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Abstract: Phylogenetic regression models for trait evolution incorporate phylogenetic trees for the
analysis of comparative data, in order to study trait relationships among a group of related species.
However, as such trees are estimated, it is unlikely that there will be no errors when describing
the relationships among species. In particular, for polytomy trees, where the relationships within a
particular clade of species are more/less certainly determined (hard/soft polytomy, respectively),
results of comparative analyses obtained from models based on those phylogenetic trees may also be
affected. In this study, through extensive simulations, the performances of several popular Gaussian
process-based regression models (Brownian motion, BM; Ornstein–Uhlenbeck process, OU; early
burst, EB), as well as branch-stretching models (Pagel’s λ, δ, κ), were evaluated by assessing their
fit and parameter estimation performance when soft polytomies are presented on either the root or
a clade with insufficient phylogenetic information. Comparisons of the models are conducted by
either assessing the accuracy of the estimator of regression and model parameters, or using a measure
of fit (AIC, r2, and mean square error). It is found that, although polytomy does not significantly
impact the fit and parameter estimate within a specified model, distinguishable differences and
effects may be observed among trees and models. In particular, Pagel λ model and the OU model
yield more accurate estimates and provide better fitting effects than the other models (BM, EB, δ, κ).
While correcting phylogeny is an essential step prior to analysis, users may also consider using more
appropriate models when encountering the polytomy issue.

Keywords: phylogenetic comparative analysis; regression analysis; polytomy; Gaussian process;
trait evolution

1. Introduction

Regression analysis has been broadly applied in the study of evolutionary relation-
ships, through the use of comparative data and the phylogenetic tree [1–3]. A phylogenetic
tree is a directed diagram, where the topology and branch lengths represent the magni-
tudes of evolutionary relationships among species [4]; for example, the magnitude of the
relationship between a pair of taxa on the tree can be defined by their shared branch length,
measured from the root of the tree to their most common ancestor. A phylogenetic tree
can be constructed using various methods, and relevant software has been developed [5,6].
Comparative data are trait values collected from field studies, where scientists spend
tremendous time, energy, and funding to search, measure, and record the characteristics of
species. The phenotype, defined as the observable physical properties of an organism, for a
group of species (e.g., the body mass, body length, or head shape) are usually recorded as
quantitative values. These phenotypic trait values are used for studying research questions
arising from ecology [7], evolutionary biology [8], paleontology [9], toxicology [10], and
so on. For instance, comparative data can be used to answer questions, such as how to
estimate ancestral status [11,12], how to calculate the speed of evolution [13,14], or how to
compute the diversification rate [15,16] (see [1,2,17,18] for more comprehensive reviews).
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To address these evolutionary questions, scientists have applied phylogenetic comparative
methods (PCMs) to analyze comparative data. To study the relationships between traits,
regression analysis is commonly applied to address questions, such as how the possession
of a trait X influences the evolution of trait Y [19], the association between body mass
and brain mass [20], and whether genome size increases with the water depth in marine
fishes [21].

Thanks to current technology and the tremendous efforts of scientists in field studies, many
online databases for accessing trees and traits are now available. For example, these important
trait databases include AmphibiaWeb [22], The Reptile Database [23], Global Ants Database
(GLAD) [24], and FishBase [25]; while important tree databases include the TreeFam database
of animal gene trees [26], the TRY Plant Trait database [27], PHYLOtastic [28], and The Tree of
Life Web (ToL) [29], among others [30–34] (see Appendix A.2 for a more detailed description).
Such databases are also beneficial to scientists (ecologists, evolutionary biologists, pale-
ontologist, statisticians, and so on), in terms of re-evaluating their research questions by
applying/developing statistical methods and procedures to analyze those data sets. Note
that comparative data are recorded as either categorical (nominal, ordinal) or quantitative
(interval or ratio) values, and may be displayed by graphical visualization, in order to
better understand the distribution of the data set [35]. The reader can also refer to the
public free distributed software R [36], for which scientists have created a task view that
describes a collection of R packages [37] implementing a variety of different comparative
phylogenetic methods for analyzing historical patterns along phylogenetic trees.

As it has been widely accepted that all species share a certain evolutionary history, the
relationships among species can be described by a rooted phylogenetic tree Tn comprised
of n taxa. In fact, a tree Tn can be transformed into an n× n square matrix Gn = [gij], where
each element of gij represents the magnitude of the affinity between a pair of species i and
j [38]. An example of a five-taxa tree T5 mapped to a 5× 5 matrix G5 is shown in Figure 1.

Figure 1. A rooted phylogenetic tree comprised of five taxa T5 and its corresponding affinity matrix
G5. Left panel: A rooted phylogenetic tree of five extant species A, B, C, D, E. Each branch of the
tree has a length that represents the evolutionary time. Right panel: The affinity matrix G5, where
the element gij represents the amount of shared branch length from the root to the most common
ancestor. The diagonal elements of G5 have values of 100, as the distance from the root O to each
tip A, B, C, D, E is 100. Each off-diagonal element gij is the sum of the shared branch length between
a pair of tips i and j. For instance, species A and species B have a shared branch length of 60 (red
branch); hence, gAB = gBA = 60; while species C and species E share a branch of length 30 (brown
branch), such that gCE = gEC = 30.

