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Abstract: One of the most investigated patterns in species diversity is the so-called latitudinal gra-
dient, that is, a decrease in species richness from the equator to the poles. However, few studies
investigated this pattern in insects at a global scale because of insufficient taxonomic and biogeo-
graphical information. Using estimates of earwig species richness at country level, their latitudinal
diversity gradient was modelled globally and for the two hemispheres separately after correcting for
differences in country areas. Separate analyses were also conducted for mainland and island countries.
All analyses clearly indicated the existence of latitudinal gradients. The most plausible explanation
for the observed pattern is the so-called tropical conservatism hypothesis, which postulates (1) a
tropical origin of many extant clades, (2) a longer time for cladogenesis in tropical environments
thanks to their environmental stability, and (3) a limited ability of historically tropical lineages to
adapt to temperate climates. Earwigs probably evolved on Gondwana and secondarily colonized the
Northern Hemisphere. This colonization was hampered by both geographical and climatic factors.
The Himalayan orogenesis obstructed earwig dispersal into the Palearctic region. Additionally, ear-
wig preferences for warm/hot and humid climates hampered the colonization of temperate regions.
Pleistocene glaciation further contributed to reducing diversity at northern latitudes.

Keywords: insects; Dermaptera; latitudinal gradient; species-area relationship; tropical conservatism

1. Introduction

The latitudinal diversity gradient, in which species richness decreases from the equator
to the poles, is the most pervasive and notable macroecological pattern on Earth [1–13].
Although the pattern has been investigated on the most disparate organisms, including, for
example, bacteria [14], algae [15], protozoans [16–18], molluscs [19–22], parasite worms [23],
polychaetes [24], meiofauna [25], spiders [26] and crustaceans [27–29], most research has
been focused on plants [30–38] and vertebrates [12,31,39–52], whereas comparatively few
works have been dedicated to insects, which—with possibly 5.5 million species [53]—are
“the most taxonomically intractable of animal classes” [54].

Most of the available research on the latitudinal gradient in insects (including collem-
bolans, currently considered as a separate class of hexapods) deals with patterns observed
at a continental [55–68] or even smaller geographical scale [66,69–77], whereas only very
few studies have been conducted on a global scale [78–82]. Additionally, most studies con-
sider insect families or subfamilies [55,56,59,61–63,65,67,68,70,72,74–76,80,81], because, for
most insect groups, there is insufficient taxonomic and biogeographical information (the so-
called Linnean and Wallacean shortfalls, respectively [83]) for large-scale analyses involving
higher systematic ranks (see, for example, studies on European collembolans [64], world
termites [78], West Palearctic sawflies [84], West Palearctic butterflies [60], North American
butterflies [58], Australian butterflies [57], world butterflies [82], and stream-dwelling leaf
shredders from various sites around the world [85]).

A notable exception may be represented by earwigs (Dermaptera), an insect order for
which there are good estimates of species richness for most of the countries in the world.
Dermaptera are a small group of insects including about 2000 known species [86]. Earwigs
are mainly hygrophilous and nocturnal insects, finding shelter in crevices of various types,
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under bark, fallen logs, stones, debris, and dry excrements, as well among mosses, near
the base of plants, and in the hallows of trunks [86–88]. Most earwigs are omnivorous,
feeding on a wide array of living and dead plant and animal matter, as well as spores
and parts of fungi [86–88]. Some species favour plant material, while others prefer animal
food such as small arthropods [86,87]. Few species are anthropophilous, living near or in
human settlements [86]. About 40% of earwigs have reduced wings, and even species with
well-developed wings rarely fly, which reduces their dispersal ability [86].

Earwigs are known to be mainly associated with warm and humid climates, whereas
temperate regions have only a limited number of species [86]. However, no study has
attempted to investigate the latitudinal gradient in these insects. The world distribution of
earwigs is relatively well known, with reliable estimates of species richness for virtually all
the countries in the world [86,89].

The aim of this paper was to use country-level estimates of earwig species richness to
test the latitudinal gradient of these insects. In particular, I tested: (1) if the global gradient
followed a hump-shaped pattern, with maximum diversity in tropical areas; (2) if diversity
decreased poleward in the same way in the two hemispheres; and (3) if mainland and
island areas had different patterns.

2. Materials and Methods

Analyses were conducted using values of species richness recorded at the country
level (Table S1, Figure S1). These data were taken from Haas [89], who derived his estimates
from a detailed scrutiny of literature data, communications, and a personal examination
of museum specimens, for a total of about 26,000 records (see Hass [89] for details). This
dataset is the best suitable source of information for the global richness of earwigs. Al-
though country borders do not reflect necessarily natural discontinuities, country data are
a valuable source of information [82] and are commonly used to detect latitudinal patterns
in insects (e.g. [63–65,67,76,84]).

