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Abstract: Identifying the distribution dynamics of invasive alien species can help in the early detection
of and rapid response to these invasive species in newly invaded sites. Ageratina adenophora, a
worldwide invasive plant, has spread rapidly since its invasion in China in the 1940s, causing serious
damage to the local socioeconomic and ecological environment. To better control the spread of
this invasive plant, we used the MaxEnt model and ArcGIS based on field survey data and online
databases to simulate and predict the spatial and temporal distribution patterns and risk areas for
the spread of this species in China, and thus examined the key factors responsible for this weed’s
spread. The results showed that the risk areas for the invasion of A. adenophora in the current period
were 18.394◦ N–33.653◦ N and 91.099◦ E–121.756◦ E, mainly in the tropical and subtropical regions
of China, and densely distributed along rivers and well-developed roads. The high-risk areas are
mainly located in the basins of the Lancang, Jinsha, Yalong, and Anning Rivers. With global climate
change, the trend of continued invasion of A. adenophora is more evident, with further expansion
of the dispersal zone towards the northeast and coastal areas in all climatic scenarios, and a slight
contraction in the Yunnan–Guizhou plateau. Temperature, precipitation, altitude, and human activity
are key factors in shaping the distribution pattern of A. adenophora. This weed prefers to grow in warm
and precipitation-rich environments such as plains, hills, and mountains; in addition, increasing
human activities provide more opportunities for its invasion, and well-developed water systems and
roads can facilitate its spread. Measures should be taken to prevent its spread into these risk areas.

Keywords: alien invasive plants; Ageratina adenophora; species distribution models; driving factors;
dispersal risk; climate change

1. Introduction

Since Elton published The ecology of invasions by animals and plants, invasive alien
species have been the focus of attention in the field of ecology [1]. China is one of the
countries most seriously affected by invasive alien species in the world. The economic
loss caused by alien species to the Chinese economy and environment has exceeded CNY
200 billion [2]. According to the 2020 China Ecological Environment Status Bulletin, more
than 660 invasive alien species have been discovered across the country, and 71 of them
have posed or are potential threats to natural ecosystems and have been added to China’s
list of invasive alien species. Among the 660 invasive alien species, there are 370 invasive
plants, 220 invasive animals, and 60 invasive microorganisms. Therefore, it is urgent and
necessary to carry out research on preventing biological invasion [3].

Invasive alien species are defined as the spread of nonindigenous species from their
original place to a new area, where it colonizes and spreads further and poses a threat
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to the local economy, environment, and ecosystem health [4–7]. Invasive alien species
threaten the global sustainability of the biodiversity and social economy by altering the
ecosystem structure and functioning and disrupting key biological interactions [8–12].
These invasions have also been considered a major cause of recent extinctions and an
important component of global environmental change [13]. Plant invasions, as an important
component of invasive alien species, have been a major research topic for ecologists in
recent years [14–17]. Ageratina adenophora (Spreng.) King and H. Rob is regarded as one
of the most serious invasive species in most countries in the world [18]. This perennial
semi-shrubby herb of the genus Ageratina (Asteraceae) is native to Mexico and Costa Rica.
It was introduced to Yunnan Province of China from the Myanmar border in the 1940s and
quickly spread throughout southwestern China [19]. As one of the earliest invasive alien
species in China, the A. adenophora has crowded out native species in its invasive range due
to the strong reproductive ability of the plant and the allelopathic effects of the root system
in the soil, mostly in single dominant species distributed in dense patches [20]; therefore,
it is difficult to eradicate completely. To make matters worse, the weed has shown great
potential to spread outwards and has become widespread in southwestern China, causing
huge losses to local agriculture, forestry, and livestock [21,22]. Therefore, it is urgent and
necessary to carry out research on the invasion of A. adenophora in China. The control
of biological invasions is the ultimate goal of biological invasion research [23–25]; it is
generally accepted that the prevention of invasive plant outbreaks before they occur is a
better economic strategy than control or eradication afterward [26,27]. Therefore, predicting
the risk areas for the spread of A. adenophora before its colonization can effectively control
the spread of this invasive plant.

