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Abstract: The persistence and resilience of marginal shallow coral reefs at their limits of environmen-
tal tolerance have declined due to chronic environmental degradation and climate change. However,
the consequences for the natural recovery ability of reefs of disturbance remain poorly understood.
This study considered the potential for natural recovery through coral recruitment on fringing reefs
across different geographic regions under contrasting environmental conditions in Puerto Rico. Reefs
in areas with significant water quality degradation and more severe physical impacts of hurricanes
were expected to have lower coral recruit density and diversity, and therefore less potential for
recovery. Sixteen reefs were assessed across three geographic regions. Degraded reefs sustained a
lower percentage of live coral cover and had higher macroalgae and turf algae abundance. Locations
affected by high PO4, NH3

+ and optical brightness concentrations, high turbidity, and high sea
surface temperature anomalies, chlorophyll-a concentration and light attenuation Kd490 evidenced
significantly lower coral recruit density and diversity. Hurricane-decimated reefs also exhibited
impoverished coral recruit assemblages. Low coral recruitment could have important long-term
implications under projected climate change and sea level rise, particularly in coastal urban habi-
tats. There is a need to implement effective environmental conservation, ecological restoration and
community participation strategies that facilitate enhanced coral recruitment success and assisted
recovery processes.

Keywords: benthic community trajectory; coral recruitment; coral reefs; disturbance; hurricanes;
recovery; water quality

1. Introduction

Coral reefs provide critical resources and ecological services of significant socio-
economic value for multiple island nations on a global scale [1–3]. Yet in recent decades,
coral reefs have been in continuous decline due to a combination of local human factors
and climate change [4–8]. They constitute habitats for multiple species, support important
subsistence fisheries and tourism [9], buffer wave energy [10], and capture carbon dioxide
(CO2) from the atmosphere, thus helping to reduce the impact of greenhouse gas emis-
sions [11]. However, changes in the frequency and severity of disturbance regimes due
to combined anthropogenic stressors and climate change are increasingly challenging the
natural capacity of coral reefs to absorb impacts and recover from disturbance [6,12,13].
Given the social and ecological importance of coral reef systems, a better understanding of
coral reef recovery dynamics following disturbance is required [14]. This is particularly
concerning in shallow urban coastal coral reef ecosystems, which are frequently impacted
by turbidity, sedimentation, and a combination of anthropogenic stressors, such as eu-
trophication, pollution, and fishing [15–17], and that are often characterized by the loss
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of critical reef builders, changes in biodiversity and productivity, and the evolution of
novel assemblages [18]. Therefore, an improved understanding of factors influencing the
success of coral recruitment is necessary. This is vital to make long-term projections of reef
health, persistence and resilience under projected climate change and sea level rise impacts
through the Anthropocene.

