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Abstract: Organisms release their nucleic acid in the environment, including the DNA and RNA,
which can be used to detect their presence. eDNA/eRNA techniques are being used in different
sectors to identify organisms from soil, water, air, and ice. The advancement in technology led
to easier detection of different organisms without impacting the environment or the organism
itself. These methods are being employed in different areas, including surveillance, history, and
conservation. eDNA and eRNA methods are being extensively used in aquaculture and fisheries
settings to understand the presence of different fish species and pathogens in water. However, there
are some challenges associated with the reliability of results because of the degradation of nucleic
acid by several factors. In aquaculture, there are several diseases and parasites detected with these
methods. In this review, we discuss different aquaculture diseases and parasites detected with
eDNA/eRNA approach and the fate of these nucleic acids when subjected to different water quality
and environmental parameters. This review intends to help the researcher with the potential of
eDNA/eRNA-based detection of pathogens in aquaculture; this will be useful to predict a potential
outbreak before it occurs. Along with that, this paper intends to help people understand several
factors that degrade and can hamper the detection of these nucleic acids.

Keywords: eDNA; eRNA; fish disease; surveillance; hydrolysis; degradation; qPCR

1. Introduction

Environmental DNA (eDNA) analysis is a new scientific technique for identifying
species from materials that contain the cellular and extracellular DNA leached off all
living organisms. The terminology for eDNA as extracellular DNA is noted by Pietramel-
lara, et al., 2009 [1]. However, researchers are using different terminologies, such as exDNA
(extracellular DNA) or cfDNA (cell-free DNA). The idea of obtaining DNA from the en-
vironmental sample was first demonstrated in 1986 [2] and called environmental DNA
(eDNA). The identification of various eDNA from macro-organisms validated the method
as important in a conservation context, and it has been demonstrated in a wide range
of ancient and modern habitats, both terrestrial and aquatic [3–6]. Environmental DNA
(eDNA) approaches are becoming more widely used in conservation biology, biodiversity
research, and invasion ecology. The most significant benefits of eDNA sampling are the
undemanding way of obtaining samples, as the target organism does not need to be isolated.
The detection of parasites and diseases in water can also be performed using environmental
DNA methods. There is a lot of evidence for the detection of several bacterial species from
aquatic environments, including Aeromonas and Flavobacterium.

DNA is leached into the aquatic environment by different means, such as mucosal
secretion, bodily fluids, tissues, scales, skin, microbial cells, and cell ruptures. This gives the
researcher the potential to isolate DNA from different water sources without impacting the
aquatic habitat. eDNA is not only being extracted from water samples, but it is also being
extracted from different substrates, including soil, snow, and air as well. The extensive
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study of eDNA has led historians to identify new species and detect the presence of
endangered species. Environmental nucleic acid, including eRNA for the recent infective
SARS-CoV-2, has been successfully isolated from hospital air sampling [7]. The advances
in diagnostic techniques and instruments are the biggest reasons behind the success of
environmental nucleic acid detection. Direct detection in water utilizing eDNA-based
approaches eliminates the need to acquire and investigate diseased hosts, reducing disease
monitoring efforts and costs dramatically. Eukaryotic micro- and macrobial communities
and populations have been effectively detected and monitored using eDNA analysis. The
advances in eDNA analysis have resulted in efficient identification and quantification
of extracellular nucleic acids in different mediums. DNA metabarcoding, sequencing,
quantitative polymerase chain reaction (qPCR), and digital droplet PCR (ddPCR) are
different methods being used (Figure 1). This study aims to discuss the potential of
eDNA/eRNA in disease surveillance and the fate of extracellular nucleic acids subjected to
environmental conditions in the water. Different independent studies are being conducted
all over the world to assess the use of the eDNA approach for the surveillance of disease,
and our study intend to bring it all together to help fish health researchers, aquaculture
farmers, and policymakers.
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Figure 1. Different methods of eDNA/eRNA quantification. qPCR, ddPCR, metabarcoding, se-
quencing, and RT-PCR are generally used to quantify the presence of different organisms from
water samples.