In early detection, the use of species distribution models (SDMs) is effective in iden-
tifying ecologically sensitive areas and in monitoring and rapidly responding to invasive
species [28,29]. A key assumption for using the species distribution model is the niche con-
servatism hypothesis, which assumes that species largely maintain their niches in space and
time: niches will change slowly, so species can only sustain their populations under similar
conditions [30,31]. However, some studies have found evidence of rapid niche changes
across space and time, sparking widespread debate about whether SDMs can be transferred
to new areas or time periods. In order to examine how niche change affects the transferability
of species distribution models, a recent study by Liu et al. (2022) has proved that species
occupying similar niches between the native and introduced areas will have a high SDM
transferability [32]. SDMs correlate information on the spatial distribution of species with
environmental variables to produce a model that expresses the realized niche of a species, and
the model can be projected to different geographic areas or times to predict the geographical
distribution patterns of species [33,34]. The MaxEnt model is a machine learning model
based on the MaxEnt algorithm developed by S.J. Phillips et al., in 2006; it only uses species
“presence” data to build models [35]. In many datasets that lack information about species
absence and small sample sizes, the MaxEnt model performs better than other models [36,37].
Because of its realistic species habitat simulations, screening of major ecological environmen-
tal factors, and quantitative descriptions of environmental factors in species habitats, the
MaxEnt model has been widely used in a variety of disciplines, including geography and
ecology, for species distribution prediction analysis since 2004 [38–40].

Climatic factors are considered to be the main environmental drivers of species distri-
bution at the macro-scale, and this has been established in extensive studies of the dispersal
distribution of invasive species [41–43]. However, there are still many important factors
that need to be considered when predicting the potential range of invasive alien species,
such as topography, soil type, land use/cover change, and human activity. Topographical
factors can play a role in redistributing solar radiation and precipitation, and soil factors
can affect the growth of invasive plant roots and nutrient uptake [44,45]. Land use/cover
change and anthropogenic factors affect the colonization and spread of invasive plants,
mainly by disrupting their habitat [46–49]. For future climate scenarios, most previous
studies were based on the coupled model intercomparison project phase 5 (CMIP5), while
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the new version CMIP6 has shown significantly higher accuracy and resolution [50]. In a
comparison of the performance of the CMIP6 and CMIP5 models in simulating historical
precipitation and temperature in Bangladesh, Kamruzzaman et al., found that the CMIP6
MME showed a significant improvement in simulating rainfall and temperature over
Bangladesh compared to CMIP5 MME [51]. Chen et al., showed that the new version of the
CMIP6 model exhibits a general improvement in the simulation of climate extremes and
their trend patterns compared to the old version of the model in CMIP5, and the simulation
results are closer to the observations [52]. In addition, an increasing number of researchers
have recently used CMIP6 models for species distribution prediction [53,54]. As a result,
additional consideration of topography, soils, land use, and anthropogenic factors under
CMIP6 is expected to result in a more reasonable possibility of predicting the distribution
of invasive alien plants.

We used the MaxEnt model and ArcGIS software to simulate and predict the current
spatial and temporal distribution and dispersal risk areas of A. adenophora based on occur-
rence records and environmental data. The goals of this study were to (1) map the current
geographical distribution of A. adenophora, (2) reveal the key drivers affecting the weed
distribution, and (3) forecast the spreading trend of weeds in China. These findings will
provide predictive, early warning information for invasive plant prevention and control.

2. Materials and Methods
2.1. Species Occurrence Records

We obtained the species distribution information of A. adenophora from the Global Bio-
diversity Information Facility (GBIF, https://www.gbif.org) (accessed on 28 April 2022), the
Chinese Virtual Herbarium (CVH, https://www.cvh.ac.cn/) (accessed on 28 April 2022), the
China National Specimen Information Infrastructure (NSII, http://www.nsii.org.cn/2017
/home.php) (accessed on 28 April 2022), the related literature, and our field survey data. To
prevent spatial autocorrelation of the raster data, we used ArcGIS10.6 (ESRI) to ensure that
only one occurrence of this species was recorded in each 1 km × 1 km resolution grid cell [55].
A. adenophora occurs between 92.273◦ E–120.798◦ E and 21.496◦ N–29.824◦ N and is currently
distributed mainly in southwestern China, including Yunnan, Sichuan, Chongqing, Tibet,
Guizhou, Guangxi, and Taiwan (Figure 1).