Monaco (a city-state with 0 species) was excluded. Country areas were taken from
Britannica [90], whereas values of country latitude and longitude (centroids) were extracted
from the R package rworldmap [91] (Table S1).

Analyses were developed for the whole data set and for the two hemispheres sep-
arately [20]. Because of differences in the size of the countries, country data of species
richness could not be directly used to test the latitudinal gradient. Thus, to account for
differences in country area, the latitudinal gradient was tested by regressing residuals from
species–area relationships against latitude [37,40,42,64,65,92,93].

To model the species–area relationship, I used the linearized (log–log) version of the
Arrhenius power function, as this model typically provides the best fit and it is easy to
interpret [94–96]. The model is:

log(S) = z log (A) + log(c)

where S is the species richness recorded in a given country, A is the country area (in km2),
and c (the expected number of species per area unit) and z (the slope of the function) are
estimated parameters. Because of the presence of zero values, the number of species was
log(x + 1)-transformed. Decimal logarithms were used.

For the whole dataset, a quadratic relationship between diversity and latitude was
modelled, as maximum diversity was expected at the centre of the gradient (i.e., around
the equator). For the two separate hemispheres, both quadratic and linear functions were
tested, with model selection based on values of the corrected Akaike information criterion
(AICc). Quadratic models were considered potentially preferable to the linear ones only
if ∆AICc < 2. In all cases, ordinary least squares regressions were used. Differences in
the slope and in the intercept between the regression lines of the two hemispheres were
tested by analysis of covariance; in this case, absolute values of latitude were used (e.g.,
10◦ = 10◦ N = 10◦ S). Since species–area relationships may differ between mainland and
island systems [97–99], analyses were also conducted separately for mainland and island
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countries. Australia was alternatively considered as mainland or island, but this had
virtually no effect on the results.

All calculations were performed with the statistical software R Version 4.0.2 [100].
Regressions were performed using the lm() function. AICc values were calculated using the
aictab() function. ANCOVAs were conducted with the aov() function. To take into account
multiple testing (the latitudinal diversity pattern was tested nine times), a sequential
Bonferroni correction was applied starting with α set at 0.05.

To shed light on potential explanations for the latitudinal gradient, I also explored the
role of temperature and precipitation as predictors of area–corrected values of earwig diver-
sity. Both temperature and precipitation may influence species diversity in various ways,
because they have close relationships with primary production and biomass, especially in
the tropics, and temperature may give rise to species–energy relationships [101–105]. To
this end, I used average annual values of temperature and precipitation at the country level
(Table S1). As expected, temperature was strongly correlated with latitude (a quadratic
function explains about 84% of variance at the global level; Figure S2, Table S2), but was a
poor predictor of the area-corrected diversity of earwigs (with less than 1% of explained
variance; Figure S3, Table S2). Precipitation was relatively weakly correlated with latitude
(a quadratic function explains about 15% of variance at the global level; Figure S2, Table S2),
but was a better predictor of the area-corrected diversity of earwigs (with about 25% of ex-
plained variance) (Figure S4, Table S2). Given the strong relationship between latitude and
temperature, and the poor explanatory power of temperature for earwig diversity, analyses
for the two hemispheres and for mainland and island areas separately were conducted only
for precipitation.

3. Results

Species richness increased significantly with country area at the global level (Table 1,
Figure 1a), although the coefficient of determination was low, which indicates that factors
other than area must play an important role in determining the number of species recorded
in each country. The latitudinal gradient in species diversity corrected for differences
in country areas (residuals from the species–area relationship) followed a hump-shaped
pattern, although the coefficient of determination was low (Table 1, Figure 1b).

Table 1. Earwig species–area relationships and latitudinal diversity gradients for world mainland
and island countries. Species–area relationships were modelled using the linearized version of the
power function: log(S) = log(c) + z log(A), where S is the recorded species richness at country level,
A is country area, and z and c are estimated parameters. Latitudinal gradients were modelled with
regressing residuals from the species–area relationships (SAR residuals) against country latitude with
a second-order polynomial regression for the whole dataset and with linear regressions for the two
hemispheres separately. r2 = coefficient of determination; F = Fisher’s F; p = probability.