2. Data Collection

The study was conducted using a systematic literature search using Google Scholar,
PubMed, Scopus, NCBI, and Web of Science. The articles were searched only in the English
language. Different aquaculture and eDNA-related journals and book chapters were searched,
along with the conference proceedings available online. The keywords used to search were
‘eDNA for fish disease’, ‘eDNA degradation’, ‘eDNA in water’, ‘eDNA metabarcoding’, ‘eRNA
in fish disease’, ‘Methods of eDNA detection’, ‘Surveillance of fish health using eDNA/eRNA’
and ‘DNA degradation.’ To understand the current knowledge of eDNA use in disease
detection, 750 articles were screened and 82 studies were included in this review.

3. eDNA in Fish Disease
3.1. Bacteria

The ability of bacteria, archaea, and fungi cultures to release their genetic material into
the extracellular medium, as well as in the context of multicellular microbial communities
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such as biofilms, has been reported. Bacteria release their DNA in water by different meth-
ods, including cell lysis and extrusion. The integrity of DNA released by cell lysis is usually
higher, because the exonucleases cannot act quickly to degrade the DNA. Extrusion is used
as a survival strategy by certain bacteria such as Deinococcus radiodurans, in which damaged
DNA is released and new DNA is synthesized [8]. Many environmental bacteria including
Micrococcus, Acinetobacter, Bacillus, Flavobacterium, Azotobacter, Pseudomonas, and Alcaligenes
release their genetic material while growing in the media [9,10]. The amount of eDNA
found depends on several factors, such as temperature, salinity, turbidity, and vegetation.
In freshwater systems, the amount of DNA ranges from 1.74 to 7.77 µg/L [11]. There
are many fish bacterial diseases affecting freshwater aquaculture, causing huge economic
losses to the farmers. eDNA techniques might help them to predict bacterial load in their
farms. Several research studies are being carried out to find an efficient method to detect
those pathogens directly from the water samples. In most cases of Flavobacterium columnare
infection, a gram-negative bacterium affecting different fish species, is found only externally
in the skin, gills, and water samples before being systemic [Table 1]. Early and rigorous
F. columnare diagnosis, as well as the implementation of practical preventive measures, are
the only credible means of disease control. F. psychrophilum was found in different river
water samples in Japan. They found a higher presence of F. psychrophilum during early
summer and fall, and the presence of this bacteria depends on the water temperature [12].
In addition to that, F. psychrophilum and Yersinia ruckeri were also detected in salmon recir-
culatory aquaculture systems (RAS). Similarly, seven distinct species of Aeromonas were
confirmed from coastal zones of river basins in Bangladesh. Over the 2-year study period,
they also found that the number of bacteria changes with change in temperature using the
eDNA method [13]. There are still many bacterial pathogens that are responsible for losses,
which are yet to be studied.

3.2. Fungi

Fungi are some of the common fish pathogens in aquaculture settings. The most
common fungal disease that affect fish species is saprolegniasis, branchiomycosis, and
aspergillosis. Because farmed animals are typically held in high densities and exposed to
constant stress and various types of pollutants, the risk of infection and disease spread
is higher in fish farms than in wild environments. There are only a few studies on fish
fungal disease identification using the eDNA method in aquaculture. Following high
mortality outbreaks in the river Loue, for finding S. parasitica in water, a qPCR assay
was designed. The pathogen was detected in river water but not in the tap water of
surrounding villages [14]. There are other fungi from water identified by this approach that
affect amphibians. Batrachochytrium dendrobatidis and B. salamandrivorans, two major fungal
diseases of amphibians, were found in water samples in Spain using a qPCR assay [15].
DNA released from fungus cells has received less attention than DNA released from
bacterial cells. Although fungi constitute more than 70% of the microbiome in soil, due to
the fast rate of DNA degradation in dead fungal cells, the contribution of fungal DNA to
the eDNA pool in soil should be insignificant. The fungus can spread to ponds and rivers
via rainwater flow and water infiltration. Adequate and efficient methods to detect the
presence of these fungal pathogens using eDNA will allow the farmer to predict the fungal
disease outbreak, leading to timely management and control strategies.