2.2. Environmental Data and Pre-Processing

We downloaded 19 grid-based bioclimatic variables from the WorldClim (www.worldclim.
org) (accessed on 19 May 2022) dataset [56]; the spatial resolution was 30” (approximately
1 km). Elevation, land use type, soil type, and soil texture were downloaded from the Re-
source and Environmental Science and Data Centre (http://www.resdc.cn/) (accessed on
25 May 2022) at a resolution of approximately 1 km [57]; we extracted the slope and aspect
from elevation based on the ArcGIS10.6 platform. The seven variables related to soil qual-
ity were taken from the Harmonized World Soil Database v1.2 dataset of the World Food
and Agriculture Organization (http://www.fao.org/soils-portal/soil-survey/soil-maps-and-
databases/harmonized-world-soil-database-v12/en/) (accessed on 21 May 2022) [58,59], with
a resolution of approximately 30”. The anthropogenic intensity data were obtained from
the Global Human Influence Index (Geographic), v2 (1995–2004) dataset of the Socioeco-
nomic Data and Applications Center (SEDAC, https://sedac.ciesin.columbia.edu/data/set/
wildareas-v2-human-influence-index-geographic) (accessed on 21 May 2020) at a resolution
of approximately 1 km. The spatial resolution of all environmental data was set to 30”. A list
of environmental data is available in the Supplementary Material (Table S1). Based on the
condition that soil and topographic factors remain constant over the next few decades, only
climate variables from future climate scenarios were used in this study to predict the dispersal
trends of A. adenophora over future periods.

https://www.gbif.org
https://www.cvh.ac.cn/
http://www.nsii.org.cn/2017/home.php
http://www.nsii.org.cn/2017/home.php
www.worldclim.org
www.worldclim.org
http://www.resdc.cn/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
https://sedac.ciesin.columbia.edu/data/set/wildareas-v2-human-influence-index-geographic
https://sedac.ciesin.columbia.edu/data/set/wildareas-v2-human-influence-index-geographic
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Figure 1. The map (a) shows the occurrence records of Ageratina adenophora in China; (b,c) show
Ageratina adenophora.

Environmental variables are important parameters in the construction of species
distribution models, and too much co-linearity between environmental variables can cause
over-fitting of the model and lead to reduced model transfer ability [60,61]. To ensure
that all environmental predictor variables were independent of each other, we tested
the correlation of 35 variables using the PerformanceAnalytics package [62] in R and
removed those with high spatial correlation values (Spearman correlation > 0.75) [63].
Finally, we selected eighteen variables as predictor variables, including mean diurnal
range, temperature annual range, mean temperature of driest quarter, annual precipitation,
precipitation of driest quarter, altitude, slope, aspect, nutrient availability, nutrient retention
capacity, rooting conditions, excess salts, soil type, soil texture (clay, sand, silt), land use
type (agricultural land, forest land, grassland, water, building land, unused land), and
intensity of human activity (Table 1).

We selected the BCC-CSM2-MR global climate model from the coupled phase 6
(CMIP6) model for our projections because of its higher resolution and climate sensi-
tivity compared to CMIP5 [64,65], and the better performance of the BCC-CSM2-MR model
compared to other global climate models [66]. For the four shared socioeconomic pathways
(SSP126, SSP245, SSP370, and SSP585), we chose SSP126 for the optimistic scenario and SSP
585 for the pessimistic scenario for model simulation under the future climate scenario,
as they combine factors affecting local development and a higher climate sensitivity [67].
In addition, two periods were chosen to predict the spread of the invasive alien plant
A. adenophora: the 2050s (predicted mean for 2041–2060) and the 2090s (predicted mean for
2081–2100).
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Table 1. The environmental variables for potential risk modeling of Ageratina adenophora in China.