Model Equation r2 F p

World species-area relationship y = 0.263 + 0.169x 0.104 16.127 9.65 × 10−5

World latitudinal gradient y = 0.207 − 0.0001x2 − 0.003x 0.221 19.565 3.31 × 10−8

North Hemisphere species-area relationship y = 0.433 + 0.123x 0.058 6.874 0.0997
North Hemisphere latitudinal gradient y = 0.320 − 0.011x 0.180 24.239 2.87 × 10−6

South Hemisphere species-area relationship y = 0.144 + 0.240x 0.257 9.066 0.0059
South Hemisphere latitudinal gradient y = 0.379 + 0.024x 0.353 14.189 0.0009
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than that observed for the whole dataset. Values of species diversity decreased linearly 
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Figure 1. Earwig species–area relationships and latitudinal diversity gradients for world mainland
and island countries. Species–area relationships were modelled using the linearized version of the
power function: log(S) = z log(A) + log(c), where S is the recorded species richness at country level, A
is country area (km2), and z and c are estimated parameters. Latitudinal gradients were modelled
with regressing residuals from the species–area relationships (SAR residuals) against country latitude
with a second-order polynomial regression for the whole dataset and with linear regressions for
the two hemispheres separately. (a) Global species–area relationship; (b) global latitudinal gradient;
(c) species–area relationship for the Northern Hemisphere; (d) latitudinal gradient for the Northern
Hemisphere; (e) species–area relationship for the Southern Hemisphere; (f) latitudinal gradient for
the Southern Hemisphere. Regression equations are given in Table 1.

For the Northern Hemisphere (Table 1, Figure 1c), species richness increased sig-
nificantly with country area, although the coefficient of determination was even lower
than that observed for the whole dataset. Values of species diversity decreased lin-
early poleward (AICc for a quadratic model: 26.193; AICc for a linear model: 24.092;
∆AICc = 2.101) (Table 1, Figure 1d).

For the Southern Hemisphere (Table 1, Figure 1e), species richness increased signifi-
cantly with country area, and the coefficient of determination was slightly higher than that
observed for the whole dataset. Values of species diversity increased linearly towards the
equator (AICc for a quadratic model: 10.226; AICc for a linear model: 7.812; ∆AICc = 2.414)
(Table 1, Figure 1f).

Regression lines for the species–area relationship in the two hemispheres did not differ
for the slope (F2,137 = 1.510, p = 0.221), but were significantly different for the intercept
(F1,138 = 12.600, p = 0.0005). Regression lines for the diversity-latitude relationship in the
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two hemispheres did not differ neither for the slope (F2,137 = 3.005, p = 0.085) nor for the
intercept (F1,138 = 3.187, p = 0.076).

When analysed separately, mainland countries showed a significant increase in species
richness with country area at the global level (Table 2, Figure 2a), with a coefficient of
determination slightly higher than that found when mainland and island countries were
considered together. Regression lines for the species–area relationship in mainland and
island countries did not differ for the slope (F2,137 = 1.361, p = 0.085), but were significantly
different for the intercepts (F1,138 = 8.871, p = 0.003).

Table 2. Earwig species–area relationships and latitudinal diversity gradients for world mainland
countries. Species–area relationships were modelled using the linearized version of the power
function: log(S) = z log(A) + log(c), where S is the recorded species richness at country level, A
is country area, and z and c are estimated parameters. Latitudinal gradients were modelled with
regressing residuals from the species–area relationships (SAR residuals) against country latitude with
a second-order polynomial regression for the whole dataset and with linear regressions for the two
hemispheres separately. r2 = coefficient of determination; F = Fisher’s F; p = probability.

Model Equation r2 F p

World species-area relationship y = −0.409 + 0.281x 0.166 21.916 8.18 × 10−6

World latitudinal gradient y = 0.152 − 0.0001x2 − 0.002x 0.114 6.988 0.0014
North Hemisphere species-area relationship y = −0.097 + 0.216x 0.109 10.925 0.0014

North Hemisphere latitudinal gradient y = 0.253 − 0.008x 0.106 10.607 0.0016
South Hemisphere species-area relationship y = −1.754 + 0.548x 0.456 15.956 0.0008

South Hemisphere latitudinal gradient y = 0.362 + 0.021x 0.411 13.282 0.0017

The latitudinal gradient in species diversity followed a hump-shaped pattern, with
a coefficient of determination for a quadratic model slightly lower than that obtained for
mainland and island countries considered together (Table 2, Figure 2b).

Species richness increased significantly with area in both hemispheres (Table 2,
Figure 2c,e), and the coefficients of determinations were higher than those obtained when
mainland and island countries were considered together. Regression lines for the species-
area relationship in mainland and island countries in the Northern Hemisphere did not
differ for the slope (F2,109 = 2.242, p = 0.137) nor for the intercept (F1,110 = 1.587, p = 0.214).
Regression lines for the species–area relationship in mainland and island countries in
the Southern Hemisphere differed marginally for the slope (F2,24 = 4.184, p = 0.052) and
significantly for the intercept (F1,25 = 11.590, p = 0.002).