3.3. Parasites

Environmental DNA (eDNA) sampling methods, in conjunction with different molec-
ular methods, are well suited to quickly detecting the presence of pathogens in different
fish farms, which helps the managers with valuable information that can be used to reduce
disease threats. Parasites are the most common group of fish pathogens that are being
detected easily using eDNA method. Standard fish parasite surveillance entails capturing
and euthanizing fish before manually inspecting for the presence of parasites. Using this
conventional method is both expensive and time-consuming, and it necessitates the sacrifice



Diversity 2022, 14, 1015 4 of 11

of many fish species. eDNA/eRNA fragments of several species in water samples have
recently been established as an accurate, low-cost alternative to the traditional monitoring
techniques, which require sampling the fish itself. A ddPCR assay was developed to detect
eDNA in field samples, demonstrating the utility of eDNA detection in natural water
systems for G. salaris [16]. eDNA of Dactylogyrus species was detected in a consignment
of ornamental fish water and confirmed by sanger sequencing. Although there are some
limitations regarding the use of the eDNA tool as a biosecurity and quarantine method. It
detects eDNA from water and not directly from fish, and this might create a false positive
even though the fish might not have the targeted parasite; the assay can show positive
because of the source water used [17]. Chilodonella abundance was detected at varying
levels across the year in the barramundi fish farm monitored in the study [18]. Another as-
say was developed that can detect low concentrations of parasites in tank water containing
goldfish, presumably corresponding to an early stage of disease [19]. As a result, it could
be a useful tool for monitoring and controlling ichthyophthiriasis in aquaculture.

3.4. Virus

There are mainly two different forms of viruses that infect fish species, which are
DNA viruses and RNA viruses. Several studies have shown that DNA and RNA from
viruses can be detected using eDNA or eRNA methods [20–26]. Since DNA is more stable
than RNA, detection of eDNA is more practical and easier than detecting RNA from an
environmental source. There are many common forms of virus that are found in freshwater
aquaculture, including herpesvirus, viral hemorrhagic septicemia virus (VHSV), infectious
hematopoietic necrosis virus (IHNV), golden shiner virus (GSV), channel catfish virus
(CCV), red seabream virus, tilapia tilapine virus, and salmon alphavirus.

Table 1. Different fish diseases identified by eDNA/eRNA-based detection systems. The different
environments, the samples collected, and the methods used to quantify are listed in the table.

Disease Environment Method References

Virus
Cyprinus Herpes Virus (CyHV-3) Lake, Pond, River PCR, qPCR [20,21]

Red seabream virus Fish Farm
(Seawater) DNA metabarcoding [22]

Tilapia tilapinevirus Pond water qPCR [23]
Rana Virus Lakes, Ponds qPCR [24,25]

Salmon aplhavirus Seawater qPCR, ddPCR [26,27]

Parasite
Gyrodactylus salaris qPCR, ddPCR [16]

Dactylogyrus spp. Shipment water qPCR [17]
Chilodonella hexasticha Pond water qPCR [18]

Ichthyophthirius multifiliis Tank water qPCR [19]
Myxobolus cerebralis River water qPCR [28]

Ceratonova shasta River water qPCR [29,30]
Parvicapsula minibicornis River system qPCR [30]

Tetracapsuloides bryosalmonae River water qPCR [31–33]
Neoparamoeba perurans Sea water qPCR [34]

Schistosoma mansoni Tank water, water bodies qPCR [35]

Fungi
Flavobacterium psychrophilum River, RAS qPCR, ddPCR [12,36]

Bacteria
Aeromonas sp. River, Pond qPCR [13,37]

Saprolegnia parasitica River water qPCR [14]
Yersinia ruckeri RAS ddPCR [37]
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4. eDNA Shedding and Degradation in Water

The link between the production and degradation of eDNA/eRNA is crucial for its
detection and measurement [38]. When epithelial cells are shed or sloughed off through
movement, excretion, and secretion, eDNA/eRNA is released into the environment [39].
Several studies have shown that physiological stress, along with the size and number of
individuals, affects the DNA production rate [38–41]. There is evidence of both intra- and
inter-specific heterogeneity in the creation of eDNA/eRNA [Table 2], highlighting a need
to better understand the process of eDNA/eRNA generation and degradation in different
species and systems [38,41].