Environment
Variables Description Abbreviation

Climate

Mean diurnal range (mean of monthly (max
temp–min temp)) (0.1 ◦C) bio_2

Temperature annual range (0.1 ◦C) bio_7

Mean temperature of driest quarter (0.1 ◦C) bio_9

Annual precipitation (mm) bio_12

Precipitation of driest quarter (mm) bio_17

Soil Soil type soil

Soil texture

Sand sand

Silt silt

Soil clay

Soil quality

Nutrient availability sq1

Nutrient retention capacity sq2

Rooting conditions sq3

Excess salts sq5

Workability (constraining field management) sq7

Land use type Land use/cover change lucc

Human activity Human footprint dataset hii

Terrain
DEM dem

Slope slope

Aspect aspect

2.3. Model Construction and Data Processing

Our experiments were conducted using MaxEnt 3.4.4 software for model construction
(http://biodiversityinformatics.amnh.org) (accessed on 1 March 2022). The A. adenophora
distribution points and current environmental variables were imported into the software,
the output type was set to Logistic, 25% of the species distribution data was selected as
the test set and the remaining 75% was used as the training set, and the Jackknife measure
was enabled to analyze the model factor contribution. Due to the uncertainty in the species
distribution model, the model was run for 10 iterations with the type of operation set to
cross-validation. All other parameters were left at their default values and the final output
was averaged over 10 iterations.

2.4. Niche Similarity Examination

A. adenophora was introduced to China from Myanmar around 80 years ago (1940s),
and it quickly colonized and spread in southwest China. According to previous research,
A. adenophora’s climate niche has slightly expanded in time and space since its invasion into
China, but it still maintains high stability [68]. Furthermore, we compared the climate niches
of A. adenophora between its native (Mexico) and introduced area (China) (Tables 2 and 3) and
found that the first five environmental factors (dem, bio_7, bio_12, hii, and bio_9) in these
two places are the same, indicating temperature, precipitation, altitude, and human activities
in these two places have important contributions to the distribution of A. adenophora. These
results demonstrated that our model is general for this species.

http://biodiversityinformatics.amnh.org
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Table 2. The percent contribution and permutation importance of the environmental variables
in Mexico.

Variable Percent Contribution (%) Permutation Importance (%)

dem 32.8 15.4
bio_7 27.5 28
bio_12 12.6 26.3

hii 9.1 5.2
bio_9 4.2 5.1
bio_3 4.2 2.3
bio_19 2.7 7.3
slope 2.1 1.3
soil 1.4 0.4

aspect 1.3 1.1
sq3 0.5 1.6
sq4 0.4 1.4
sq1 0.4 0.3

bio_17 0.4 2.5
sq5 0.3 1.7

Table 3. The percent contribution and permutation importance of the environmental variables
in China.

Variable Percent Contribution (%) Permutation Importance (%)

bio_7 27.3 33.3
dem 22.5 14.8

bio_12 20.4 0.2
bio_9 16.4 37.9

hii 7.8 5.7
bio_2 1.7 0.1
sand 0.7 0.4
clay 0.6 0.6

bio_17 0.5 3
aspect 0.4 0.5

sq2 0.4 0.6
soil 0.3 0
silt 0.3 1.4
sq1 0.2 0.3
sq3 0.1 0.6
lucc 0.1 0.2

slope 0.1 0.2
sq5 0.1 0.3

3. Results
3.1. Model Accuracy Assessment

The MaxEnt species distribution model was tested for accuracy by the area under the
curve (AUC) of the receiver operating characteristic (ROC), with the AUC ranging between
0.5 and 1.0. The closer the AUC is to 1.0, the higher the accuracy of the model; if the AUC is
equal to 0.5, the model has no application value [39]. The mean AUC value of the MaxEnt
model for 10 operations in the study was 0.980 (Figure 2), with a standard deviation of
0.007, and the AUC values for a single operation were all larger than 0.9, indicating that the
model performed well in terms of accuracy and could reflect the distribution characteristics
of A. adenophora.
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3.2. Key Drivers Affecting the Distribution of A. adenophora