Coral recruitment is the process in which small coral larvae undergo settlement and
become members of the adult coral community [19]. Settlement is the transformation
between the planktonic larval stage (planulae) and the sessile benthic stage physically
attached to the reef bottom. A recruit is an already settled larva which has developed
into a sessile polyp stage and has survived and grown long enough to be detected by
the naked eye. Coral recruit abundance is usually lower than that of settlers, often due
to high post-settlement mortality, settling patterns on cryptic habitats difficult to sample,
sampling bias or methodological limitations. In addition, the timing between settling and
recruitment sampling, as well as variations in reef trophic conditions may also determine
recruitment sampling ability. Recruitment is an essential marine ecological process deter-
mining ecosystem persistence, resilience and reef framework building, providing habitat
for a myriad of species [20]. It should be noted that coral recruitment is determined not
only by larval settlement, but also by their growth and survival after settling. The more
successful coral recruitment is, the greater will be the potential for future growth and
community recovery following any disturbance [9]. However, increasing environmental
stressors, whether anthropogenic or natural, are concerning as they could have long-term
adverse effects on reef accretion rates and persistence [21]. Many anthropogenic stressors
are associated with coastal development, which in turn affects water quality [22]. Sediment
loading can block sunlight, smother corals and suffocate reefs [23–26]. It can also impair
successful coral settlement and recruitment. High dissolved nutrient concentrations can
lead to an increased incidence of coral diseases and fuel macroalgal growth that might
outcompete coral for space and prevent coral larvae from settling [27–29]. Shallow coastal
coral reefs are constantly exposed to nutrient-loaded, sediment-laden, turbid terrestrial
runoff, which can degrade coral reefs at local scales [30]. Such factors may also result in a
significant decline in dissolved oxygen concentration, which under localized hypoxic con-
ditions can be detrimental to corals and to associated fauna [31]. Further, altered nutrient
and carbon cycling may also explain the rapidly declining resilience of Caribbean reefs and
their poor ability to recover from disturbance [32]. Most of these impacts affect marginal,
shallow reef habitats adjacent to urban environments. The term “marginal” is used here in
a broad sense to describe habitats where coral reefs occur in suboptimal locations under
highly fluctuating conditions, often close to environmental thresholds for coral survival
and growth, which may include high or low temperature, salinity, nutrient and dissolved
oxygen concentration, and water transparency sensu [33,34], and which are threatened by
a wide range of local and global scale disturbances [35]. The benthic community dynamics
and natural recovery potential from disturbance on such shallow marginal habitats remain
largely unknown, although these habitats play a paramount role in protecting coastal
infrastructure and life.

Other significant stressors to shallow coral reef habitats are the impacts of global
warming, mostly as a consequence of elevated sea surface temperatures that can result
in recurrent mass coral bleaching, disease outbreaks and mortality events [7,8,36,37]. Pro-
jections of increasing recurrence and severity of coral bleaching are concerning [34,38]
and could severely impair coral reef recovery ability [13]. There is already evidence that
long-term recovery from mass coral bleaching on Caribbean reefs is severely limited due
to impacts on major reef-building species [39–42]. Mass coral bleaching and mortality
and coral disease outbreaks have had severe impacts across the wider Caribbean [43–47].
These factors can lead to concomitant adverse impacts on fish assemblages [48–55], which
may indirectly influence fishery productivity and long-term coral reef recovery through
effects of reduced herbivory and altered trophic interactions. Concentrations of pCO2 have
increased significantly, which leaves shallow reefs more vulnerable to ocean acidification
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impacts and carbonate dissolution [56]. Coral calcification rates have shown a 33% decline
across the wider Caribbean since the mid-Holocene due to ocean acidification [57]. Further,
the combined impact of surface warming and ocean acidification can lower the threshold
at which declining herbivory (due to fishing impacts) can affect coral reef resilience [58].
A further disturbing concern regarding natural reef recovery ability has to do with the
long-term effects of declining governance effectiveness and socio-political factors. It has
been shown that lower social-ecological vulnerability to coral bleaching is more common
in colonial states, in comparison to sovereign states [59], probably resulting from colonial
legacies and neo-colonial politics. Therefore, a complex combination of factors involving
local anthropogenic stressors, pressing climate change-related impacts, declining gover-
nance, and complicated neo-colonial politics may play synergic roles affecting the ability of
coral reefs to recover naturally.

