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Abstract: Ecological communities change because of both natural and human factors. Distinguishing
between the two is critical to ecology and conservation science. One of the most common approaches
for modelling species composition changes is calculating beta diversity indices and then relating
index changes to environmental changes. The main difficulty with these analyses is that beta
diversity indices are paired comparisons, which means indices calculated with the same community
are not independent. Mantel tests and generalised dissimilarity modelling (GDM) are two of the
most commonly used statistical procedures for analysing such data, employing randomisation tests
to consider the data’s dependence. Here, we introduce a Bayesian model-based approach called
BetaBayes that explicitly incorporates the data dependence. This approach is based on the Bradley–
Terry model, which is a widely used approach for modelling paired comparisons that involves
building a standard regression model containing two varying intercepts, one for each community
involved in the beta diversity index, that capture their respective contributions. We used BetaBayes
to analyse a famous dataset collected in Panama that contains information on multiple 1 ha plots
from the rain forests of Panama. We calculated the Bray–Curtis index between all pairs of plots,
analysed the relationship between the index and two covariates (geographic distance and elevation),
and compared the results of BetaBayes with those from the Mantel test and GDM. BetaBayes has
two distinctive features. The first is its flexibility, which allows the user to quickly change it to fit
the data structure; namely, by adding varying effects, incorporating spatial autocorrelation, and
modelling complex nonlinear relationships. The second is that it provides a clear path for performing
model validation and model improvement. BetaBayes avoids hypothesis testing, instead focusing on
recreating the data generating process and quantifying all the model configurations that are consistent
with the observed data.

Keywords: beta diversity; community similarity; pairwise comparisons; Bradley–Terry models; Panama

1. Introduction

Ecological communities change over time and across space because of natural phe-
nomena and human disturbances [1,2]. Distinguishing between the two is critical to both
ecology and conservation science [3,4]. There are three main modelling approaches for
tackling such questions [5,6]. The first strategy is called “assemble first and predict later”
and involves assembling biological survey data; processing them using classification, ordi-
nation, or aggregation techniques to create community-level metrics (e.g., species richness
indices, species abundance distributions, community types); and then modelling these
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metrics as a function of environmental predictors. The second strategy is called “pre-
dict first and assemble later” and involves modelling single species using, for example,
single-species distribution models (SDMs) [7], and then stacking these models to produce
community-level predictions. The third strategy is called “assemble and predict together”
and involves modelling all species at the same time within a single integrated modelling
process. This approach includes multi-species extensions of SDMs, community occupancy
models [8], and models of compositional dissimilarity [9]. Each of these strategies is
suited to answering a specific set of ecological questions and dealing with specific types
of data. For a review on the advantages and limitations of each of these strategies, see the
studies [6,10,11].

Models of compositional dissimilarity are popular tools for analysing the factors as-
sociated with community composition changes over time and across space. For instance,
between 2007 and 2021, the cumulative number of published papers that used the words
“generalised dissimilarity model” grew rapidly [12]. Such analyses typically involve calcu-
lating beta diversity indices between multiple pairs of ecological communities and then
modelling those indices against changes in environmental factors or disturbances [13]. The
problem is that beta diversity indices calculated with the same community are not indepen-
dent. If we calculate indices for three communities, A, B and C, the index corresponding
to communities A and B is not independent of the index corresponding to communities B
and C because they both share community B. If we do not consider this dependence, we
will obtain biased effect estimates. The two most commonly used methods for analysing
community composition changes that account for the dependence between indices are
Mantel tests [14] and generalised dissimilarity modelling (GDM) [9].

2. Methods for Modelling Changes in Community Similarity and Dissimilarity
2.1. Mantel Test

The Mantel test is one the most popular statistical techniques for analysing changes
in community similarity and dissimilarity [14]. It examines the relationship between two
distance matrices: a distance matrix of beta diversity indices and a matrix of covariate
values. The test is based on the Mantel statistic, which is given by the sum of the products
of the corresponding elements of the matrices:

m =
n−1

∑
i=1

n

∑
j=i+1

DXij DYij

Typically, this sum is rescaled to between −1 and 1 to provide a quantification of the
pairwise correlation between elements from both matrices. If all of the elements in the two
matrices are strongly correlated, then the rescaled sum will be close to 1, and if they are
negatively correlated, then the rescaled sum will be close to −1. When the elements are
uncorrelated, the individual summands will tend to cancel, leaving a total sum near zero.