1.1. Linear Regression Analysis

To conduct the phylogenetic regression analysis, the means of comparative data are typ-
ically used. In the five-taxon example shown in Figure 1, suppose X = (xA, xB, xC, xD, xE)
and Y = (yA, yB, yC, yD, yE) are the two hypothetical trait vectors, where xi = ∑ni

s=1 xi,s/ni
and yi = ∑ni

s=1 yi,s/ni, i = A, B, C, D, E are the mean trait values. The relationship be-
tween the two traits can be visualized using the scatter plot, as shown in Figure 2. In
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general, in the regression framework, the response trait for the n species is denoted
as an n × 1 vector Yn×1 = (y1, y2, · · · , yn)t, while other traits of interest serve as the
covariates, and are displayed as a design matrix Xn with n rows and p + 1 columns
Xn×p = (1, X1, X2, · · · , Xp), where 1 is a vector of ’1s’ and each covariate Xi is a column
vector Xi = (xi1, xi2, · · · , xin)

t, i = 1, 2, · · · , p. The regression model

Yn×1 = Xn×pβp×1 + εn×1

is applied to analyze the data, where βp×1 is the regression parameter and εn×1 is the error
with zero mean.

Figure 2. Scatter plots for a pair of hypothetical traits of the five species. Left panel: bivariate com-
parative data, assuming independence without phylogenetic relationships. Right panel: bivariate
comparative data categorized by the species A, B, C, D, E assuming the relationships adapted from
Figure 1.

Assuming there is no evolutionary relationship among species, εn×1 has a diagonal
covariance matrix σ2 In×n, where σ2 is the overall variance. Hence, the statistical distribu-
tion of the observed vector Y is Yn×1 ∼ N (Xn×pβp×1, σ2 In×n), where βp = (β1, · · · , βp) is
the regression parameter vector. The estimate for β under the ordinary least square (OLS)
estimation approach is β̂ = (X tX)−X tY, with variance var(β̂) = (X tX)−1. On the other
hand, when assuming that species share evolutionary history, the covariance matrix for the
residual vector εn×1 has non-zero off-diagonal elements (i.e., var(εn×1) = σ2Vn×n), and V
also has non-zero off-diagonal elements. When estimating the regression parameters, the
estimate for β under the general least squares (GLS) procedure is β̂ = (X tV−1X)−X tV−1Y,
with variance var(β̂) = (X tV−1X)−1. A value βi = 0.32, for instance, means that a unit
increment in the ith covariate xi would result in a 0.32 unit increment in the expected value
of the response Y.

1.2. Tree Polytomy

It is well-known that trees are estimated with some degree of error. Results of the
comparative analysis through a phylogenetic regression analysis with severe tree errors may
impact the model selection, parameter estimation, and the fit of the model(s). For instance,
a polytomy tree is not a bifurcated tree, as it has at least one internal node that has more
than two immediate descendants (i.e., sister taxa). Polytomies can represent two different
cases: Hard polytomy, where the same ancestor is believed to have more than two daughter
taxa; and soft polytomy, where a cladogram is uncertain without fewer expectations that
the same ancestor gives rise to all daughter taxa. A common ancestral population is split
through cladogenesis (i.e., speciation) into multiple lineages. As trees with soft polytomy
usually have insufficient phylogenetic information, it would be interesting to investigate
the fit of the phylogenetic regression model, as well as the parameter estimation, when the
tree is not fully resolved at a certain level (see Figure 3 for illustration).
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Figure 3. Tree with polytomy cases. Left panel: a fully resolved five-taxon tree (same tree in
Figure 1), where any node only has two immediate descendants. Middle panel: a tree with a mixture
of resolved nodes and polytomy by considering that three taxa C, D, E (60% of taxa) on the tips are
independent. Right panel: a completely unresolved tree, termed a star-shaped tree (100% polytomy),
where all taxa are independent.

The goal of this study is to evaluate whether there exists a tree effect on estimating
parameters and choosing appropriate models for comparative data analysis, in terms of
when polytomies occur on the tree. It is worth noting that an assessment of a phylogenetic
regression model (assuming tree dependence with the branch effect), through evaluating
the type I error and statistical power of the model, has been described in the literature [39].
Furthermore, it has been previously elucidated how tree misspecification is propagated,
through a comparative analysis [40] in which phylogenetic regression under a Brownian
motion model of evolution was investigated, considering the effect of local phylogenetic
perturbations on the regression fit. This study provides another assessment, focusing on
the effect of the tree for comparison among the phylogenetic regression models through
qualitative measurements (AIC, r2, and mean square error, MSE) [41], and the parameter
estimation accuracy. This work extends the work in [40], through the evaluation of several
other popular models (i.e., Brownian motion [42]; Ornstein–Uhlenbeck, OU [43], early
burst, EB [44]; and Pagel’s λ, δ, and κ [45] models).

The remainder of this paper is arranged as follows: The models and methods, as
well as an explanation of the experiments, are provided in Section 2. The results of the
comparison between tree- with non-tree-based regression models are provided in Section 3.
Finally, the discussion is provided in Section 4.

2. Methods

In this section, the models for trait evolution considered in Section 2.1 are first
described. Then, the experimental process considered in the assessment is detailed in
Section 2.2.

2.1. Models Using Continuous Random Process on Trees for Trait Evolution

A scenario depicting the general trait evolution of two species along a fork tree is
shown in Figure 4.

When describing trait evolution using a continuous random process, traits are treated
as a pair of stochastic variables (xt, yt), adopted a certain pertinent process. Seven popular
models were tested: Brownian motion (BM)[42] and the Ornstein–Uhlenbeck (OU) pro-
cesses are conditioned on whether the root is a random variable or a fixed value [43]; while
the early burst model [44], as well as Pagel’s λ, δ, and κ models, stretch the branch lengths
of the trees under various scenarios.
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Figure 4. Trait evolution along a phylogenetic fork tree of two species i and j. The two species i
and j diverged at time t = ta and evolved independently to their respective tips. The two unknown
ancestral values at the root are denoted as x0 and y0, respectively. Two traits X, Y for the ith species
(xi, yi) and the jth species (xj, yj) are observed at the tips. The two unknown ancestral states at time
t = ta for trait X and trait Y are denoted as xa and ya, respectively. The dynamics of trait evolution for
species along the tree vary with time, which may allow for a correlated relationship to exist between
the species [46].