After disturbance events, coral reefs go through transitional phases of ecological suc-
cession that can help rebuild a system that resembles the one prior to disturbance [60],
mostly through coral recruitment [61,62]. However, the increased recurrence of distur-
bances has resulted in an accelerated deterioration of coral reefs and in longer recovery time
scales, compromising their natural capacity to recover through coral larval recruitment,
mainly due to macroalgal overgrowth and sediment deposition [63,64]. This complex
combination of stressors often limits the natural regenerative capacity of corals and impairs
settlement and recruitment, with dire long-term consequences for ecosystem persistence
and resilience (natural reef ability to recover from disturbance). This may often lead to
major living coral losses favoring non-reef builders and macroalgae [65–67]. In general,
live coral cover has decreased throughout the Caribbean [68]. Therefore, interest in investi-
gating the potential for natural reef recovery through recruitment processes [69], as well as
through tissue regeneration, addressing coral species- and genetic-specific susceptibility
to disease, restoring fish assemblages and herbivory, recovering trophic conditions, and
other important processes, has increased. In spite of this, there is limited information
regarding coral recruitment dynamics in Puerto Rico. A cross-shelf study from SW Puerto
Rico showed higher abundance of Siderastrea siderea and Porites astreoides recruits on deeper
reef zones [70]. Another study showed that coral recruit communities were dominated
by weedy, high recruitment species, such as S. radians and P. astreoides, eight years after
mass coral bleaching and mortality in the oceanic island of Mona, off western Puerto Rico,
on spur and groove habitats formerly dominated by Orbicella spp. and other large reef
builders, suggesting a major shift in coral assemblages [71].

In Puerto Rico there is not enough information on the spatial distribution patterns
of coral recruitment; therefore, the natural recovery capacity of shallow, nearshore coral
reefs remains unknown. Further, there are limited accounts regarding the role of factors
such as water quality decline and hurricane mechanical impacts on coral recruitment
dynamics (i.e., resulting from effects on adult corals, recruit densities, substrate integrity,
stability, or complexity). Hurricanes can severely affect coral demographic dynamics [72].
Given the projected climate change and sea level rise impacts [73], it is vital to understand
the natural recovery capacity of shallow coral reefs (i.e., <5 m depth) adjacent to the
shoreline. In this way, future coral reef ability to absorb wave energy and protect coastlines
against erosion can be modeled [74]. This study addressed the following question: How
do environmental conditions and geographic location impact natural coral reef recovery
potential following disturbances? The hypothesis that coral reefs in areas with the greatest
water quality degradation and the greatest hurricane physical damage to bottom structural
integrity, stability and complexity show a lower coral recruit density and diversity, and,
therefore, have lower potential for natural recovery following disturbance, was tested
using a combination of multivariate approaches. A rapid characterization of the ecological
condition of sixteen coral reefs in different locations under variable water quality conditions
on the island of Puerto Rico was conducted. Coral community composition showed
significant correlation with water quality condition and with benthic community structure.
Coral reefs under chronic environmental degradation, but also those severely impacted
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by recent strong hurricanes, which caused significant pulverization of the reef framework,
had the lowest potential for recovery. The results of this study help to provide basic
information on the spatial distribution of coral recruits and on benthic community structure
across a wide range of locations and across a water quality stress gradient, thus providing
fundamental conservation-oriented information for managers with wider application for
other Caribbean coral reefs.

2. Materials and Methods
2.1. Study Sites

The study was carried out between January and March 2020 across sixteen shallow
coral reefs (2–4 m) of three geographic locations of Puerto Rico: the west coast, the east
coast and the island of Culebra (Figure 1). Three replicate coral reefs were studied on
each of the west and east coasts, while ten were assessed on Culebra Island, located 27 km
northeast of Puerto Rico. The study reefs on the west coast were La Cacula (CAC) and
Bridges (BRI) located in the town of Aguadilla, and the Tres Palmas Marine Reserve (TPA)
in Rincón. In the eastern area of the island, study reefs were located in Palmas del Mar
(PDM), Humacao, and in Punta Figueras (PFI) and Cayo Cabeza de Perro (CDP) in Ceiba.
Finally, reefs evaluated in Culebra included: Playa Carlos Rosario (PCR), Bahía Tamarindo
(BTA), Bahía Tarja (TAR), Punta Melones (PME), Bahía Sardinas (BSA), Punta Tampico
(TAM), Playa Dátiles (DAT), Playa Cascajo (PCA), Arrecife Dákity (DAK), and Punta Vaca
(PVA) (Figure 1).
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Sampling sites were selected for having presumably different water quality conditions.
Previous studies have established that fecal pollution, high nutrient loads and suspended
sediments are the main factors affecting coastal water quality in Puerto Rico [75–77].