The null hypothesis of the Mantel test is that “the distances among objects in matrix
Y are not (linearly or monotonically) related to the corresponding distances in the matrix
X” [15]. As the individual elements in each matrix are not independent, calculating the
significance is not trivial. The Mantel test uses a permutation test that evaluates the
ensemble of statistics while randomly permuting the order of the elements within one of
the input matrices. When the number of observations is high (n > 40), it is possible to
transform the Mantel statistic into an approximate t-statistic and then apply an asymptotic
approximation of the t-test [15].

The partial Mantel test is an extension of the original Mantel test, where a third matrix
is held constant while the relationship between the other two is determined [15]. This test
is performed by regressing the first two matrices’ elements onto the third matrix and using
the residuals from the regressions as the input for the standard Mantel test [16]. Some
studies have found that, when the data are spatially structured, both the Mantel test and the
partial Mantel produce a considerable excess of small p-values; that is, they reject the null
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hypothesis of independence more often than they should and produce a higher number of
false-positive results [17–19].

2.2. Generalised Dissimilarity Modelling

Generalised dissimilarity modelling (GDM) is an alternative to Mantel tests, the main
advantage of which is that it considers two critical nonlinearities often found in pairwise
dissimilarities [14,15]. First, beta diversity index measures are often constrained between
0 and 1 and, therefore, saturate at a maximum value of 1 once pairs of assemblages are
entirely different. Therefore, the additional environmental distance between sites cannot
increase dissimilarity beyond a value of 1. Second, change in assemblage composition
can occur more rapidly at some points along environmental gradients than others [14–16].
GDM is a regression-based approach that models community dissimilarity between all
pairs of communities as a function of environmental distances [14,15]. GDM uses a negative
exponential link function that ensures expected dissimilarities (dij) increase and saturates
with increased transformed environmental distances between sites (ηij).

dij = 1 − exp
(
ηij
)

The predicted ecological distance ηij is calculated as the sum across all predictor
variables of the absolute differences in the model-transformed predictor values fp(xp)
between sites i and j in a pair [15]:

ηij = b +
n

∑
i=1

fp
(
xpi
)
− fp

(
xpj
)

where b is the x-intercept added to consider the baseline dissimilarity; that is, the similarity
between sites with zero environmental distances. To transform each predictor variable,
GDM uses a linear combination of I-spline basis functions [20], fit using non-negative
least squares regression. Therefore, each predictor’s overall spline function fp(xp) is rel-
atively flexible but constrained to increase monotonically. This constraint underlies a
fundamental assumption of GDM that dissimilarity can grow only as sites become more
different in terms of predictor variables. The non-independence of dissimilarity is ad-
dressed by using permutation or Bayesian bootstrap methods to assess the importance of
the covariates [21,22].

GDM provides several tools for performing model validation, such as the graphical
comparison between the observed dissimilarity and the predicted dissimilarity and the
percentage of explained deviance. We can plot the spline functions for each predictor
variable to interpret model results. These functions convey two types of information. First,
the maximum height reached by each function indicates the total amount of compositional
turnover associated with the environmental gradient being evaluated, holding all other co-
variates constant. Spline functions that attain a higher maximum transformed value—that
is, the sum of the fitted coefficients—play a more substantial role in predicting changes in
beta diversity. Second, each function’s slope indicates the rate of compositional turnover
and how this rate changes along the environmental gradient. A greater slope in the spline
function at a given point along the environmental gradient indicates a more rapid increase
in dissimilarity [12,21].

Compared to Mantel tests, GDM has several advantages, such as incorporating the
nonlinearities found in pairwise dissimilarities and providing tools for performing model
validation. However, it does not incorporate the non-independence of dissimilarity indices
in the model, relying instead on a posteriori permutation tests performed on the covariates.

