Assembled by Tri-ity
Complete
BUSCOs

Number of
Coding

Sequence
Predicted by

TransDecoder
Number

of Contigs
Average

Contig Length
N50

Length Orthogroups

Oedogonium sp.
(FACHB-3313,

terrestrial)
66,116,070 66,020,778 82,567 1084.35 2165 28,539 92.7% 50,244

Oedocladium
carolinianum
(terrestrial)

49,070,110 49,038,062 112,614 959.71 1897 36,030 92.3% 63,044

Oedogonium
capilliforme 67,815,700 67,680,428 118,267 842.10 1439 37,039 93.0% 59,861

Oedocladium
prescottii

(terrestrial)
64,034,464 64,005,336 139,202 1204.96 2693 66,000 91.9% 118,126

Oedogonium sp.
(FACHB-3311) 60,835,586 60,730,652 94,883 849.91 1305 34,131 89.3% 64,417

Oedogonium
dentireticula-

tum
52,801,814 52,695,338 100,195 838.23 1371 30,859 93.7% 48,137

Oedogonium
crispum 66,019,080 65,947,940 143,592 753.29 1085 33,704 92.1% 51,654

Oedogonium sp.
(FACHB-3317) 69,832,706 69,639,876 69,335 785.33 1129 21,432 90.2% 29,750

3.2. Phylotranscriptomic Analyses

A phylogenetic tree based on 18S rDNA sequences showed that the eight Oedogonium
species were in the clade formed by Oedogonium and Oedocladium, and the Oedocladium
species were separated by Oedogonium subplagiostomum (Figure S1). Phylotranscriptomic
analyses were conducted based on 99 single-copy orthogroups using supermatrix and
coalescent-based approaches, with C. reinhardtii species as the outgroup. The BI tree and
ST exhibited similar results, which revealed that the eight Oedogoniales species formed
three clades with absolutely high support values (Figure 1); the two Oedocladium species
and O. capilliforme formed the second clade, while O. sp. FACHB-3311, formed a separate
clade. Based on the ML tree (Figure S2), the position of the Oedocladium species was slightly
different, with Oe. carolinianum forming a separate clade instead of clustering with species
Oe. prescottii, and the topology was not well supported. Then phylotranscriptomic analyses
based on 29 single-copy orthogroups of the OCC clade with C. reinhardtii species as the
outgroup by BI and ML method showed the same results that Chaetophorales locating at
the base of the branch was sister to a clade formed by Oedogoniales and Chaetopeltidales
(Figure S3). The phylogenetic tree of the OCC clade also showed the same result as Figure 1,
that two Oedocladium species formed a clade clustering with Oedogonium. The phylogenetic
positions other Oedogonium species in the present study were also similar with topology
based on 29 single-copy orthogroups (Figure 1 and Figure S3).
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3.3. Evolutionary Analyses Based on PAML, GO Enrichment, and KEGG Pathway Analyses of
Rapidly Evolving Genes

The ML method was used to calculate the dN and dS substitution rates for 192 single-
copy orthogroups of the eight Oedogoniales species. A total of 59 orthogroups were
obtained after discarding orthogroups with dS values > 5. Boxplots of species based on the
dN and dS rates of the 59 orthogroups are illustrated in Figure 2. We compared dN and dS
values between terrestrial and aquatic species across the eight species of Oedogoniales and
observed that the genes between the two groups were not significantly different (p = 0.6547
and 0.2967, respectively). Subsequently, a branch model of PAML was used to compare
the variations in dN/dS ratios between terrestrial and aquatic species and the results are
presented in Table S3. Among the 192 single-copy orthogroups, 93 orthogroups exhibited
significant differences and higher dN/dS ratios in the three terrestrial Oedogoniales species,
indicating the occurrence of rapid evolution.

To understand the functions of the putative rapidly evolving genes, GO enrichment
and KEGG pathway analyses were performed. The results of GO enrichment analysis con-
ducted using InterProScan are illustrated in Figure 3. The putative rapidly evolving genes
were enriched in 46 GO terms, three of which being associated with photosystem II oxygen-
evolving complex, photosystem II, and photosynthesis (GO: 0009654, GO: 0009523, and GO:
0015979, with adjusted p values = 2.36 × 10−7, 6.90 × 10−7, and 1.21 × 10−12, respectively).
The results of the KEGG pathway analysis are illustrated in Figure S4. Notably, five genes
were associated with the photosynthetic pathway (adjusted p value = 3.97 × 10−9).