Brownian Motion: Normal distributions are common in biology. For quantitative
trait evolution, it is often assumed that the traits are multivariate normal distributed. By
the central limit theorem of probability and statistics, the sum of a set of independent
identically distributed random variables (each with finite mean and variance, but no
stronger requirements) is again a normal distribution. As a result, the logarithm of a product
of many positive independent identical random variables is also normally distributed [47].
For example, if the body mass in a species continues to be multiplied by various factors
(e.g., cooler climate leads to a 10% increase in size, lower food availability leads to a 5%
decrease in size, or competition with other species leads to a 7% increase in size across many
replicates of this evolutionary process), the value of log (body mass) should be normally
distributed. This process is often called Brownian motion (BM) [17].

When applying Brownian motion for trait evolution along a tree, the character dis-
placement presents stochastic randomness, as shown in the stochastic differential equa-
tion dyt = σdBt, where 0 ≤ t ≤ T. The distribution (see Appendix A.3) of the trait
vector Yt = (y1,t, y2,t, · · · , yn,t)t, 0 < t ≤ T, under Brownian motion with tree depen-
dency has the multivariate normal statistical distribution Yt ∼ N (µt1, σ2Gt), where

Gt[i, j] = Cov[yi,t, yj,t] =

{
ta, t ≤ ta

0, t > ta
, where t = ta is the time that the two species i

and j started to diverge. The covariance matrix element vij for a pair of species is repre-
sented as vij = σ2gij.

Ornstein–Uhlenbeck process model: The OU process can appropriately model the trait
evolution under stabilizing selection phenomena [48]. Let yt be an OU process random vari-
able solving the stochastic differential equation dyt = α(θ− yt)dt+ σdBt, where 0 ≤ t ≤ T,
where Bt is a Brownian motion, θ ∈ R is the optimum state, α > 0 is the force that pulls the
trait back to the optimum, and σ > 0 is the rate of evolution. Given Yt = (y1t, y1t, · · · , ynt)t,
the joint distribution of the OU random vector Yt is also a multivariate normal dis-
tribution (see Appendix A.3) [49] Yt ∼ N(θ1, σ2Vt), where Vt[i, j] = Cov[yi,t, yj,t] ={

σ2

2α (exp(−2α(t−s)− exp(−2αt)), t ≤ ta

0, 0 ≤ t ≤ s.
The covariance matrix element vij for a

pair of species is represented as vij = ( σ2

2α (exp(−2α(gii − gij))− exp(−2α(gii)).
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Early burst model: The early burst model is a rate time-varying Brownian motion
model, where the rate slows over time (branch length). In this model, the rate parameter
σ2 = σ2

0 exp(rt), where r < 0 is a contraction parameter that slows down the rate of
evolution and σ0, is the rate at the root. Hence, gij 7→ exp(rgij) and the covariance matrix
for a pair of species is represented as vij = σ2

0 (exp(rgij − 1))/r.
Four realizations of the trajectories with the BM, OU, and EB models are shown in

Figure 5.

Figure 5. Left panel: Trajectories for the BM using four rates of evolution (σ = 0.1, 0.25, 0.8,
and 1.2). Middle panel: Trajectories for the OU using different two optima (θ = −22, 22),
α = 0.001, 0.12, and σ = 1. Right panel: Trajectories for the EB model using four different rates
(r = −0.02,−0.025,−0.03,−0.035) with σ = 1.

Pagel’s λ model: The λ model (equivalent to the phylogenetic mixed model [50])
accounts for a mixture of independent evolution and BM. The λ model makes a branch
transformation, where all internal branches are multiplied by a factor λ in [0, 1], while the
tips are kept at the original distance from the root. Hence, the λ model transforms the
off-diagonal elements gij, i 6= j in G into a linear combination gij 7→ λgij, where 0 ≤ λ ≤ 1
is the shrink parameter, which strengthens the tree into a more independent type. While a
value of λ close to 1 would maintain the original tree, a smaller value of λ (i.e., closer to 0)
would result in lower covariance between a pair of species. The covariance matrix element
vij for a pair of species is represented as vij = σ2λgij for i 6= j and vii = σ2λgii.

Pagel’s δ model: The δ model directly transforms the element in the covariance matrix
gij 7→ gδ

ij, where δ > 0. Usually, the tree is scaled to a unit tree height, such that all elements
in G are smaller than 1 (0 ≤ gij ≤ 1). Clearly, when δ = 1, the δ model is equivalent to the
Brownian motion model. Given δ < 1, the elements gδ

ij > gij (e.g., 0.250.5 = 0.5 > 0.25),
indicating that the node heights are reduced with longer branch lengths, while δ > 1 yields
gδ

ij < gij (e.g., 0.252 = 0.0625 < 0.25) and the transformation stretches the branches with
shorter branch lengths. The covariance matrix element vij for a pair of species is represented
as vij = σ2gij)

δ. In short, the delta transformation raises the distance from the root to all
nodes to the power δ > 0.

Pagel’s κ model: The κ model concerns the transformation of the piece-wise branch
lengths through the power element. First, the element gij is decomposed into a sum of the
branch lengths from the root to the most recent ancestor of tips i and j (i.e., gij = ∑d

s=1 bs,ij,
where bs,ij is the branch and d is the total number of branches the i and j shared, respectively).
Then, the transformation is carried out as gij 7→ ∑s

b=0 gκ
b,ij, κ > 0; that is, the branch lengths

themselves are transformed. For κ < 1, (e.g., gij = 0.25 = 0.16 + 0.09 7→ 0.160.5 + 0.090.5 =
0.4+ 0.3 = 0.7 > 0.25), the branch is stretched with a deeper branch length; while, for κ > 1
(e.g., gij = 0.25 = 0.16 + 0.09 7→ 0.162 + 0.092 = 0.256 + 0.0081 = 0.037 < 0.25), when
compared to the original tree, the branches are compressed in the same scale. Note that, as
the diagonal elements are transformed, the tree is no longer an ultrametric tree (all tips have
the same tree height). The covariance matrix element vij for a pair of species is represented
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as vij = σ2 ∑s
b=0 gκ

b,ij. In short, the κ transformation raises all branch lengths to a power
κ in [0, 1]. An example illustrating the transformed covariance matrices is provided in
Appendix A.3. Readers may also refer to [51,52], for more comprehensive and instructional
descriptions of these models.