3. BetaBayes
3.1. General Overview

Here, we introduce a Bayesian approach for modelling changes in community sim-
ilarity that explicitly includes the dependence between observations instead of relying
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on permutation tests. This approach first requires modelling the measurement process
that results in paired comparisons and then quantifying which model configurations are
consistent with the observed data. To introduce our approach, we start by examining the as-
sumptions of a linear regression model. Suppose we are modelling the relationship between
a variable C and a variable S. The traditional linear regression approach assumes a linear
relationship between the expected values of S and C and that S is normally distributed. We
can write this model as follows:

S ~ Normal (µ, σ)
µ = α + βC

(1)

where µ and σ are the mean and the standard deviation of the normal distribution and α
and β are the intercept and slope of the regression. As we use Bayesian methods, we need
to introduce prior distributions for the parameters, which could be, for example:

σ ~ Exponential (1)
α ~ Normal (0, 1)
β ~ Normal (0, 1)
A fundamental assumption of this model is that, once the covariate C has been fixed,

the observed values of S are independent. In other words, the residuals corresponding
to any two observations have to be independent. However, this assumption is invalid
if the observed S values arise from paired comparisons. When we compare multiple
ecological communities using beta diversity indices, index values calculated using the same
community are not independent. Therefore, we need to change the model to accommodate
this dependence and incorporate the contribution from each ecological community to the
corresponding beta diversity indices.

Consider a set of symmetric beta diversity indices [23] Sij calculated between n com-
munities, where i and j denote two different communities and run from 1 to n. The
combinations i = j are excluded, meaning no community is compared to itself. In order to
capture the dependence between indices that share the same ecological community, we can
add terms to the model that represent the contribution from each community to the beta
diversity indices, αs[i, j], resulting in a model such as µ = α0 + αs[i, j] + βC. The term αs[i, j]
could, in principle, take several forms, but we need to impose two restrictions. First, we
need to ensure that the order in which the communities appear in the beta diversity indices
does not matter (i.e., symmetry of contributions). In other words, each community should
have the same contribution to the beta diversity index, regardless of whether it is coded as
the first sample i or as the second sample j; that is, αsi,j = αsj,i. Second, we need to assume
that the contributions from individual communities are independent. We can meet both
these restrictions by choosing the following formulation: αsi,j = αs,i + αs,j. The parameter αs
is a varying intercept that takes the same value whenever the corresponding community is
used in the beta diversity index. By adding two αs parameters, one for community i and
another for community j, we ensure the communities’ contributions are symmetric and
independent.

The corresponding model is then:
Sij ~ Normal (µij, σ)
µij = α + αs,i + αs,j + βC
α ~ Normal (0, 1)
σ ~ Exponential (1)
αs ~ Normal (0, σs)
β ~ Normal (0, 1)
Notice that the prior for αs is a function of the hyperparameter σs. This is a regularizing

prior meant to prevent overfitting that learns the amount of regularization from the data
itself [20]. Non-Bayesian methods call this procedure “penalized likelihood”.

BetaBayes is based on the Bradley–Terry (BT) model, which is a widely used proba-
bility model for predicting the outcome of paired comparisons [24,25]. The BT model is
commonly used to predict the results from sports matches, such as baseball [26], tennis,
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and [27] basketball [28]; to rank search results based on relevance [29,30]; and to rank
the perspectives and indicators of balance scorecards when multiple decision-makers are
involved [31].

The BT model, as in BetaBayes, uses two varying intercepts to consider the pairwise
dependence among comparisons involving the same entity. Suppose we have N teams
competing against each other and the model assigns team i a score pi, which is proportional
to the team’s “power”. Given two teams, i and j, the model asserts that:

Prob(i beats j) =
pi

pi + pj

where pi and pj are positive real-valued scores assigned to teams i and j. If we parameterize
the scores by pi = exp(αi), the above model is equivalent to:

logit(Prob(i beats j)) = log

(
pi

pi + pj
/

pj

pi + pj

)
= log

(
pi
pj

)
= log pi − log pj = αi − αj

The final result, αi − αj, is similar to BetaBayes’ formula, the critical difference being
the minus sign. In BetaBayes, we replaced the minus sign with the plus sign because it
leads to higher inferential performance.