A range of factors, including light, temperature, enzymatic activity, and pH impact the
breakdown of eDNA (Figure 2). Addressing eDNA detection in an aquatic environment
requires a full understanding of these factors and interactions, and the effects they have
on eDNA stability. Hence, The factors influencing DNA persistence into three groups: the
DNA molecule’s properties, abiotic factors (light, substrates, pH, oxygen, salinity), and
biotic factors (microbes and enzymes) [42]. The length, conformations, and whether a DNA
molecule is membrane-enclosed or free (also known as “naked”) DNA are all properties of
the DNA molecule that affect how quickly DNA breaks down in the environment [43–45].
Biotic and abiotic factors affecting DNA degradation in an aquatic environment are dis-
cussed below.
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4.1. Temperature

DNA deterioration in water occurs more quickly than in soil and sediments, possibly
because of increased enzymatic and microbial activity at higher temperatures [46]. Ac-
cording to Matsui, et al., (2001) who investigated the fate of dissolved DNA in a thermally
stratified lake, DNA in the warmer epilimnion (upper layer) was destroyed completely in
170 hours, while degrading more slowly in the much cooler hypolimnion (lower layer). In
contrast to samples exposed to the full sun for 18 days and those exposed to 20% shade for
18 days, Idaho giant salamander eDNA stored at 4 ◦C and no light for 18 days contained
2030 and 733 times more eDNA, respectively [46]. Similarly, the experiment carried out by
Zulkefil, et al., (2019) found higher degradation of eDNA at 35 ◦C compared to the control
at 5 ◦C, which was about 60% from the initial concentration [47]. Likewise, the experiment
carried out by Tsuji, et al., (2017) to know about the eDNA degradation of two species, ayu
sweetfish (Plecoglossus altivelis altivelis) and common carp (Cyprinus carpio), at seven-time
points, over a 48-h period, and at three different water temperatures (10 ◦C, 20 ◦C, 30 ◦C),
found higher degradation at 30 ◦C. Some studies have found no effect of temperature on
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eDNA shedding rate [48,49]. Contrarily, Robson, et al., (2016) discovered that Mozambique
tilapia’s DNA shedding rate was dramatically increased by tropical temperatures (23, 29,
and 35 ◦C) (Oreochromis mossambicus) [50]. Inconsistencies in the research findings could
point to variations in eDNA production that are species-specific. Higher temperature often
leads to degradation by double-strand break of DNA (Figure 3a).
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4.2. Ultraviolet light (UV)

Since the stratospheric ozone layer is being destroyed, UV-B radiation can enter
the water column and destroy eDNA by rupturing DNA base-pair bonds Figure 3b [51].
Contradictory findings have been found in studies that have investigated how UV affects
eDNA degradation. Pilliod, et al. (2014) showed that after eight days of full sun exposure,
eDNA was no longer detectable, however, after 11 days in partial shade and after 18 days
in complete darkness, eDNA was still detectable in all samples. Given that eDNA decayed
exponentially even in the absence of light and that temperature accounted for the bulk of
the observed variation in eDNA degradation among samples, the temperature may have
a bigger effect on DNA degradation than light [39]. However, the study conducted by
Zulkefli et al. (2019) with various levels (20, 50, and 100 µmol m-2s-1) of solar radiation
had no observable effect on the degradation rate of eDNA. Interestingly, the same study
indicated that UV light, regardless of whether it is UVA or UVB radiation, had no impact
on the ability to identify DNA [52,53]. The notable significant differences were seen by
co-varying light intensity and temperature (35 ◦C) at the end of experiment compared to
5 ◦C treatment [47].
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Table 2. Comparison of eDNA decay rates among various types of eDNA, sources, and environmental
factors. * Indicates the significant effect on eDNA degradation in the corresponding study. (Table
adapted from Zulkefli et al., 2019 [47]).

eDNA Type Source Environmental Factor Decay Rate, (r) (day−1) Reference

Intracellular Common carp
Cyprinus carpio Microbial community *, pH 2.52 [42]

Extracellular
Sediment sample
Cyanobacterium
Anabaena variabilis

Temperature *, microbial
activity *, pH, light intensity 0.0931–3.2706 [47]

Extracellular Sediment and water samples Based on simplified OECD
endurance test 0.009–0.133 [51]

Intracellular Crustacean
Daphnia magna

pH *, temperature, microbial
activity, total
dissolved nitrogen

Water derived
6.552–23.568
Biofilm derived
1.176–17.256

[53]

May fly
Ephemera Danica

Eel
Anguila anguilla

Intracellular Ayu sweetfish
Plecoglossus altivelis altivelis Temperature *, microbial

abundance

0.48–7.2 [54]

Common carp
Cyprinus carpio

Intracellular Common carp
Cyprinus carpio Temperature *, trophic state * 0.35–2.42 [55]