The likelihood for the regression model: The general statistical distribution for the
regression model assuming a Gaussian process for trait evolution is a normal distribution.
Hence, the trait data vector Y = (y1, y2, · · · , yn)t observed at the tip for n species follows
a multivariate normal distribution Y ∼ N (µ1n, σ2V), where V is the covariance structure
and 1n = (1, 1, · · · , 1)t is a vector of 1s. The negative log-likelihood function is

− log L(Θ, β|Y, X, V) =
n
2

log(2π) +
1
2

log |σ2V |+ 1
2σ2 (Y− Xβ)tV−1(Y− Xβ), (1)

where Θ = σ2 for the BM model [42], Θ = (r, σ2) for the EB model [44], Θ = (α, θ, σ2)
for the OU model [53], Θ = (λ, σ2) for the λ model, Θ = (δ, σ2) for the δ model, and
Θ = (κ, σ2) for the κ model [45].

The generalized least squares estimate for the regression parameter is

β̂ = (X tV−1X)−X tV−1Y, (2)

where X−1 is the generalized inverse of X and X t is the transpose of X. As additional
model parameters (i.e., α for the OU model, r for the EB model, λ for the λ model, delta
for the delta model, and κ for the κ model) are embedded in the covariance matrix V , a
heuristic procedure for estimating the model and regression parameters can be performed;
in particular, to estimate the model parameter embedded in V and the regression parameter
β. The above parameter estimation was executed using the R package phylolm [54].

2.2. Assessment through Extensive Simulation

The main objective of this study was to evaluate the effect of using trees with errors
on the model selection. The models for trait evolution (BM, OU fixed root, OU random
root, EB, λ, δ, κ models) were used as the models for evaluation. Consider the following
scenario for evaluating the model performance under varying levels and types of polytomy.
For the simulation, four types of trees were set: (1) balanced tree with taxa size; (2) random
split tree; (3) pure birth tree; and (4) birth–death tree. The balanced tree consisted of
8, 16, 32, 64, 128, 256, or 512 taxa, while the random split, pure birth, and the birth–death
trees used taxa sizes of 20, 50, 100, 150, 200, 250, 300, 350, 400, 450, or 500. The simulated
traits and trees were fitted to the seven models (BM, EB, OU fixed root, OU random root, δ,
κ, λ). The regression parameters (intercept a, slope b, model parameter rate of evolution
σ), as well as the model fitting measures AIC (AIC = 2k− 2 log Li(Θ̂|Y, X), where k is the
number of parameters, L is the likelihood, and Θ̂ is the maximum likelihood estimator), r2

(which measures the variation of the response by the variation of the predictor/independent
variables, where higher values represent smaller differences between the observed data
and the fitted values), and the mean squared error (MSE = ∑m

i=1(θ − θ̂)2/m, where m is
the number of replicates), were assessed.

As for the polytomy error of the tree, two polytomy cases, considering the type of
polytomy (clade vs. root) and the level of polytomy (level 1 to level 8, determined by the
node level from the root), were used (as shown in Figure 6). A selected node was chosen
and the tree was transformed to introduce the polytomy on the clade, as executed by the R
package RRphylos function fix.poly [55]. The eight levels were then grouped into two
categories (high and low) for comparison in the next step, which was accomplished using
the R package TreeTools function CollapseNode, NDescendants [56], where the number
of tips was chosen based on the ratio of polytomy taxa and the total taxa.
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Figure 6. Trees with severe polytomy. Left panel: a pure birth tree. Middle panel: polytomy on a
clade. Right panel: polytomies on the root.

The simulation starts by setting up the true parameters (intercept a = 5, slope b = 3,
and σ2 = 1.2). For the model-specific parameter, the rate r = −0.10 was assigned to the EB
model, δ = 0.25 to the delta model, κ = 1.25 to the kappa model, λ = 0.625 to the lambda
model, and α = 0.10 to the OU fixed root model and the OU random root model. Trait data
were then simulated using the tree models (BM, OU, EB, λ, δ, κ model). Trees were then
transformed into trees with polytomy at a clade or root, following which the polytomy
tree was incorporated to fit the models, thus obtaining the parameter estimates and fitting
measures. A total of 100 replicates of the trait data were generated for each combination of
tree type (4 types), taxa size (11 sizes), model type (7 models), polytomy type (2 types), and
polytomy level (8 levels). This yielded 100 replicates × 4 tree types × 7 models × 11 taxa
size× 8 levels of polytomy = 246,400 replicates, estimates, and measures used for assessing
model performance.

3. Results

The simulations differed from each other. By considering the variable trees, regarding
their polytomy type and polytomy level, the results for parameter estimation and fitting
measures were dissected into several categories, as follows. The results for the overall
estimates are provided in Section 3.1; the results grouped by polytomy type and level are
provided in Section 3.2; the results grouped by the tree type are provided in Section 3.3;
finally, the results grouped by the model are provided in Section 3.4. All results are
reproducible (see the link in the Appendix A.1).

3.1. Overall Estimate

The comparison between the raw parameters and the simulated values is shown
in Table 1, where the result in the raw row considers the data simulated from the true
parameters, then fitting the models to the data to obtain the estimates and measures; while
the result in the sim row uses the estimator from the raw data to simulate 100 replicates
under each scenario (polytomy type and level), after which the models were fitted to the
data to obtain the estimates and measures.