Both the BT model and BetaBayes can easily accommodate covariates that affect the
outcome of the paired comparisons. For instance, in football matches, we know there is a
home field advantage effect that causes teams playing at home to be more likely to score
goals than the away team [32]. We can account for this effect by adding a varying intercept
h that takes the value “1” when team i plays at home and “0” when it plays away. We can
write the model as follows:

logit(Prob(i beats j)) = h + αi − αj

3.2. Prior Predictive Checking

Prior to fitting a Bayesian model, we need to select prior distributions for the parame-
ters we are going to estimate and ensure they are compatible with our domain expertise. We
can do this by simulating data from the prior model and then checking for any behaviours
that conflict with our expertise [33,34]. In the case of a model whose response variable is a
set of beta diversity indices, the prior model should generate sensible distributions of those
indices while leaving some room for more extreme situations.

3.3. Model Validation and Interpretation

Once we have constructed our model, we can introduce data and identify which
parameter behaviours are compatible with both the data and the assumptions encoded
in the model. Here, we used a Markov chain Monte Carlo method, as implemented by
Stan [35], to fit the model and identify those compatible parameter values.

After fitting the model, we had to check if Markov chains were stationary and enabled
reasonable posterior expectation value estimators. To that effect, we had to perform both
qualitative and quantitative diagnostics. In addition to spot-checking trace plots, we had
to check that the split potential scale reduction factor (Rhat) was consistent with 1 for all
functions of interest and verify that there were no divergent transitions or Markov chains
that saturated the maximum tree depth.

We can validate that the model fits the data by comparing the observed distribution
of beta diversity indices against the corresponding posterior distribution and checking
for deviations between the two. Specifically, we can plot the observed indices against the
posterior distribution and check that they form an approximately straight line with slope 1.
We can also plot the differences between the posterior distribution of the indices and the
observed indices (i.e., calculate error distributions) and plot them against the covariates
and the community indices (αs). If the model fits the data well, then we expect to see
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straight lines; that is, lines with a slope of approximately 0 (see Supplementary Material
S1—Section S6.4).

We interpret the results by examining the posterior distribution of the slope parameters
β. We check the position of the credibility interval concerning zero and assess the absolute
value of the parameter.

4. Comparing BetaBayes with Mantel Tests and Generalised Dissimilarity Modelling

To demonstrate the use of BetaBayes and compare its results with those from Man-
tel tests and generalised dissimilarity modelling, we chose a dataset collected by Con-
dit et al. [36] available as supplementary information on the publication’s website. The
dataset contains information on multiple 1 ha plots from rain forests in Panama, Ecuador,
and Peru, where all plants with a stem diameter higher than 10 cm were identified at the
species level. In our study, we only used data from Panama. Condit et al. [36] observed
that community similarity measured by Sorensen’s similarity index decays with distance.
Subsequent studies analysed parts of this dataset using Mantel tests and generalised dis-
similarity modelling. Chust et al. [37] worked with 53 plots from Panama and used Mantel
tests to assess the correlation between Jaccard and Steinhaus similarity indices, geographic
distance, and environmental factors, such as elevation, slope, and climate variables. They
observed that community similarity declined with increasing geographic distance and
differences in topographical and climate variables. Ferrier et al. [9] used 43 plots from
Panama to exemplify the use of GDM, having found strong positive associations between
community dissimilarity, geographic distance, and differences in elevation and precipita-
tion. For this analysis, we selected 43 plots located in Panama at least 400 m apart but no
more than 60 km (Figure 1). We calculated the Bray–Curtis indices [38] between all pairs of
plots and considered two covariates, geographic distance and elevation.
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4.1. Mantel Test

To run Mantel tests, we used the function mantel() from the R package “vegan” [39].
The results from the tests suggested there were significant positive correlations between
Bray–Curtis dissimilarity indices, geographical distance (r = 0.586, p-value = 0.001), and
differences in elevation (r = 0.355, p = 0.001) (Supplementary Material—Sections S1–S4).