Diversity 2022, 14, 157 7 of 12Diversity 2022, 14, x FOR PEER REVIEW 7 of 12 
 

 

 
Figure 2. Boxplots of the non-synonymous (dN) and synonymous (dS) substitutions for each species 
of the eight Oedogoniales species. For each species, the box represents values between quartiles, 
outliers are shown as black points, and black lines inside the box show median values. 

To understand the functions of the putative rapidly evolving genes, GO enrichment 
and KEGG pathway analyses were performed. The results of GO enrichment analysis con-
ducted using InterProScan are illustrated in Figure 3. The putative rapidly evolving genes 
were enriched in 46 GO terms, three of which being associated with photosystem II oxy-
gen-evolving complex, photosystem II, and photosynthesis (GO: 0009654, GO: 0009523, 
and GO: 0015979, with adjusted p values = 2.36 × 10−7, 6.90 × 10−7, and 1.21 × 10−12, respec-
tively). The results of the KEGG pathway analysis are illustrated in Figure S4. Notably, 
five genes were associated with the photosynthetic pathway (adjusted p value = 3.97 × 
10−9). 

Figure 2. Boxplots of the non-synonymous (dN) and synonymous (dS) substitutions for each species
of the eight Oedogoniales species. For each species, the box represents values between quartiles,
outliers are shown as black points, and black lines inside the box show median values.

Diversity 2022, 14, x FOR PEER REVIEW 8 of 12 
 

 

 
Figure 3. Dot plot showing the enrichment of the 92 putative fast-evolving genes. The dot sizes 
represent the numbers of genes. 

4. Discussion 
The phylogenetic results based on the three kinds of dataset (18S rDNA, 99/29 single-

copy orthologues based on Oedogoniales and the OCC clade respectively) showed the 
same results that Oedogonium was polyphyletic and Oedocladium species formed a separate 
clade clustering with Oedogonium. At the same time, with C. reinhardtii as an outgroup, a 
BI tree based on 99 single-copy orthologues determined by the supermatrix method 
showed results similar to those of the ST analyzed by ASTRAL, which is consistent with 
the phylogenetic results based on 18S rDNA sequences, internal transcribed spacers (ITS), 
and chloroplast protein coding genes [21,22]. The inconsistency in the results observed 
with regard to the position of Oe. carolinianum, we may think the result by BI method more 
reliable for a relatively high support value, and the topology by the BI method showed 
high similarity with the ST analyzed by ASTRAL, which enables highly accurate phylo-
genomic estimation, even in the presence of high levels of gene tree conflict because of 
incomplete lineage sorting [30] or horizontal gene transfer [31,32]. It has been reported 
that larger sample sizes could substantially improve phylogenetic results [72]. Previous 
phylogenetic results based on nuclear genes and chloroplast proteins indicated that in the 
OCC clade, Oedogoniales was located at the base of the branch, and Chaetophorales and 
Chaetopeltidales were most closely related [73–77]. While in the present study, phylotran-
scriptomic results were incongruent in that Chaetophorales, locating at the base of the 
branch, was sister to a clade formed by Oedogoniales and Chaetopeltidales (Figure S3). 
However, only one transcriptome of Chaetopeltidales was included in this study and the 
transcriptome data of the other OCC clade species downloaded from the public database 
were much smaller than the newly sequenced eight Oedogoniales transcriptomes. More 
data about Chaetopeltidales and high-quality transcriptomes will contribute to resolve 
this incongruence. 

Figure 3. Dot plot showing the enrichment of the 92 putative fast-evolving genes. The dot sizes
represent the numbers of genes.



Diversity 2022, 14, 157 8 of 12

4. Discussion

The phylogenetic results based on the three kinds of dataset (18S rDNA, 99/29 single-
copy orthologues based on Oedogoniales and the OCC clade respectively) showed the same
results that Oedogonium was polyphyletic and Oedocladium species formed a separate clade
clustering with Oedogonium. At the same time, with C. reinhardtii as an outgroup, a BI tree
based on 99 single-copy orthologues determined by the supermatrix method showed results
similar to those of the ST analyzed by ASTRAL, which is consistent with the phylogenetic
results based on 18S rDNA sequences, internal transcribed spacers (ITS), and chloroplast
protein coding genes [21,22]. The inconsistency in the results observed with regard to the
position of Oe. carolinianum, we may think the result by BI method more reliable for a
relatively high support value, and the topology by the BI method showed high similarity
with the ST analyzed by ASTRAL, which enables highly accurate phylogenomic estimation,
even in the presence of high levels of gene tree conflict because of incomplete lineage
sorting [30] or horizontal gene transfer [31,32]. It has been reported that larger sample sizes
could substantially improve phylogenetic results [72]. Previous phylogenetic results based
on nuclear genes and chloroplast proteins indicated that in the OCC clade, Oedogoniales
was located at the base of the branch, and Chaetophorales and Chaetopeltidales were
most closely related [73–77]. While in the present study, phylotranscriptomic results were
incongruent in that Chaetophorales, locating at the base of the branch, was sister to a
clade formed by Oedogoniales and Chaetopeltidales (Figure S3). However, only one
transcriptome of Chaetopeltidales was included in this study and the transcriptome data of
the other OCC clade species downloaded from the public database were much smaller than
the newly sequenced eight Oedogoniales transcriptomes. More data about Chaetopeltidales
and high-quality transcriptomes will contribute to resolve this incongruence.