The factor contribution is an important indicator to assess the degree of influence
of environmental variables on the model (Figure 3; Table 3). Of the 18 environmental
variables, temperature annual range (bio_7), elevation (dem), mean annual precipitation
(bio_12), mean temperature of driest quarter (bio_9), and human activity (hii) are the key
drivers affecting the distribution of A. adenophora. The cumulative values for percentage
contribution and permutation importance were as high as 94.4% and 91.9%, respectively.
Of these, temperature annual range (bio_7) was the largest influencing factor, while mean
temperature of driest quarter (bio_9) had the highest permutation importance (Table 3).
Factors related to temperature variables (e.g., bio_7, bio_9) and dem variables had higher
weights when only a single variable was used. However, soil variables (e.g., soil quality,
soil type, soil texture) and land use/cover changes had negligible effects on the distribution
of this weed. Their cumulative contribution and cumulative permutation importance are
both less than 10%.
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3.3. Characteristics of the Potential Risk Area of the A. Adenophora under Current Climate Conditions

Based on the results of the MaxEnt model simulations, we used the maximum training
sensitivity plus specificity threshold (MTSS) to map the current and future invasion risk
of the exotic plants. We classified the dispersal areas of A. adenophora into four categories
based on the MTSS values corresponding to: high-risk areas (0.5 < MTSS), moderate-risk
areas (0.25 < MTSS ≤ 0.5), low-risk areas (MTSS ≤ 0.25), and no-risk areas (0 < MTSS).

Our results show that the current invasion-risk area of A. adenophora reaches about
56.11 × 104 km2, which is distributed in the tropical and subtropical regions of China,
with a more concentrated distribution in the Yunnan, Sichuan, and Guizhou Provinces
(Table 4; Figure 4). The simulating results are consistent with the actual distribution range
of A. adenophora. The high-invasion-risk area is about 9.30 × 104 km2, accounting for 16.58%
of the total invasion area, and it is mainly distributed in areas with sufficient water sources
and well-developed road networks (Table 4; Figure 4). The western part is invaded along
the Lancang, Nujiang, Jinsha, and Yalong Rivers in many places, while the eastern part
is concentrated in the Yunnan–Guizhou plateau. The moderate-invasion-risk area covers
about 21.40 × 104 km2, accounting for 38.13% of the total invasion area, and it is mainly
distributed around the high-invasion-risk area and also in the Yunnan–Guizhou Plateau
and Taiwan. The low-invasion-risk zone covers about 25.41 × 104 km2, accounting for
45.29% of the total invasion zone; the A. adenophora mainly grows at the edge of the high-
and moderate-invasion-risk zones, and is also partially distributed in the Yangtze River
basin, the lower reaches of the Yarlung Tsangpo River, and in Taiwan, Guangdong, Guangxi,
and Fujian Province.
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Table 4. Dynamics of Ageratina adenophora invasion-risk areas at different times.

Climate
Scenarios

Area (×104 km2) Area Ratio (%)

Low Risk Moderate
Risk High Risk Total Area Low Risk Moderate

Risk High Risk

Current - 25.41 21.40 9.30 56.11 45.29 38.13 16.58

2050s
ssp126 24.66 22.05 8.83 55.53 44.40 39.70 15.90
ssp585 27.36 24.38 8.76 60.50 45.22 40.31 14.48

2090s
ssp126 31.33 21.09 9.27 61.69 50.79 34.19 15.02
ssp585 28.77 21.90 7.43 58.10 49.52 37.70 12.78
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3.4. Evaluation of the Dispersal Dynamics of A. adenophora

The predicted results show a general trend of an increasing area of the A. adenophora
invasion-risk zone between the current time and the 2090s, with a spatial expansion mainly
towards the northern and coastal regions. The current and future climatic scenarios show
that the area of low-risk invasion zones for this weed is the largest, followed by the area of
moderate-risk zones, and the area of high-risk zones is the smallest (Table 4; Figure 5).
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The results show an overall increasing trend in the area of A. adenophora under the
future SSP126 climatic scenario, with a slight decrease of 1.02% by the 2050s. The weed will
invade in the northern, northeastern, and coastal areas, especially along the Jialing River,
the Yangtze River, and coastal areas such as Guangzhou, Fujian, and Taiwan, where the
area of spread is increasing more (Figures 6 and 7). The invasion-risk area of A. adenophora
increased significantly in the 2090s compared to the 2050s, with the largest increase of 6.39%
in the low-risk area, which was primarily distributed around the Yunnan–Guizhou plateau,
while the moderate- and high-risk areas decreased slightly (−5.51% and −0.88%) (Table 4;
Figures 5–7).