From Table 1, it can be seen that the difference between the raw and simulation
data was insignificant. For the intercept parameter, the test statistic was 0.147 with
p-value = 0.884; for the slope parameter, the test statistic was −0.680 with p-value = 0.497;
and, for the σ2 parameter, the test statistic was −0.114 with p-value = 0.909. The boxplots
for all replicates of the intercept, slope and rate of square estimates are shown in Figure 7.
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Table 1. The overall mean estimates across tree types, models, and taxa sizes for parameters (intercept,
slope, and σ2) as well as fitting measures (AIC, r2, and MSE). In the raw row: Trait and tree data were
simulated using the true parameters. Sim: Estimates from 100 replicates simulated from the parameter
estimates using the raw data across trees, models, taxa size, polytomy type, and polytomy level.

Intercept Slope σ2 AIC R2 MSE

Raw 4.992 2.981 25.742 1114.414 0.324 2.317
Sim 4.997 2.999 26.638 1117.378 0.364 2.328

Figure 7. Boxplots for all replicates. Raw: Parameter estimates using data simulated by true parameter
values. Sim: Parameter estimates using data simulated by the raw estimates. Overall the mean
estimates between the raw and sim is insignificant. The p-values reported in plot are 0.55, 0.7, and
0.89 for intercept, σ2, and slope, respectively.

From Table 1, as there was no significant difference between using the raw or simulated
data, the results provide preliminary support for the validity of the set-up for the simulation,
as the models performed well to return reasonable estimates.

We next conducted a t-test, regarding the overall difference between the polytomy
conditions; the results are shown in Table 2.

Table 2. Differences between polytomy types and levels. All results are insignificant (high p values
are reported) except for comparing the r2 between the root and clade (p-value of 0.01)

Polytomy Type (Root vs. Clade) Polytomy Level (High vs. Low)

Intercept a (−0.014, 0.023), p = 0.63 (−0.023, 0.013), p = 0.61
Slope b (−0.006, 0.021), p = 0.28 (−0.019, 0.008), p = 0.44

σ2 (−531.447, 15.805), p = 0.06 (−179.965, 367.877), p = 0.5
AIC (−77.071, 101.029), p = 0.79 (−91.487, 86.618), p = 0.96
r2 (0.011, 0.086), p = 0.01 * (−0.065, 0.01), p = 0.15

MSE (−2.752, 3.143), p = 0.9 (−3.276, 2.619), p = 0.83

The test considering the type and level of polytomy (high vs. low) on the simu-
lation data showed that there were mainly insignificant differences in the parameters
and measures. The confidence intervals and their p-value are reported. For instance,
for the intercept parameter, the values (−0.014, 0.023),0.63 in the first column and first
row indicate that the 95% confidence interval for the difference between the intercept
estimated under the two groups (clade and root) was (−0.014, 0.023), and the test H0 :
interceptclade − interceptroot = 0 had a p-value of 0.63, indicating that there was no signifi-
cant difference for the intercept estimated by the clade and root type, respectively.

Note that, from Table 2, the r2 measure presented a significant difference with respect
to the polytomy type. Further investigation of this difference was facilitated through more
fine dissection by graphical visualization; see the following sections.
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3.2. Polytomy Type vs. Polytomy Level

Two polytomy cases were analyzed, and comparisons were made with respect to
polytomy type (clade vs. root), as well as polytomy level (high vs. low).

The results for the parameter estimates are reported in Figure 8. Overall, although
there were outliers for the estimates, the polytomy type and level did not significantly
affect the parameter estimation, as reasonable estimates were obtained while varying both
the type and the level (the overall median was close to the true parameter value).

Figure 8. Boxplots for the intercept a, the slope b, and the square of rate of evolution σ2 with varying
polytomy type and level.

For the intercept parameter, the regression model using the intercept estimate as the
response was Intercept ∼ poly type + poly level. For the polytomy type, the regression
estimate for the slope of clade vs. root was −0.004 with the t-value of −0.769 and a p-value
of 0.442. In the paired sample t-test (clade vs. root), the 95% confidence interval between the
difference of clade vs. root was (−0.006, 0.013), with the p-value of 0.442. For the polytomy
level, the regression estimate for the slope of low vs. high was 0.005 with a t-value of 0.869
and a p-value of 0.385. In the paired t-test (low vs. high), the 95% confidence interval was
(−0.016, 0.006), with a p-value of 0.396.

For the slope parameter, the regression model using the slope estimate as the response
was slope ∼ poly type + poly level. For the polytomy type (clade vs. root), the regression
estimate for the slope of clade vs. root was −0.004 with a t-value of −0.969 and a p-value
of 0.332. In the paired sample t-test (clade vs. root), the 95% confidence interval was
(−0.004, 0.123), with a p-value of 0.332; the regression estimate for the slope of low vs. high
was 0.005 with a t-value of 1.105 and a p-value of 0.269. In the paired sample t-test (low vs.
high), the 95% confidence interval was (−0.015, 0.004), with a p-value of 0.263.

For the σ2 parameter, the regression model using the σ2 estimate as the response was
σ2 ∼ poly type+ poly level. For the polytomy type (clade vs. root), the regression estimate
for the slope of clade vs. root was 209.10 with a t-value of 3.354 and p-value of 8× 10−4

(i.e., significant). In the paired sample t-test (clade vs. root), the 95% confidence interval
was (−331.283,−86.918), with a p-value of 0.0008. For polytomy level (low vs. high), the
regression estimate for the slope of low vs. high was −93.96 with a t-value of 71.98 and a
p-value of 0.19. In the paired sample t-test (low vs. high), the 95% confidence interval was
(−40.636, 228.548), with a p-value of 0.171.