In the present study, the substitution rates were evaluated using the ML method
of PAML, which is the most accurate method currently used for measuring substitution
rates [63,78,79]. The statistical analyses results showed no significant differences between
the terrestrial and aquatic Oedogoniales species. Furthermore, the dN/dS ratios based
on the branch model revealed that 93 orthogroups among the single-copy orthogroups
were significantly different, with relatively high dN/dS ratios observed in three terrestrial
Oedogoniales species. Previous studies have revealed that low dN/dS ratios (dN/dS < 1)
denote a strong purifying selection [42], whereas relatively high dN/dS ratios could be
interpreted as a weak purifying selection [80]. The relatively high dN/dS ratios observed
in the three terrestrial Oedogoniales species suggested the occurrence of rapid evolution.
The relatively high dN/dS substitution rates may result in a novel function or adaptive
evolution [80–83]. Oedogoniales include over 600 species, with only a few being terrestrial
species and others growing in freshwater habitats. The genus Oedocladium (terrestrial) was
presumed to have originated from Oedogonium species, which grow on moist soil surfaces
and have underground filaments with slightly unbranched rhizoids [9]. Based on both
the GO enrichment and KEGG pathway analyses, the function of the putative rapidly
evolving genes is related to photosynthesis, considering the differences between aquatic
and terrestrial habitats, we speculated that the terrestrial Oedogoniales species underwent
rapid evolution to adapt to the varying conditions, especially for the terrestrialization
process. This observation is consistent with the findings of a previous study that was based
on chloroplast protein-coding genes [22]. A previous study revealed that the transition from
water to land occurred several times and across different taxa, ranging from microorganisms
to lichens and green plants, and later, arthropods, mollusks, annelids, and vertebrates [84].
The phylogenetic tree (Figure 1) showed that the three terrestrial Oedogoniales species
were distributed across different branches, suggesting that terrestrialization process may
occur more than once.

Previous studies revealed that the traditional taxonomy of Oedogoniales did not
define natural groups [15–20], and the molecular phylogenetic and evolutionary studies of
Oedogoniales are still limited due to lack of current molecular data in the public databases.
More molecular data will be helpful for further studies. The present study is the first to
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perform phylotranscriptomic analysis based on transcriptome data from eight Oedogonilaes
species, including six Oedogonium and two Oedocladium species. Phylogenetic analyses
of 99 single-copy orthologues using two phylogenetic analysis approaches revealed that
both Oedogonium and Oedocladium were polyphyletic. According to the dN/dS estimation
results, terrestrial Oedogonilaes species had 93 putative rapidly evolving single-copy
orthologues, and both GO enrichment and KEGG pathway analyses showed that a few
orthologues among the putative rapidly evolving single-copy orthologues were associated
with photosynthesis, implying that the terrestrial Oedogoniales species underwent rapid
evolution in adapting to terrestrial habitats. Overall, phylogenetic results combined the
phylogenetic result suggested that terrestrialization processes of Oegogoniales may have
occured several times.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/d14030157/s1, Figure S1. Phylogenetic tree of the Oedogoniales
species based on 18SrDNA sequences. Figure S2. Phylogenetic tree of the Oedogoniales species
based on 99 single-copy orthogroups by ML method. Figure S3. Phylogenetic tree of the OCC clade
based on 29 single-copy orthogroups by BI and ML method. Figure S4. Bar chart showing the KEGG
pathways of the 92 putative fast-evolving genes. Table S1. Partition scheme of the pep sequences of
99 single-copy orthologues used in this study. Table S2. Accession number of the OCC clade species
downloaded from the public database. Table S3. The putative fast-evolving genes performed by
branch model of PAML.
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