For both the Northern and Southern Hemispheres, values of species diversity in-
creased linearly towards the equator (Northern Hemisphere: AICc for a quadratic model:
22.732; AICc for a linear model: 20.717; ∆AIC = 2.015; Southern Hemisphere: AICc
for a quadratic model: 8.838; AICc for a linear model: 6.298; ∆AICc = 2.539) (Table 2,
Figure 2d,f). For the Northern Hemisphere, the coefficient of determination was lower than
that observed when mainland and island countries were considered together. In contrast,
for the Southern Hemisphere, the fit was superior to that obtained for mainland and island
countries taken together. Regression lines for the diversity–latitude relationship in the two
hemispheres did not differ neither for the slope (F2,108 = 2.307, p = 0.132) nor for the intercept
(F1,109 = 1.430, p = 0.234).
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Figure 2. Earwig species–area relationships and latitudinal diversity gradients for world mainland
countries. Species–area relationships were modelled using the linearized version of the power
function: log(S) = z log(A) + log(c), where S is the recorded species richness at country level, A is
country area (km2), and z and c are estimated parameters. Latitudinal gradients were modelled with
regressing residuals from the species–area relationships (SAR residuals) against country latitude
with a second-order polynomial regression for the whole dataset and with linear regressions for
the two hemispheres separately. (a) Global species–area relationship; (b) global latitudinal gradient;
(c) species–area relationship for the Northern Hemisphere; (d) latitudinal gradient for the Northern
Hemisphere; (e) species–area relationship for the Southern Hemisphere; (f) latitudinal gradient for
the Southern Hemisphere. Regression equations are given in Table 2.

Island countries showed a significant increase in species richness with country area at
a global level (Table 3, Figure 3a), with a coefficient of determination slightly higher that
that found when mainland and island countries were considered together. The latitudinal
gradient of species diversity followed a hump-shaped pattern (Table 3, Figure 3b), with
a coefficient of determination substantially higher than that obtained for mainland and
island countries considered together.
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Table 3. Earwig species–area relationships and latitudinal diversity gradients for world island
countries. Species–area relationships were modelled using the linearized version of the power
function: log(S) = z log(A) + log(c), where S is the recorded species richness at country level, A
is country area, and z and c are estimated parameters. Latitudinal gradients were modelled with
regressing residuals from the species–area relationships (SAR residuals) against country latitude with
a second-order polynomial regression for the whole dataset and with linear regressions for the two
hemispheres separately. r2 = coefficient of determination; F = Fisher’s F; p = probability.

Model Equation r2 F p

World species-area relationship y = 0.451 + 0.172x 0.157 5.022 0.0335
World latitudinal gradient y = 0.285 − 0.0002x2 − 0.007x 0.669 26.230 5.81 × 10−7

North Hemisphere species-area relationship y = 0.867 + 0.043x 0.009 0.179 0.3230
North Hemisphere latitudinal gradient y = 0.403 − 0.016x 0.400 13.332 0.0016

South Hemisphere species-area relationship y = 0.533 + 0.240x 0.831 24.630 0.0040
South Hemisphere latitudinal gradient y = 0.210 + 0.018x 0.629 8.470 0.0334Diversity 2022, 14, x FOR PEER REVIEW 8 of 18 
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Figure 3. Earwig species–area relationships and latitudinal diversity gradients for world island
countries. Species–area relationships were modelled using the linearized version of the power
function: log(S) = z log(A) + log(c), where S is the recorded species richness at country level, A is
country area (km2), and z and c are estimated parameters. Latitudinal gradients were modelled
regressing residuals from the species–area relationships (SAR residuals) against country latitude
with a second-order polynomial regression for the whole dataset and with linear regressions for
the two hemispheres separately. (a) Global species–area relationship; (b) global latitudinal gradient;
(c) species–area relationship for the Northern Hemisphere; (d) latitudinal gradient for the Northern
Hemisphere; (e) species–area relationship for the Southern Hemisphere; (f) latitudinal gradient for
the Southern Hemisphere. Regression equations are given in Table 3.
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Species richness increased significantly with area in the Southern Hemisphere, with a
relatively high coefficient of determination, whereas the relationship was not significant for
the Northern Hemisphere, a possible consequence of the small number of islands included
(Table 3, Figure 3c,e).

For the Northern Hemisphere, values of species diversity decreased linearly poleward
(AICc for a quadratic model: 8.696; AICc for a linear model: 6.986; ∆AICc = 1.710) (Table 3,
Figure 3d). For the Southern Hemisphere diversity increased linearly towards the equator
(AICc for a quadratic model: 14.060; AICc for a linear model: 7.084; ∆AICc = 6.977) (Table 3,
Figure 3f), but the significance of the relationship did not resist the Bonferroni adjustment.
Regression lines for the diversity–latitude relationships in the two hemispheres did not
differ, neither for the slope (F2,25 = 0918, p = 0.347) nor for the intercept (F1,26 = 0.086,
p = 0.771).