The A. adenophora invasion-risk area exhibits a process of expansion followed by contrac-
tion under SSP585 climatic conditions, with a slight expansion in the total area. Between the
present and the 2090s, the weed invasion-risk area has increased by 1.99 × 104 km2, account-
ing for 3.55%, of which the expansion area is 6.60 × 104 km2, accounting for 11.77%, and the
total contraction area is 4.61 × 104 km2, accounting for 8.22% (Table 5; Figures 6 and 7). The
expansion area is in the Minjiang River and Jialing River in northern Sichuan, and the con-
traction area is in the Guizhou Province. In particular, the invasion-risk area of A. adenophora
expanded slightly in the 2050s under SSPP585 climatic conditions in the southeast and north-
east and in Taiwan, especially in the Minjiang River in Sichuan and in the Yungui Plateau
region (Figures 6 and 7), and increased slightly northwards in the 2090s in the invasion-risk
area in northern Sichuan (Figures 6 and 7). Overall, the risk area for the invasive spread of
A. adenophora is more severe under the SSPP126 scenario than under the SSPP585 scenario.
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Table 5. The area dynamics of Ageratina adenophora in the future.

Climate
Scenarios

Area (×104 km2) Area Ratio (%)

Contraction Unchanged Expansion Total
Change Contraction Unchanged Expansion Total

Change

2050s
ssp126 5.32 50.79 4.75 −0.57 9.49% 90.51% 8.46% −1.02%
ssp585 2.61 53.50 7.00 4.39 4.65% 95.35% 12.47% 7.83%

2090s
ssp126 1.93 54.17 7.52 5.59 3.45% 96.55% 13.40% 9.96%
ssp585 4.61 51.50 6.60 1.99 8.22% 91.78% 11.77% 3.55%

3.5. The Centroid Distribution Transfer of the A. adenophora

To determine the effects of climate change on the potential distribution area of
A. adenophora, we used the spatial analysis function of ArcGIS to calculate the geometric
center, migration distance, and direction of this alien invasive plant under different climatic
scenarios (Figure 8). The centroid distribution of the A. adenophora under the current climate
scenario is located in Kunming, Yunnan Province at (102.218◦ E, 25.095◦ N). The centroid
distribution of the A. adenophora under the 2050s SSP126 scenario is located in Xundian Hui
and Yi Autonomous County, Kunming, Yunnan Province at (103.257◦ E, 25.679◦ N), and
has shifted to the northeast compared to its current position (Figure 8). The dispersal risk
centroid distribution in the 2090s SSP126 scenario continued to move northeast compared
to the 2050s position, reaching Huize County, Qujing City, Yunnan Province at (103.331◦ E,
26.017◦ N) (Figure 8), and the dispersal risk centroid distribution in the 2050s SSP585
scenario moved northeast and then southwest in the 2090s. In general, the dispersal risk
centroid of this invasive plant moved all the way to the northeast and a relatively large
distance under the SSP126 scenario, while it did not change much under the SSP585 climate
scenario in 2081–2100.
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Under the current period, the centroid of the high-risk zone is located in Lufeng
County, Yunnan Province, where the centroid of the high-risk dispersal zone for the 2050s
and 2090s under the SSP126 scenario migrates a small distance, generally to the southeast
and then to the northwest. In the SSP585 scenario, the centroid migration pattern in the
high-risk dispersal zone is similar to that in the SSP126 climate scenario, with a general
migration to the southeast and then to the west (Figure 8). Overall, the high-risk dispersal
zone centroid distribution of A. adenophora shows an overall trend towards the southeast
from the present to the future.
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4. Discussion

The invasion of alien plants will threaten the stability of regional ecosystems and
socioeconomic development. It is necessary to give early warning of alien invasive plants
because early prevention of alien plants is thought to be a more effective economic strategy
than control and elimination after the outbreak. A. adenophora is very aggressive in most
parts of the world. Our research can provide the scientific basis for the prevention and
control of alien invasive plants. Based on the distribution information of A. adenophora and
data on climate, topography, soil, human activities, and land cover factors, this study used
the MaxEnt model and ArcGIS spatial analysis techniques to construct the geographical
distribution pattern of A. adenophora in the current and future periods, and to examine the
key factors affecting the spread of the weed, so as to provide predictive and early warning
information for the prevention and control of the invasive alien plant.