Intracellular American bullfrog
Lithobates catesbeianus UV-B *, temperature *, pH 0.243 [56]

4.3. pH

DNA hydrolysis is favored in acidic environments [57,58]. In contrast, Stickler, et al., (2015)
noted that the increased rate of eDNA degradation at pH 4 was due to interactions with
other factors and that the pH level itself had no impact on the degradation. In stream
mesocosms with an acid–base gradient, the degradation rate of lotic multispecies eDNA was
accelerated to undetectable levels in just two days [53]. Low pH will result in denaturing
of the two strands of DNA, while higher pH leads to the degradation of hydrogen bonds
and separation of nitrogen bases in DNA (Figure 3c).

4.4. Environmental Parameters

The consistent detection of eDNA in the aquatic environment depends on the flow
rate [59,60] of solid materials and dissolved substances in the water column and riverbed [61,62].
It is believed that the properties of sediments (suspended or benthic) might influence eDNA
degradation because sediments might adsorb DNA [63], thus reducing the eDNA detection
rates. However, eDNA can re-suspend from sediment [64], which can result in false
positives or the identification of a species that is no longer present in the environment [65].
Additionally, dissolved materials in the water matrix can affect how quickly DNA is
detected, and potentially PCRs, such as humic acids [66]. In this regard, an experiment
conducted on environmental conditions on eDNA success in aquatic ecosystems suggested
that the presence of sediments is responsible for lower eDNA detection in water samples
regardless of flow-through or still-water conditions. This was followed by the delayed
release of eDNA in the presence of sediment. Additionally, humic substances had a higher
inhibitory effect on eDNA detection, followed by algae and siliceous sediment particles [67].
This study mentioned that application of eDNA methods in field survey conditions strongly
depends on site-specific conditions such as water flow conditions, sediment composition,
and suspended particles.
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5. Discussion

eDNA/eRNA have immense potential for disease risk monitoring, as they can improve
our ability to determine the existence, diversity, and quantity of pathogenic organisms.
Since traditional pathogen detection techniques frequently entail cultivating or necropsying
host tissues, they are equally as resource intensive as those used to detect free-living
pathogens. Parasites are often considered less significant in freshwater aquaculture, but
they can decrease the final value of the product. In addition to that, there are several cases of
co-infection with bacteria and viruses led by parasite infection [67–69]. Certain challenges
such as accuracy, efficiency, and the fate of eDNA/eRNA are of concern despite the efforts
from many researchers around the globe. Sengupta, et al., 2019 used eDNA method for the
detection of cercaria, one of the major parasites that affect both aquatic and human species.
They used both field-based models and lab-based models to effectively detect the presence
of this parasite [70]. However, there are limitations regarding the methods, such as that
the rate of decay and the life stage of parasites identified using this technique cannot be
determined. Thus, to increase the effectiveness of this method, experiments and research
need to be carried out under different conditions. Our review provides comprehensive
advances in the detection of freshwater pathogens and parasites using eDNA techniques.
In addition to that, our study reviews the effect of different environmental factors on
eDNA degradation. The rate of degradation of DNA and RNA is different in the marine
environment than in the freshwater system. The half-life of eDNA is found to be in a range
of 7 h to 72 h in marine water [71], which is shorter than in the freshwater system [72].
The degradation rate also varies with terrestrial environments and different seasons [73].
Aside from abiotic factors such as oxidation and hydrolysis by depurination, biotic factors
such as extracellular DNases produced by heterotrophic microbes are also likely to play a
significant role in eDNA persistence dynamics [50,73].

6. Conclusions

eDNA analysis is changing the way we design and implement biodiversity monitoring
programs, opening new opportunities for the future. This tool has a high potential for
monitoring aquatic biodiversity, including pathogens and parasites. Several high-end se-
quencing methods are being used to detect the presence and absence of multiple pathogens
easily and accurately in freshwater. Detecting pathogens and parasites beforehand is a cru-
cial step in aquaculture. Fish kills due to disease outbreaks are common in aquaculture all
around the world, from warm-water to cold-water aquaculture systems. Management can
be initiated to prevent the spread of disease and potentially improve the timely treatment
of water. This will allow aquaculture farmers to save millions of USD each year, which is
lost due to fish kills caused by different diseases around the globe.
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