At a global level, temperature was linearly correlated with earwig area–corrected diver-
sity (AICc for a quadratic model: 34.841; AICc for a linear model: 33.503;
∆AICc = 1.338), although the proportion of explained variance was low (r2 for a quadratic
model: 0.120; r2 for a linear model: 0.097) (Figure S3, Table S2). Precipitation was a better
linear predictor (AICc for a quadratic model: 29.438; AICc for a linear model: 28.813;
∆AICc = 0.625; r2 for a quadratic model: 0.286; r2 for a linear model: 0.241) (Figure S4, Table
S2). Precipitation positively influenced values of area-corrected diversity for mainland
countries both at a global level and for the two hemispheres taken separately (Figure S4,
Table S2). For the island countries, however, positive relationships between precipitation
and diversity at a global level and for the Northern Hemisphere did not resist the Bonfer-
roni correction, and no relationship was apparent for the Southern Hemisphere (Figure S4,
Table S2).

4. Discussion

Area is typically one of the most important factors explaining variations in species rich-
ness, and the species–area relationship is considered one of the most ubiquitous ecological
patterns [94–98]. In the present study, at a global level, island and mainland species–area
relationships did not differ significantly in their slopes; however, island species richness per
unit area (c-values) appeared to be higher than that on the mainlands. This contrasts with
expected lower species richness per unit area on islands [5,106–111] and suggests that ear-
wigs have either relatively low extinction or high immigration/speciation rates on islands,
which counterbalance island isolation. Moreover, as many earwig species are hygrophilous,
island faunas may be richer than expected because islands benefit from the presence of a
humid (oceanic) climate. In the case of small islands, earwig faunas might have also been
largely influenced by recent introduction. However, it is important to note that most of the
islands included in this study were in fact very large. Even excluding Australia, the area of
the island countries considered in this study varied between 200 km2 and 2,166,086 km2

(median value: 25,724 km2). At this scale, we can expect that isolation promoted within-
island radiation. Additionally, most of the islands considered in this study originated
through ancient processes of land fragmentation and their fauna might be substantially
relictual, and therefore poorly influenced by current immigration/extinction dynamics,
as postulated by equilibrium models which assume lower richness on islands [112]. This
situation is exacerbated in the Southern Hemisphere, where island species richness per unit
area appears to be much higher than that on the mainland; this result, however, should be
considered with caution, since the slope is also different (higher in mainland areas), and
intercepts can be properly compared only when slopes do not differ. The higher slope of
mainland areas may also be unexpected, as the slope of the species–area relationship is
usually higher in isolated systems [106,113]. However, this result is in accordance with the
highest z-values assumed for interprovincial species–area relationships [113].

When mainland and island countries were considered together, the species–area rela-
tionships of the two hemispheres did not differ significantly for the slope, but the Northern
Hemisphere had a much higher intercept (i.e., more species per area unit; however, this



Diversity 2022, 14, 890 9 of 17

result should be considered with caution, given the low percentage of variance explained
by the model). Both the global species–area relationship, and those for the two hemispheres
separately, explained low proportions of variation in species richness (10% of explained
variance for the global species–area relationship, 0.6% for the Northern Hemisphere, and
26% for the Southern Hemisphere, respectively). When mainlands and islands were anal-
ysed separately, the area explained 17% and 16% of variation in species richness of the
mainland and island faunas, respectively.

The species–area relationship in the Southern Hemisphere indicated that area was an
important descriptor of species richness here, especially in the island countries (about 83%
of explained variance for islands, and 46% for mainlands, respectively). In the Northern
Hemisphere, neither the slope nor the intercept differed between mainland and island
countries, and in both cases country area was a week predictor of richness (about 1%
of explained variance for islands, and 11% for mainlands, respectively). In general, the
coefficients of determination of the species–area relationships found in this study show
that the explanatory power of area as a predictor of species richness is variable, ranging
from less than 1% to more than 83%, with an average of about 24%. This means that the
ability of area of predicting richness varies from weak to very strong.

It is not unusual that area alone is a weak or moderate correlate of species richness
in macroecological studies. For example, the proportion of variance in species richness
explained by area was 0.2–2.5% for liverworts, mosses, and woody plants in Chinese
provinces [37]; 41% for collembolans in European mainland countries, 44% in island
countries, and 61% for both types merged [64]; 3% for European tenebrionids [67]; 11%
for European cerambycids [63]; 23% for butterflies of northern and eastern European
countries [114]; and 40% for European clearwing [65].