4.2. Generalised Dissimilarity Modelling

We used the R package “gdm” [40] to implement the generalised dissimilarity model.
The resulting model explained 52.51% of the deviance and provided a good match between
observed and predicted compositional similarity (Figure 2B), showing that the model
fit the data well. The permutation tests returned p-values < 0.05 for both predictors,
which suggested that the model considered them both significant even after accounting
for the non-independence of Bray–Curtis indices. The spline function for geographical
distance attained the highest maximum transformed value (1.37), indicating it was the
most important predictor. The spline for elevation reached a slightly lower value (1.023),
demonstrating it was also an important predictor. Overall, the model suggested that
compositional dissimilarity grew rapidly with increasing ecological distance but then the
growth decelerated (Figure 2A).
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4.3. BetaBayes

Since Bray–Curtis indices are constrained between 0 and 1, we had to make minor
modifications to the model we presented earlier. We replaced the normal distribution with
a beta distribution, which is a continuous probability distribution defined in the interval
0 and 1. We parameterised the beta distribution by the mean (or location) µ and sample
size κ [32]. To ensure the parameter µ was bound between 0 and 1, we modelled the
logit of µ in a linear model of the covariates. We implemented BetaBayes using Stan’s
probabilistic programming language [26] in CmdStan, the software R 4.2 [33], and the R
package CmdStanR [34], which provides an R interface for CmdStan.
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The model was then:
Beta diversity indexi,j ~ Beta distribution (µij, κ)
logit (µij) = α + αs,i + αs,j + β1 * Geographical distance + β2 * Elevation difference
α ~ Normal (0, 0.3)
αs ~ Normal (0, σs)
σs ~ Exponential (1)
β1, β2 ~ Normal (0, 1)
κ ~ Half-Normal (0, 50)
We chose a weakly informative prior model that assigns a slightly higher probabil-

ity to distributions of Bray–Curtis indices centred around 0.5 but that also assigns high
probability to distributions concentrated around higher and lower values (Figure 3A).
We transformed both covariates to improve model fit, identifiability, and runtime. We
transformed geographical distance by subtracting 10 km from the observed values and
dividing the resulting value by 10 km. As for the difference in elevation, we subtracted 100
m and then divided the result by 100 m.
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The chains were stationary and well mixed with Rhat values of ~1 (Supplementary
Material S1—Section S6.4). No iterations ended with divergences or saturated the maximum
tree depth. The posterior distribution of Bray–Curtis indices closely matched the observed
distribution, except for values below 0.39, which were slightly overestimated (Figure 3B
and Supplementary Material S1). Our prior model regularized inferences of Bray–Curtis
indices towards 0.5, which can introduce an apparent bias when there are only a small
number of observations. That said, the observed bias was typically within the posterior
uncertainties and so was not practically significant. Moreover, as more data are introduced,
the likelihood function dominates the structure of the posterior distribution, and this
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prior bias weakens automatically. The posterior distributions of the slope parameters for
geographical distance and elevation do not cross zero, suggesting a strong association
between Bray–Curtis indices and these two covariates. The geographical distance slope
had the highest mean value (0.366) and a 95% credibility interval of [0.323, 0.381], which
indicated it was the strongest predictor. This meant that when geographical distances
increased from the baseline value of 10 km to 20 km, the expected logit Bray–Curtis index
could increase by approximately 0.366. The elevation slope had a mean estimate of 0.109
with a 95% credibility interval of [0.058, 0.160], indicating that when elevation difference
increased from the baseline value of 100 m to 200 m, the expected logit Bray–Curtis index
increased by 0.109.

5. BetaBayes Extensions

BetaBayes is an extremely flexible framework for modelling changes in community
similarity or dissimilarity that can easily be adapted to the particular structure of data. In
this section, we demonstrate how BetaBayes can incorporate varying effects (i.e., random
effects), spatial autocorrelation, and highly nonlinear relationships.

5.1. Varying Effects

Varying effects allow the model to account for discrete heterogeneity that is constant
over time and not correlated to the independent variables [34,41]. For example, if we
believe the relationship between beta diversity indices and covariates can change across
data clusters (i.e., regions), we can add varying intercepts αc[cluster] and varying slopes
βc[cluster] that change across data clusters.

S ~ Normal (µ, σ)
µ = α + αs,i + αs,j + αc[cluster] + β[cluster]C
α ~ Normal (10, 1)
αs ~ Normal (0, σs)
αc[cluster] ~ Normal (0, 1)
β[cluster] ~ Normal (0, 1)
αs ~ Normal (0, σs);
In a recent paper [31], we used this approach to analyse how community similarity

among riparian plant communities changes as a function of neutral and niche-based
covariates. We worked with 338 communities located in 11 river basins. We added varying
effects to the model, which allowed us to examine how the relationship between community
similarity and covariates changed across different river basins.