For the regression parameters, the above results were consistent with those shown
in [40], where only a modest effect was reported when the tree effect was encountered. For
the model parameter σ2, when polytomy was present, σ2 was over-estimated. Therefore,
one should be careful about the estimated rate of evolution σ when the tree has more
uncertainty due to polytomy.

For AIC, the results are shown in Figure 9, where polytomy overall did not affect the fit
AIC tremendously. The linear regression for AIC on the polytomy type level also reported
insignificant results. The regression analysis considered aic ∼ poly type + poly level. For
the polytomy type, the regression estimate for the slope of clade vs. root was −0.004 with
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a t-value of −0.969 and a p-value of 0.332. In the paired t-test (clade vs. root), the 95%
confidence interval was (4.721, 13.739), with a p-value ≈ 6× 10−5. For the polytomy level,
the regression estimate for the slope of low vs. high showed an estimate of 0.005 with
a t-value of 1.105 and a p-value of 0.269. In the paired sample t-test (low vs. high), the
95% confidence interval was (−7.687, 2.817), with a p-value of 0.364. Note that the violin
plots have multi-modal shapes with multiple peaks, due to the larger taxa sizes (from
20, 50, 100, 150, 200, · · · , 500 taxa) contributing to larger likelihoods, thus yielding a larger
value of the AIC.

Figure 9. Violin plots of AIC by polytomy type and level, conditioned through taxa size, tree type,
and model.

For r2, the results are shown in Figure 10, where polytomy overall had major effects
on r2. The linear regression for r2 on the polytomy type and level reported significant
results (i.e., the median between the clade and root in the low category is distinguishable).
In particular, when a low level of polytomy is presented (Figure 10, right panel), the r2

presented different values between the clade and root. The regression analysis considered
r2∼poly type + poly level. For the polytomy type, the regression estimate for the slope
clade vs. root was−0.030, with a t-value of−29.68 and a p-value < 2× 10−16. In the paired
sample t-test (clade vs. root), the 95% confidence interval was (0.028, 0.032), with p-value
< 2× 10−16. For the polytomy level, the regression estimate for the slope low vs. high was
0.028 with a t-value of 23.87 and a p-value < 2× 10−16. In the paired sample t-test (low vs.
high), the 95% confidence interval was (−0.030,−0.025), with a p-value < 2× 10−16.

Figure 10. Box plots of r2 by polytomy type and level conditioned through polytomy type and
polytomy level.

For MSE, the results are shown in Figure 11, from which it can be seen that polytomy
overall had a minor effect on the MSE. The linear regression for MSE on the polytomy
type level also reported insignificant results. The regression analysis considered MSE∼
poly type + poly level. For the polytomy type, the regression estimate for the slope clade
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vs. root was −0.123 with a t-value of −0.162 and a p-value of 0.871. In the paired sample
t-test (clade vs. root), the 95% confidence interval was (−1.370, 1.616), with a p-value of
0.872. For the polytomy level, the regression estimate for the slope (low vs. high) was
estimated as 0.329 with a t-value of 0.374 and a p-value of 0.709. By paired sample t-test
(low vs. high), the 95% confidence interval was (−2.512, 1.855), with a p-value of 0.768.

Figure 11. Violin plots of MSE by the polytomy type and level conditioned by taxa size, tree type,
and model.

3.3. Tree vs. Measures

In this section, the comparison of the measures, with respect to the tree type and
polytomy type, is reported.

For AIC, the result shown in Figure 12 indicates the trend that polytomy type and level
overall did not overly affect the fit, as measured by the AIC. One can conduct a median test
(e.g., Mood’s median test or Kruskal–Wallis test) for the four tree groups.

Figure 12. Comparison of AIC across tree type and polytomy type.

For r2, the results are shown in Figure 13, which indicates that there was a tremendous
effect on the r2 when polytomy was present. Specifically, while the birth death tree was
the most robust tree type, mostly retaining high r2, followed by the pure birth tree, the
balanced tree and the random split tree gave lower r2 values.
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Figure 13. Comparison of r2 across tree type and polytomy type. Higher values represent smaller
differences between the observed data and the fitted values.

For MSE, the result is shown in Figure 14. Overall, there was no tremendous difference
in the median of the mean square error across tree types. However, the random split tree
(rcoal), in general, presented a larger variation (i.e., wider interquartile range) than the
other three tree types.

Figure 14. Comparison of MSE across tree type and polytomy level.

3.4. Model vs. Measure

In this section, comparisons of the measures with respect to the polytomy and model
types are reported.

For the intercept parameter, the result is shown in Figure 15. When polytomy was
present (with various types and levels), the λ model, OU random root model, and OU fixed
root model (the three boxplot in the rightmost in each panel) returned better estimates with
narrower interquartile ranges than the others (δ, EB, BM, κ model).

For the slope parameter, the result is shown in Figure 16. Similar to the result for the
intercept, when encountering polytomy (at various types and levels), the λ model, OU
random root model, and OU fixed root model (the three boxplots in the rightmost in each
panel) performed better than the other four models (the δ model, the EB model, the BM
model, the κ model).
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Figure 15. Regression intercept estimation concerning different models and polytomy types. Left
panel: polynomial type vs. models. Right panel: polynomial level vs. models.

Figure 16. Regression slope estimation concerning different models and polytomy types. Left panel:
polynomial type vs. models. Right panel: polynomial level vs. models.

For the σ2 parameter, the result is shown in Figure 17. When encountering polytomy
(at various types and levels), the λ model and the κ model remained robust, returning
reasonable estimates, while the other models (δ, EB, BM, OU random root, OU fixed root)
returned over-estimated values.

Figure 17. σ2 estimation concerning different models and polytomy types. Left panel: polynomial
type vs. models. Right panel: polynomial level vs. models.