2.2. Sampling Design

Benthic community assessments were conducted once on each location using six
replicate transects parallel to the shoreline, with approximately 4–8 m separation from each
other at depths ranging from 2 to 4 m. Positioning of the first transect was randomly selected
on each location, with other transects following haphazard positioning. Each transect was
10 m long and used a 50 × 50 cm quadrant. Five high definition images were taken at 1, 3,
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5, 7 and 9 m intervals along each transect [78]. Images were used to identify and count all
coral recruit colonies (coral colonies > 2.5 cm diameter), though some smaller colonies were
identified in the field during sampling. Point counts were also used to characterize benthic
community structure by analyzing 20 points per transect (every half meter). Points along
each transect were used to determine each benthic component percent cover, including:
corals, sponges, zoanthids, macroalgae, filamentous algae, the brown macroalgae Dictyota
spp., red encrusting macroalgae Peyssonnellia spp., and Ramicrusta textilis, Halimeda spp.,
erect calcareous algae (ECA), crustose coralline algae (CCA), cyanobacteria, open reef
pavement, rubble, and sand.

A one-time water quality sampling effort was conducted to produce a snapshot view
of water quality conditions across coral reef study sites. Triplicate grab water samples
were collected using 1 L plastic containers 30 cm below the surface by locality. Turbidity
was measured in triplicates in nephelometric turbidity units (NTU) using a portable tur-
bidimeter (LaMotte Co., Chestertown, MD, USA). Chlorophyll-a and optical brightener
(OAB) concentrations were determined in triplicates using a portable fluorometer (Turner
Designs Co., San Jose, CA, USA). OABs are a fluorescent substance commonly added to
detergents in order to produce a whitening effect on laundry and can indicate the presence
of gray waters in the environment. Dissolved oxygen, phosphate (PO4), nitrate (NO3

−),
ammonia (NH3

+), and total nitrogen concentration were also evaluated in triplicates from
each location using a Smart 2 portable spectrophotometer (Lamotte Co., Chestertown, MD,
USA). Ten ml water samples were transferred to clean glass vials in triplicates for dissolved
oxygen and nutrient analysis. Sample processing was conducted immediately to avoid the
need for preservation.

Remotely sensed data regarding sea surface temperature anomaly, light attenuation co-
efficient (Kd490), chlorophyll-a concentration, net primary productivity, particulate organic
carbon concentration (POC), and particulate inorganic carbon concentration (PIC) were
obtained from ERDDAP (https://coastwatch.pfeg.noaa.gov/erddap/index.html (accessed
on 1 July 2022)) for the period of 2017 to 2020, using weekly averages (Summarized in
Tables S4 and S5 and Figure S1).

2.3. Statistical Analyses

A nested permutational analysis of variance (PERMANOVA) was used to determine
if there were significant differences in benthic and in coral recruit community structure
among regions and locations (nested in regions) [79]. Spatial patterns were projected
using a multivariate shade plot and principal coordinates ordination (PCO) [79] or non-
metric multidimensional scaling (nMDS) [80]. Water quality data were log(x+1)-transformed
and normalized prior to analysis through Euclidean distance ordination [80]. A nested
PERMANOVA was also used to test the hypothesis of differences in the multivariate water
quality data matrix among the regions and sampling locations (nested in regions) [79]. Prin-
cipal components analysis (PCA) was carried out to determine the observed spatial patterns
of the multivariate water quality matrix [80]. A multivariate correlation (RELATE) was
used to correlate benthic community structure and water quality parameters, coral recruit
density and water quality parameters, and coral recruit density and benthic community
structure. The BIOENV multivariate routine was used to determine which variable or com-
bination of environmental variables correlated best with the determined spatial patterns
of the benthic community structure and with coral recruit density [80]. A distance-based
linear model analysis (DISTLM), in combination with a distance-based redundant analysis
(dbRDA) were used to conduct a combination of marginal and sequential tests to address
the impact of individual and combined environmental variables on coral recruit community
structure [79]. Abundance data were log(x+1)-transformed, while percent cover data were√