These results indicate that other factors in addition to area might have more im-
portance in generating large-scale patterns of species diversity. The most obvious geo-
graphical variable that may be responsible for global variations in earwig species richness
is latitude, as it explains large-scale variation in species richness in the most disparate
organisms [1–52,55–82].

Values of earwig species richness recorded at country level [86,89] are suggestive of
a latitudinal pattern. The analyses presented in this paper clearly support that earwig
diversity follows the global latitudinal gradient, peaking in the tropical zone. The amount
of variation in area–corrected values of richness explained by latitude ranged from about
11% to 83%. This variability, from relatively low/moderate to high proportions of explained
variance, is common in macroecological studies in which latitude is considered as the only
correlate of diversity. For example, the proportion of variance in species diversity explained
by latitude was 15–18% in marine bacteria [14] and 0.09–30% in diatoms [15] at the global
scale; 8% in the non–native species and 30% in the native species of climbing plants of
Michigan [36]; 20% in helminth parasites of North America [23]; 4–67% in European
collembolans [64]; 56% in New World grasshoppers [56]; 42% in European carabids [62];
34% in European cerambycids [63]; 30–40% in European clearwing moths [65]; 6% in New
World swallowtail butterflies [115]; 1.5–12% in North American butterflies [58]; 3% in
Australian butterflies [57]; 48–70% in galling insects [69]; and 16–45% in the New World
nonvolant mammals [40] (note that these studies used different statistical approaches,
such as ordinary least squares and generalized linear models, and linear or polynomial
regressions, with quadratic and even cubic terms). As a measure of geographical position,
I have used country centroids. In the case of small countries, centroids provide a rather
accurate description of their latitudinal position. However, in the case of countries with a
wide latitudinal extent, the use of centroids could produce some bias: most species recorded
in a given country are obviously not evenly distributed throughout its entire territory, but
might be concentrated in the south. This inaccuracy may contribute to the relatively low
values of explained variance.

When the analysis was conducted at the global level and without distinction between
mainland and island countries, the highest area-corrected values of earwig diversity were
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recorded in India and Indonesia. Other countries that ranked high (first 10%) were (in
decreasing order of diversity values): the Philippines, Costa Rica, the Democratic Republic
of the Congo, Tanzania, Papua New Guinea, Brazil, Brunei, Taiwan, Cameroon, and
Panama. Thus, the highest diversity values were concentrated between the tropics, with
the exception of China, which appeared as an extra-tropical hotspot of earwig diversity.
Separate analyses for the two hemispheres indicated that the latitudinal gradient followed
a very similar pattern, with no significant difference in the slopes and intercepts of the
regression lines.

When the analysis was restricted to the mainland countries, a hump-shaped pattern
was recovered again, with India showing the highest diversity. The other countries included
in the first 10% were: Costa Rica, Panama, China, Bhutan, Tanzania, Cameroon, the
Democratic Republic of the Congo, Nepal, and Myanmar. Again, diversity appears to be
concentrated in inter-tropical latitudes, with the notable exceptions being China, Bhutan,
and Nepal. Separate analyses for the two hemispheres indicated that, also in this case,
the latitudinal gradient was very similar, with no significant difference in the slopes and
intercepts of the regression lines.

A hump-shaped pattern was also found for the island countries, with high values of
diversity around the equator. The highest diversity was recorded in Indonesia, followed by
the Philippines and Brunei (which constitute the first 10%). Interestingly, with the exception
of Japan (which has slightly positive residual and is in the temperate region), all countries
with positive residuals are between the tropics.

When analysed separately, both hemispheres showed a clear decrease in diversity
from the equator to the poles, but results for the Southern Hemisphere were weaker because
of the smaller number of involved countries. However, also in this case, the latitudinal
gradients in the two hemispheres were very similar, with no significant difference in the
slopes and intercepts of the regression lines.

Overall, these results point to the identification of the following main centres of earwig
diversification: (1) tropical South America, with diversity decreasing towards temperate
South America and Central and North America; (2) tropical Africa, with decreasing diver-
sity in temperate areas; (3) tropical Asia; and (4) subtropical Asia approximatively below
40◦ N.