For AIC, the result is shown in Figure 18. From the median value in the boxplots,
under various polytomy types and polytomy levels, there existed a transparent difference
between two groups of models, where the δ, EB, BM, and κ models had higher AIC (worse
fit) than the OU random root, OU fixed root, and λ models.
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Figure 18. AIC concerning different models and polytomy types. Left panel: polynomial type vs.
models. Right panel: polynomial level vs. models.

For r2, the result is shown in Figure 19. When encountering polytomy (various types
and levels), the λ model overall outperformed the other models (followed by the OU-type
models) and provided a better fit than the others (δ, EB, BM, and κ models).

Figure 19. r2 concerning different models and polytomy types. Left panel: polynomial type vs.
models. Right panel: polynomial level vs. models.

For MSE, the result is shown in Figure 20. When encountering polytomy at various
types and levels, the λ model (followed by the OU type models) provided a better fit, with
lower MSE, than the others (δ, EB, BM, κ models).

Figure 20. MSE concerning different models and polytomy types. Left panel: polynomial type vs.
models. Right panel: polynomial level vs. models.

From the results reported in Figures 18–20, encountering polytomy issues, such as the
λ model (lengthen/shrink the tip) and the OU models (the larger force parameter α leads
to more independent structures in the covariance matrix) can transform the tree into a more
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independent style (i.e., polytomy at the root); the λ and OU-type models provided a better
fit than other models.

4. Discussion

This work aimed to compare the influence of error in phylogenetic trees on the results
of phylogenetic regressions. Several phylogenetic regression models were reviewed, and
their goodness of fit to large data sets were evaluated through the AIC, r2, and mean
square error measures. While the parameter estimates were not significantly impacted
by the tree effects, the fitting comparison of the models suggested that, overall, Pagel’s λ
model and the OU models possess the best functionality, transforming the tree into a more
independent style (i.e., polytomy at the root); one may infer that these two model types
provide a better fit when polytomy is present.

There are many other regression models feasible for other types of response variables,
such as positive [57], binary [58], counts [59], and proportional [60] data. Popular univariate
models of trait evolution concerning quantitative response variables were investigated
in this study; in the future, it would be interesting to investigate how polytomy could
impact the comparative methods when extending the univariate models, as well as other
models [13,49,61–64]. It would be also interesting to determine whether polytomy would
have a stronger effect on the regression analysis that includes hybrid species, where the
phylogenetic network is implemented to describe the dependence structure [65,66]. Note
that, while more parameter-rich models provide more evolutionary information, they
often come with a sophisticated covariance structure, thus increasing the difficulty of
parameter estimation in higher dimensional parameter space. Under this circumstance,
using the Bayesian parameter estimation technique would allow more flexibility in this
framework [67,68].

One should be careful when using phylogenetic regression models with more so-
phisticated covariance structure, which might violate the assumptions required for linear
regression (i.e., linear relationship, multivariate normality, no or little multi-collinearity,
no auto-correlation, and homoscedasticity). Violation of these assumptions could yield
the same estimates, but misleading results. See Anscombe’s quartet in ordinary linear
regression [69] and phylogenetic regression [70].

As the comparison of species helps us to understand systematic differences in biolog-
ical traits, incorporating trees for the testing of evolutionary hypotheses has become an
essential procedure for verifying relevant assumptions. Finally, users should correct for
phylogeny when studying the relationships between traits, and choose appropriate models
for analyzing data prior to conducting the phylogenetic comparative data analysis.
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Appendix A

Appendix A.1. Script and Link for Reproducing Result

The script and files can be accessed via the following links: https://tonyjhwueng.info/
pcmreg (accessed date: 19 September 2022).

1. Figure 1: https://tonyjhwueng.info/pcmreg/ttev2.pptx (accessed date: 19 September
2022).

2. Figure 2: https://tonyjhwueng.info/pcmreg/scatterclusterv2.html (accessed date: 19
September 2022).

3. Figure 3: https://tonyjhwueng.info/pcmreg/ttevprog.pptx (accessed date: 19 Septem-
ber 2022).

4. Figure 4: https://tonyjhwueng.info/pcmreg/bm1bm2reg.html (accessed date: 19
September 2022).

5. Figure 5: https://tonyjhwueng.info/pcmreg/bmpathv3_outpathv3_ebpathv2.html
(accessed date: 19 September 2022).

6. Figure 6: https://tonyjhwueng.info/pcmreg/makepolytree.html (accessed date: 19
September 2022).

7. Figure 7: https://tonyjhwueng.info/pcmreg/mainsimSummarWrapabsig2.html (ac-
cessed date: 19 September 2022).

8. Tables 1 and 2: https://tonyjhwueng.info/pcmreg/mainsimSummarWrapTable.html
(accessed date: 19 September 2022).

9. Figures 8–20:
https://tonyjhwueng.info/pcmreg/mainsimSummarWrapBoxplotv4.html (accessed
date: 19 September 2022).

Appendix A.2. Database for Accessing Comparative Data and Tree

Several popular databases are listed in Table A1.

Table A1. Online databases for phylogenetic trees and trait data sets.

Logo Database Reference Link

AmphibiaWeb [22] https://amphibiaweb.org/ (accessed date:
19 September 2022).

The Reptile Database [23] http://www.reptile-database.org/ (ac-
cessed date: 19 September 2022).

GLAD [24] http://globalants.org/ (accessed date: 19
September 2022).

DateLife [71] http://datelife.opentreeoflife.org (ac-
cessed date: 19 September 2022).

EzBioCloud [72] https://www.ezbiocloud.net (accessed
date: 19 September 2022).

FishBase [25] https://www.fishbase.se/ (accessed date:
19 September 2022).