4.1. Potential Risk of Invasive Alien Plants under the Current and Future Scenario

The invasion-risk areas of A. adenophora in the current period are located along rivers
and roads or in plains, mountains, and hills within the range of 18.394◦ N–33.653◦N and
91.099◦ E–121.756◦ E. These regions include Yunnan, Sichuan, Tibet, Chongqing, Hubei,
Guangxi, Guizhou, Fujian, and Taiwan. The climate in these regions is warm and humid,
with plenty of sunshine and gentle terrain. The average annual temperature ranges from
13 ◦C to 22 ◦C, and the precipitation ranges from 800 to 1500 mm, decreasing from southeast
to northwest [69,70]. A. adenophora distributes from south to north, and it is influenced by
the high-altitude mountains in northwest Sichuan; the temperature of these areas is not
suitable for the weed to survive, which prevents weed dispersal. This result is consistent
with the findings of previous studies: A. adenophora grows best at an altitude around
2000 m, but once above 2500 m, it becomes difficult for the weed to spread [21,71,72]. Thus,
the northernmost point is concentrated along the Minjiang and Jialing Rivers, and the
southernmost point to the Lancang river basin in the Yunnan section.

Our predictions show that A. adenophora invades southern China, with Yunnan, west-
ern Guangxi, western Guizhou, and southwestern Sichuan being the most abundant,
especially along rivers and roads, and a small area is also invaded in Tibet, Chongqing,
Hubei, Guangzhou, Fujian, and Taiwan. The climate in southern China is tropical and
subtropical monsoonal, with hot and rainy summers and mild and dry winters in most
areas, and the terrain is dominated by plains, mountains, and hills, which are very similar
to the natural conditions in the area of the origin of A. adenophora [73]. Mexico is a high-
land mountainous country with an average annual temperature of 17–27 ◦C and annual
precipitation of 750–2000 mm. The other country of origin, Costa Rica, has an average
annual temperature of 16–25 ◦C and annual precipitation of 2540 mm [71]. Therefore, after
spreading from Myanmar to China, this weed colonized the Yunnan–Guizhou plateau and
the Sichuan basin and dispersed to the coastal zone of China.

Compared to its current distribution area, A. adenophora is likely to continue to spread
in northeast Sichuan in the future, but its spread will probably slow down, and its dis-
tribution area may contract to some extent near the Yunnan–Guizhou Plateau. From the
predictions, there is still a spread risk in the Sichuan Basin, the Yunnan–Guizhou Plateau,
Guangxi, Tibet, Gansu, Shaanxi, Chongqing, Hubei, Taiwan, and Fujian. This result sug-
gests that the current distribution of A. adenophora may not reach the maximum suitable
invasion area under the SSP126 emission scenario and will reach the maximum invasion
range under the 2050s-SSP585 emission scenario. One possibility is related to global climate
change in recent years, which has contributed to the increase in atmospheric temperature
and the frequent occurrence of extreme weather [74], which may limit the spread of this
weed. The other possibility is that extreme weather causes the model to be reluctant to
make strong predictions in order to avoid exaggerating the results.

The high-risk invasion areas of this weed are mainly located in Yunnan Province and
the western part of Sichuan Province, which is consistent with the phenomena observed
during our field surveys and the results of previous studies [27]. Yunnan Province and the
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Panxi region have ideal climatic and topographical conditions for the growth of this weed.
Roads like the Rongli Highway and the Xuwei Highway have created ideal conditions for
the spread of this invasive plant. As a result, Yunnan Province’s flat topography and the
dense water flow roads in the Panxi region are high-risk areas for weed invasion.