Of course, organisms do not respond to latitude per se, but to different current en-
vironmental conditions found at different latitudes, or as a consequence of past events
that varied with latitude (such as the incidence of glaciations). Several causal hypotheses
have been proposed to explain the latitudinal gradient [1,3,5,6,8,11]. The most general ones
include as causal factors:

(1) Time: as tropics were not severely affected by glaciations, they were occupied for
longer periods, providing more time for cladogenesis;

(2) Environmental heterogeneity: tropical areas have greater environmental heterogeneity
that increases the probability of species coexistence through niche differentiation;

(3) Competition: while temperate populations may be more controlled by abiotic factors
(seasonality), tropical populations are more regulated by biotic interactions, such as
competition, which increases species diversity through specialization;

(4) Predation: tropics have more predators that maintain prey species at low densities,
thus decreasing competition among prey species and hence increasing the coexistence
of prey species (this hypothesis suggests a mechanism exactly opposite to that of the
competition hypothesis);

(5) Productivity: tropics support more species because more resources are available,
allowing for more specialization;

(6) Environmental (climatic) stability: severe and/or unpredictable climates tend to have
lower habitat diversity, whereas stable climates tend to present higher habitat diversity,
which, in turn, promotes species diversity (as in the environmental heterogeneity
hypothesis).
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These explanations are not necessarily alternative, but some may act in concert and
can be integrated with other plausible mechanisms to formulate even more compressive
hypotheses. For example, according to the tropical conservatism hypothesis [116], current
high tropical diversity might result from: (i) tropical origin of many lineages, as tropical
regions had a greater geographical extent until relatively recently (less than 40 million
years ago, when temperate zones increased in size), (ii) longer time for cladogenesis in
tropical environments, thanks to their environmental stability, and (iii) the limited ability
of organisms from historically tropical lineages to adapt to temperate climates and then to
dispersal poleward.

On the basis of earwig biology [86], competition, predation and productivity can be
hardly considered major drivers for the latitudinal diversity pattern in these insects. Most
earwigs are omnivores or at least generalists (a few species are epizoic commensals), which
can occupy very different biotopes, so it is difficult to speculate that competition for food
or space may be a major driver promoting speciation. For the same reasons, productivity
can be hardly evoked as an important factor for the latitudinal gradient. At the global level,
earwig diversity was very weakly correlated with temperature, which suggests that avail-
able energy is not a major factor for the latitudinal patterns of diversity of earwigs, despite
their preference for warm climates. Consistent with their preference for humid climates,
earwig diversity was positively influenced by precipitation. However, precipitation was
uncorrelated with latitude, and thus the relationship between diversity and precipitation
cannot be evoked as a major explanation for the latitudinal pattern. Earwigs are preyed
on by many animals (such as centipedes, beetles, assassin bugs, spiders, toads, lizards,
snakes, birds, insectivorous mammals and bats) which, however, do not specialize on them;
therefore, it is difficult to speculate that predation may be a strong explanation for earwig
diversification in the tropics. Because of their generalism in biotope occupancy, it is difficult
to associate the higher diversity of earwigs in the tropics with environmental heterogeneity.
Thus, historical reasons seem to offer the most decent explanations to the observed patterns.
In particular, the historical biogeography of earwigs, and their ecological preferences for
warm/hot and humid climates, support the tropical conservatism hypothesis as the most
reasonable explanation for the observed latitudinal patterns.

According to Popham and Manly [117] and Popham [118] earwigs evolved on Gond-
wana (the supercontinent that grouped most of the land masses in today’s southern hemi-
sphere, including Antarctica, South America, Africa and Madagascar), and secondarily
colonized the northern hemisphere. The earwig distribution after Gondwana fragmenta-
tion occurred in the Jurassic has been largely affected by climatic conditions, which have
largely hampered the colonization of the Northern Hemisphere which was (and is) not very
suitable to insects such as earwigs, since these insects are associated with warm/hot and
humid climates, with low capability to adapt to temperate/cold climates. The Himalayan
orogenesis also created a barrier that largely prevented earwig dispersion into the Palearc-
tic region, which may explain the low diversity values recorded in most countries in this
biogeographical realm. The Palearctic region, however, shows two main centres of differen-
tiation: one corresponding to Eastern Asia between the Tropic of Cancer and 40◦ N, and the
other in the Mediterranean Basin, with the Iberian, Italian and Balkan peninsulas showing
relatively high diversity. These two areas correspond to the two centres of earwig diversity
already recognized almost a century ago by Bey–Bienko [119]: one in an eastern Asian
region including the Ussuri basin, Northern China, Japan, Korea, Manchuria and Tibet
(and thus corresponding to the “paleoarchearctic” region of Semenov Tian–Shanskij [120]),
and the other in the Mediterranean Basin. Actually, the presence of a diversity centre
in Eastern Asia, south of the Himalayas, supports the idea that earwig dispersion was
blocked northwards by the Himalayan orogenesis, but permitted through the deep river
valleys of Southeast Asia, allowing earwigs to invade (and differentiate in) Tibet, China and
Japan [118]). The high diversity of earwigs in the Mediterranean, and specifically in South
European countries, can be explained by their role as refugial centres during Pleistocene
glaciations [121–126]. In the future, it would be interesting to test this inferred scenario
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through phylogeographic analyses based on molecular data, which are, however, still rare
for earwigs [127].