-transformed prior to analysis through Bray–Curtis ordination [76]. All multivariate anal-
ysis were carried out using 9999 permutations in PRIMER v.7.0.13 + PERMANOVA v1.0
(PRIMER-e, Quest Research, Ltd., Auckland, New Zealand). Species acronyms used are as
follows: Srad = Siderastrea radians, Ssid = S. siderea, Past = Porites astreoides, Ppor = P. porites,

https://coastwatch.pfeg.noaa.gov/erddap/index.html
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Pfur = P. furcata, Pstr = Pseudodiploria strigosa, Pcli = p. clivosa, Dlab = Diploria labyrinthi-
formis, Ffra = Favia fragum, Mmea = Meandrina meandrites, Oann = Orbicella annularis,
Ofav = Orbicella faveolata, Ofra = O. franksi, Mcav = Montastreaea cavernosa, Isin = Isophyllia
sinuosa, Aaga = Agaricia agaricites, Afra = A. fragilis, Ahum = A. humilis, Apal = Acrop-
ora palmata, Acer = A. cervicornis, Apro = A. prolifera (hybrid species), Mcom = Millepora
complanata, Malc = M. alcicornis, Ecar = Erythropodium caribbaeorum, Eun = Eunice sp.,
Plexrla = Plexaurella sp., Mur = Muricea sp.

3. Results
3.1. Coral Reef Benthic Community Analysis

A nested PERMANOVA analysis showed no significant differences in the spatial
variation in the coral reef benthic community structure among the three different regions
(Pseudo-F = 1.12; df = 2, p = 0.3565), but significant differences among sampling locations
(Pseudo-F = 50.62, df = 13, p < 0.0001). Variation among locations explained most of the
observed differences (

√
= 33.4). Pairwise analyses showed significant variation among all

possible combinations of study locations (p < 0.0500). Data is summarized in Table S1. The
highest mean percent coral cover was observed at CDP with 18.8%, followed by PCR with
18.3%, and TPA with 16.8% (Figure 2a). Dominant adult coral species were Porites astreoides
and Siderastrea radians. The highest mean macroalgal cover was documented at DAK, with
73.8%, followed by PFI with 49.2%, and PDM with 35.0% (Figure 2b). Brown macroalgae
Dictyota spp. percent cover was highest at TPA with 26.5%, followed by PCR with 16.8%,
and PFI with 14.7% (Figure 2c). Mean crustose coralline algae (CCA) was highest at BTA
with 62.7%, followed by PME with 46.4%, and CDP with 21.9% (Figure 2d).
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Figure 2. Spatial variation pattern in the percent cover of: (a) Scleractinian corals; (b) Macroalgae;
(c) Dictyota spp., and (d) Crustose coralline algae (CCA). Refer to the Methodology for the description
of acronyms.

A PCO analysis based on the spatial variation in coral reef benthic community structure
by region and location explained 57% of the observed variation, and showed four distinctive
groupings based on community composition (Figure 3). Benthic assemblages at CDP and
BRI were mostly dominated by scleractinian corals. Octocorals explained variation at BSA,
and brown macroalgae Dictyota spp. at TPA. Sponges did the same at PME, and Palythoa
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caribbaeorum at BTA. Hydrocorals and CCA dominated the variation observed at TAR, while
algal turf was dominant at CAC and PFI. Macroalgae and cyanobacteria explained most of
the variation at PDM, while macroalgae and open substrate did at DAK. Peyssonnelia algal
crusts (PAC) and encrusting Ramicrusta textilis explained most of the observed variation at
TAM and DAT, but also at PCA and PVA. Brown macroalgae Lobophora variegata species
complex were dominant at PCR.
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3.2. Coral Recruit Analysis

A nested PERMANOVA analysis showed no significant differences in the spatial
variation in the coral recruit benthic community structure among the three different regions
(Pseudo-F = 0.46; df = 2, p = 0.7989), but significant differences among sampling locations
(Pseudo-F = 25.06, df = 13, p < 0.0001). Variation among locations explained most of the
observed variation (