Open Tree of Life [32] https://tree.opentreeoflife.org/ (accessed
date: 19 September 2022).

https://tonyjhwueng.info/pcmreg
https://tonyjhwueng.info/pcmreg
https://tonyjhwueng.info/pcmreg/ttev2.pptx
https://tonyjhwueng.info/pcmreg/scatterclusterv2.html
https://tonyjhwueng.info/pcmreg/ttevprog.pptx
https://tonyjhwueng.info/pcmreg/bm1bm2reg.html
https://tonyjhwueng.info/pcmreg/bmpathv3_outpathv3_ebpathv2.html
https://tonyjhwueng.info/pcmreg/makepolytree.html
https://tonyjhwueng.info/pcmreg/mainsimSummarWrapabsig2.html
https://tonyjhwueng.info/pcmreg/mainsimSummarWrapTable.html
https://tonyjhwueng.info/pcmreg/mainsimSummarWrapBoxplotv4.html
https://amphibiaweb.org/
http://www.reptile-database.org/
http://globalants.org/
http://datelife.opentreeoflife.org
https://www.ezbiocloud.net
https://www.fishbase.se/
https://tree.opentreeoflife.org/
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Table A1. Cont.

Logo Database Reference Link

PhylomeDB [73] http://phylomedb.org/ (accessed
date: 19 September 2022).

PHYLOtastic [28] https://phylotastic.org/ (accessed
date: 19 September 2022).

Traitbase [74] https://traitbase.info/ (accessed date:
19 September 2022).

TreeBASE [75] https://www.treebase.org/ (accessed
date: 19 September 2022).

Treefam [26] http://www.treefam.org (accessed
date: 19 September 2022).

Tree of Life Web Project [29] http://tolweb.org/tree/ (accessed
date: 19 September 2022).

The Open Traits Network [30] https://opentraits.org/ (accessed
date: 19 September 2022).

TRY Plant Trait Database [27] https://www.try-db.org/ (accessed
date: 19 September 2022).

Appendix A.3. Covariance Matrix

The Brownian motion model: For an infinitesimal time change ∆t, one can discretize
dyt = σdBt into yt − yt−∆t = σ(Bt − Bt−∆t), ∆t = T

m , m is an integer , which yields
yt = yt−∆t + σ(Bt − Bt−∆t) = · · · = y0 + σ(Bt − B0). For a pair of species i and j, the trait
variables yi,t and yj,t have covariance cov(yi,t, yj,t) = cov[yi,0 + σ(Bi,t − Bi,0), yj,0 + σ(Bj,t −
Bj,0)] = σ2cov[Bi,t, Bj,t] = σ2ta where Bi,t = Bj,t, 0 ≤ t ≤ ta and Bi,t, Bj,t are independent for
s < t ≤ T.

Referring to Figure 1, the matrix transformed from the tree is represented in Equation (A1).

G =



A B C D E
A 40 + 60 60 0 0 0
B 60 40 + 60 0 0 0
C 0 0 70 + 30 30 30
D 0 0 30 20 + 50 + 30 50 + 30
E 0 0 30 50 + 30 20 + 50 + 30

. (A1)

The Ornstein–Uhlenbeck model:

http://phylomedb.org/
https://phylotastic.org/
https://traitbase.info/
https://www.treebase.org/
http://www.treefam.org
http://tolweb.org/tree/
https://opentraits.org/
https://www.try-db.org/
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For an infinitesimal time change ∆t, one can discretize Equation (A2) to yt+∆t =

yt + α(θ − yt)∆t + σ(Bt+∆t − Bt). The mapping is ta 7→ e−2α(t−ta)

2α − e−2αt

2α . Referring to
Figure 1, the matrix transformed from the tree is represented in Equation (A2).

Gα =
1

2α



A B C D E

A 1 e−2α(40) 0 0 0

B e−2α(40) 1 0 0 0

C 0 0 1 e−2α(70) e−2α(70)

D 0 0 e−2α(70) 1 e−2α(20)

E 0 0 e−2α(70) e−2α(20) 1



− 1
2α

e−2α(100)



A B C D E

A 1 1 0 0 0

B 1 1 0 0 0

C 0 0 1 1 1

D 0 0 1 1 1

E 0 0 1 1 1


. (A2)

The early burst model:
This model includes a rate function, represented as σ2

t = σ2
0 exp(rt), r < 0. Referring

to Figure 1, the matrix transformed from the tree is represented in Equation (A3).

Gr =



A B C D E
A e−(40+60)r e−60r 0 0 0
B e−60r e−(40+60)r 0 0 0
C 0 0 e−(70+30)r e−30r e−30r

D 0 0 e−30r e−(20+50+30)r e−(50+30)r

E 0 0 e−30r e−(50+30)r e−(20+50+30)r

. (A3)

The Pagel’s λ, κ, and δ models:
Considering branch length stretching, referring to Figure 1, the matrices transformed

from the tree are represented in Equations (A4)–(A6).
The Pagel’s λ model

Gλ =



A B C D E
A 40 + 60 λ× 60 0 0 0
B λ× 60 40 + 60 0 0 0
C 0 0 70 + 30 λ× 30 λ× 30
D 0 0 λ× 30 20 + 50 + 30 λ× (50 + 30)
E 0 0 λ× 30 λ× (50 + 30) 20 + 50 + 30

. (A4)

The Pagel’s δ model

Gδ =



A B C D E
A (40 + 60)δ 60δ 0 0 0
B 60δ (40 + 60)δ 0 0 0
C 0 0 (70 + 30)δ 30δ 30δ

D 0 0 30δ (20 + 50 + 30)δ (50 + 30)δ

E 0 0 30δ (50 + 30)δ (20 + 50 + 30)δ

. (A5)

The Pagel’s κ model
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Gκ =



A B C D E
A 40κ + 60κ 60κ 0 0 0
B 60κ 40κ + 60κ 0 0 0
C 0 0 70κ + 30κ 30κ 30κ

D 0 0 30κ 20κ + 50κ + 30κ 50κ + 30κ

E 0 0 30κ 50κ + 30κ 20κ + 50κ + 30κ

. (A6)
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