5. Conclusions

A global analysis of earwig species richness recorded at the country level clearly
indicates the existence of a latitudinal gradient, in which diversity decreases, in both
hemispheres, from the equator to the poles. The most plausible explanation for this pattern
is the so-called tropical conservatism hypothesis, which postulates a current high tropical
diversity as a result of (i) tropical origins of many extant clades, (ii) a longer time for
cladogenesis in tropical environments thanks to their environmental stability, and (iii)
the limited ability of organisms from historically tropical lineages to adapt to temperate
climate. The expansion of temperate/cold habitats in the past 40 million years, as well
as mountain uplifts and, more recently, the retreat of high-latitude glaciations, have all
contributed to the latitudinal distribution of earwig diversity. Historical reconstructions
of earwig biogeography suggest that earwigs evolved on Gondwana and secondarily
colonized the Northern Hemisphere. However, this colonization was hampered by both
geographical and climatic factors. The Himalayan orogenesis obstructed earwig dispersal
into the Palearctic region. Additionally, earwig preferences for warm and humid climates
hampered these insects from adapting to temperate and cold climates, which largely
prevented the colonization of temperate regions. Pleistocene glaciations further contributed
to reducing earwig diversity at northern latitudes.

An important limit of the research presented in this paper is that it is entirely based
on current distributional patterns, which may have been affected by rapid long-distance
dispersal events, and hence do not necessarily reflect historical factors. There are some
earwig species that have great dispersal capabilities and have become widely distributed.
For example, Labidura riparia (Pallas, 1773), which is mainly associated with costal sandy
shores, is prone to be dispersed with drifting materials. A few species have attained wide
distributions thanks to human transportation. For example, Forficula auricularia Linnaeus,
1758, which lives near or in human settlements, was imported into North America between
the 19th and 20th century [128]. Labia minor (Linnaeus, 1758), which lives in dung heaps
from horses and cows, possibly extended its distribution from Asia around the globe via
horses and cows [86]. Chelisoches morio (Fabricius, 1775) and Euborellia annulipes (Lucas,
1847) are other species that attained cosmopolitan distributions. However, these widely
distributed species are a minority of cases. Earwigs are not synanthropic, and possibly
because of a lack of flight activity, most species have a weak tendency to extend their ranges.
This is shown, for example, by the high incidence of regional endemism [86,127]. High
endemicity in these insects suggests that their distributions convey robust historical signals,
although long-distance dispersal may act as an important confounding factor, and great
care must be placed in inferring historical scenarios from current distributions alone.

Because the areas (countries) considered in this study had different sizes, residuals
from species–area relationships fitted with the power function were used as area-corrected
values of richness to investigate latitudinal patterns. The use of different functions to fit
the species–area relationship would obviously produce different sets of residuals. Thus,
results will change according to the function(s) used to fit the species–area relationship.
In this paper, the linearized version of the power function was used to fit the species–
area relationship in all cases as this model typically provides the best fit and it is easy to
interpret [94–96]. However, it would be useful in the future to explore the effect of using
other competitive models.

In this study, I did not consider topographical factors (such as elevation and distance
to the coast), climatic factors, or other environmental variables (vegetation setting) which
may have important confounding effects on the latitudinal gradients. For instance, since
earwigs are mainly hygrophilous insects, countries with a dry continental climate may
have less earwig species than those with a humid climate situated at the same latitudes.
This may explain, for example, the very small number of species found in Mongolia (a
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country dominated by extreme continental climatic conditions), despite the large size of
this country.

The historical scenarios inferred in this paper from the observed patterns and earwig
biology might serve as working hypothesis for future research incorporating phylogenetic
information from molecular data, fine-grained distributional data, and environmental
variables.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/d14100890/s1: Table S1: Longitude, latitude, area, av-
erage temperature, average precipitation and number of earwig species for countries classified as
mainlands or islands. Table S2: Latitudinal patterns of variation of average annual temperature and
precipitation (second-order polynomial regressions), and relationships between earwig diversity
(residuals from the species–area relationships; Tables 1–3) and precipitation (linear regressions).
Figure S1: Global pattern of earwig species richness by country. Figure S2: Latitudinal patterns of
variation in average annual temperature (a) and precipitation (b) by country. Regression equations are
given in Table S2. Figure S3: Relationship between earwig diversity and average annual temperature
at global level. Regression equation is given in Table S2. Figure S4: Relationships between earwig
diversity and precipitation. Regression equations are given in Table S2.
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