5.2. Spatial Autocorrelation

Communities that are closer to each other are more likely to be similar in terms
of species composition than those that are further apart [42,43]. To account for spatial
autocorrelation between beta diversity indices, we can use a spatial model, such as a
Markov random field or a Gaussian process. For example, in a Gaussian process model,
we would estimate unique intercepts for every distance value while still considering
distance as a continuous dimension in which similar distances correspond to more similar
intercepts [20]. We can formulate the model as follows:

S ~ Normal (µ, σ)
µ = α + αs,i + αs,j + βC + K[cluster]
α ~ Normal (10, 1)
αs ~ Normal (0, σs)
β ~ Normal (0, 1)
K ~ Multivariate Normal (vector (n, 0), Kij)
Kij = η2exp(−ρ2 D2

ij) + δijσ
2

η2 ~ Exponential (2)
ρ2 ~ Exponential (0.5)
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Where C is the varying intercept, which is estimated considering geographic distance.
The prior for this parameter is an n-dimensional multivariate normal distribution, where n
is equal to the number of clusters and Kij is the covariance between any pair of communities
i and j. The formula for Kij models how the covariance among communities changes
with the distances between them. In this example, we chose a formula that assumes the
covariance between communities i and j declines exponentially with the squared distance
between them. The rate of decline is determined by the parameter ρ: if it is large, then the
covariance declines more rapidly with the squared distance.

5.3. Complex Nonlinear Relationships

In the Panama dataset, we observed a moderately nonlinear relationship between
community dissimilarity and covariates that our model could accommodate. However, if
we observe complex nonlinear relationships, we have to make some changes. We can use
splines, which are smooth functions built out of smaller component functions [22]. We can
exemplify this by using basis splines (B-splines). B-splines build up wiggly functions from
simpler, less-wiggly components called basis functions. In short, B-splines divide the full
range of a predictor variable into parts, assigning a parameter to each of those parts. The
parameters are gradually switched on and off, making a wiggly curve. The model is then:

Si ~ Normal (µ, σ)
µi = α + αs,i + αs,j + w1Bi,1 + w2Bi,2
w1, w2 ~ Normal (0, 10)
α ~ Normal (0, 1)
αs ~ Normal (0, σs)
σ ~ Exponential (1)
Where Bi,n is the n-th basis function’s value on row i, and the wi parameters are the

corresponding weights for each function. The B parameters work like regular slopes,
adjusting the influence of each basis function on the mean µi.

6. Conclusions

BetaBayes is a powerful and flexible framework for modelling changes in commu-
nity dissimilarity measured by beta diversity indices that specifically incorporates the
dependence among indices. BetaBayes is based on the Bradley–Terry model, which was
developed for modelling paired comparisons and often used in sports science [44], eco-
nomics [26], and machine learning [29,45]. The Bradley–Terry model is a time-tested
approach whose robustness is supported by multiple simulation studies covering a wide
range of data-dependence scenarios [46–48].

BetaBayes has two distinctive features. The first is its flexibility. BetaBayes is not
a method but a framework that can be adapted to fit the structure of data. In Section 5,
we explained how it can accommodate varying effects and spatial autocorrelation and fit
complex nonlinear relationships. BetaBayes leverages the power and flexibility of Stan’s
probabilistic programming language, which allows the user to fit a wide range of models
without having to rely on multiple software packages. The second advantage of BetaBayes
is that it provides a clear path for performing model validation. Bayesian models are
generative, meaning that we can generate predicted data from the posterior distribution
and compare it with the observed data. This procedure makes it possible to determine
if the model captures the data’s relevant structure and to improve it if necessary. In the
presented example with the Panama dataset, we demonstrated how the user can check if
the model is consistent with the observed data.

BetaBayes avoids hypothesis testing entirely and instead focuses on collecting infor-
mation into inferences about the observed data. This approach requires first replicating the
data-generating process that generated the paired comparisons and then quantifying which
model configurations are consistent with the observed data. In particular, BetaBayes aims
to capture the uncertainty in inferences, quantifying all the model configurations consistent
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with the data and not just a select few. Although this approach requires far more work than
competing methods, its results are far more transparent and far easier to validate.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/d14100858/s1.
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