4.2. Key Drivers Affecting Invasive Alien Plants

Most studies on SDM have only selected climate variables to be involved in modelling
and prediction [75,76]. In this study, climate, land cover, soil, topography, and human
activity factors were all taken into account. Based on the results of the contribution of
the variables in this study, the key drivers influencing the invasion of A. adenophora were
screened, and we can further understand the environmental conditions for the invasion
of this weed. We found that the dominant factors influencing the distribution pattern
of A. adenophora were temperature annual range (bio_7), elevation (dem), mean annual
precipitation (bio_12), mean temperature of driest quarter (bio_9), and human activity (hii).

Both temperature and precipitation play an important role in the formation of invasive
alien plant dispersal habitats, and our results are consistent with previous studies [70].
Altitude has a significant inhibitory effect on the invasion of this weed, and our results
show that A. adenophora spreads in the northeast, a distribution pattern caused by the
presence of a large number of high-altitude mountains (e.g., Gonggar Mountain, Minshan
mountains, and Daba Mountain) in northwestern Sichuan preventing the continued spread
of the invasive alien plant. It is worth noting that although human activities can contribute
to some extent to the spread of invasive alien species, we found that human activities
had a smaller impact on this invasive weed compared with temperature, precipitation,
and topographic factors, with a contribution of only 7.8%. However, human activity
had a higher impact on this weed than the soil variable (single-factor contribution less
than 0.7%, cumulative contribution of 2.8%) and the land cover variable (contribution
of 0.1%) (Table 3). This is because the roots of A. adenophora have an allelopathic effect,
releasing harmful substances into the soil environment and thus inhibiting the growth
of other plants [20]. Land use/cover change does not significantly affect the distribution
of A. adenophora. According to our extensive field surveys and herbarium records (China
Digital Herbarium), A. adenophora can be distributed in open forests, roadsides, abandoned
fields, ridge edges, riversides, orchards, etc. As long as the temperature, moisture, and
sunlight are suitable, the weed can colonize and spread. Overall, A. adenophora has low
requirements for land cover, soil type, soil texture, and soil quality, and, under suitable
climatic conditions, increased human activity can contribute to the rate and extent of
spread of invasive alien species in invaded areas [77]. It is therefore particularly important
to control the impact of human activities on invasive alien plants during the spread of
invasive plants.

4.3. Uncertainty

The limitations of this study can be summarized as follows. Since MaxEnt is a species
distribution model, its niche conservation premise may cause MaxEnt model to be reluctant
to make strong predictions in some places with small sample sizes or extreme environmental
conditions, which may explain why the distribution area of A. adenophora is reduced under
extreme climate scenarios. Our species distribution dataset comes from open datasets and
field sampling. Although we tried to be as uniform and unbiased as possible, this does not
ensure that there was no bias at all.

5. Conclusions

Predicting the distribution area of alien invasive plants under climate change is crucial
to the early monitoring of the regional ecological environment and biodiversity conser-
vation. We predicted the spatial and temporal distribution patterns and dispersal areas
of A. adenophora under different climate scenarios. Under the current climate scenario,
A. adenophora has invaded several provinces in southwestern and southern China, mainly
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Yunnan, Sichuan, Guizhou, Chongqing, Tibet, Hubei, and coastal areas (Guangxi, Fujian,
Taiwan, etc.), which provide a warm and humid climatic environment for this invasive
plant. The future distribution area will probably keep dispersing in the northeast and along
the coastal areas. Therefore, we should strengthen the monitoring and management of
these areas to prevent damage to the regional economy and ecology caused by the alien
invasive plants. For the invaded area, considering the high cost and inefficiency of manual
and mechanical control, and the limitation of chemical control to cause environmental
pollution, biological and ecological control techniques should be adopted to prevent its col-
onization and dispersal, especially in potential distribution areas. The key drivers affecting
the distribution of A. adenophora are: temperature annual range (bio_7), elevation (dem),
mean annual precipitation (bio_12), mean temperature of driest quarter (bio_9), and human
activity (hii). Therefore, while monitoring and managing these potential distribution areas,
we should also strengthen the management of human activities to prevent the spread
of invasive plants. Our study provides fundamental information for the early detection
of and rapid response to alien invasive species in a new habitat, helps to determine the
future invasion area of invasive plants, and proposes preventive measures. We suggest the
prevention of invasive plant outbreaks before they occur, rather than elimination or more
expensive economic strategies afterward.
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