√
= 27.4). Similarly, no significant spatial variation at the regional level

was documented for total coral recruit density (Pseudo-F = 0.21; df = 2; p = 0.8445), but
highly significant differences were found among sampling locations (Pseudo-F = 40.95;
df = 13; p < 0.0001). Variation among locations similarly explained most of the observed
differences (

√
= 25.1). Data is summarized in Table S2. Coral recruit density was highly

variable among regions and locations (Figure 4a). The highest density at the regional scale
was observed at Culebra (8.5/m2), followed by the eastern coast (6.2/m2), and the west
coast (4.4/m2). The highest densities at the location scale were observed in three locations
in Culebra: BTA (42.0/m2), followed by PME (19.4/m2) and TAM (10.7/m2). CDP on the
eastern coast had 17.0/m2, while BRI on the western coast had 8.1/m2. Hurricane-impacted
reefs in Culebra had a recruit density of 0–4.4/m2. Recruit density on reefs under chronic
water quality decline ranged from 0.2 to 1.5/m2 in the eastern coast and averaged 0.7/m2

on the western coast.
The highest coral recruit species richness at the regional scale was observed at the

eastern coast (1.88/m2), followed by the western coast (1.06/m2), and the west coast
(0.93/m2). The highest species richness at the location scale were observed at CDP, in the
eastern coast (4.73/m2), followed by BTA (4.13/m2) and PME, both in Culebra (2.93/m2)
(Figure 4b). TPA on the western coast had 1.77 species/m2. Hurricane-impacted reefs in
Culebra had a recruit species richness of 0–0.63/m2. Recruit species richness on reefs under
chronic water quality decline ranged from 0.2 to 0.7/m2 in the eastern coast and averaged
0.1/m2 on the western coast.
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Figure 4. Spatial distribution pattern of: (a) Coral recruit density (#/m2); and (b) Coral recruit species
richness (#/m2) by location. Isolated points show outlier values. Refer to the Methodology for the
description of acronyms.

Overall, a total of 3547 coral recruit colonies were counted. Porites astreoides was the
most abundant species (929 counts; 26.2%), followed by S. radians (768 counts, 21.6%),
Millepora complanata (498 counts, 14.0%), Agaricia humilis (286 counts, 8.0%), and S. siderea
(222 counts, 6.3%) (Table S2). In combination, the five most abundant species accounted
for 76.2% of the total recruits documented in this study. Other Porites spp., Pseudodiploria
strigosa, Millepora alcicornis, Diploria labyrinthiformis, and Erythropodium caribbaeorum ac-
counted for 5 to 1% of the total recruits. None of the remaining 16 species accounted for
1% of the total recruit abundance. Four coral species showed the highest recruit densities
throughout the study locations. The highest mean density of S. radians recruits was docu-
mented at BTA with 15.9/m2, followed by PME with 6.5/m2 (Figure 5a). The highest mean
density of S. siderea recruits was documented at PME with 3.8/m2, followed by BTA with
1.8/m2 (Figure 5b). Porites astreoides showed a mean recruit density of 10.1/m2 at TAM,
followed by CDP with 4.5/m2 (Figure 5c). The highest mean density of A. humilis recruits
was documented at CDP with 5.5/m2, followed by BTA with 2.6/m2 (Figure 5d). Spatial
patterns in recruit density are also detailed in Figure S2.
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Figure 5. Variation in the spatial patterns in the average density of coral recruits (#/m2) in the four
most abundant species: (a) Siderastrea radians; (b) S. siderea; (c) Porites astreoides; and (d) Agaricia humilis.
Isolated points show outlier values. Refer to the Methodology for the description of acronyms.

A PCO analysis yielded five clustering patterns of the spatial organization of coral
recruit species richness and described 62% of the observed spatial variation (Figure 6). A
first cluster was composed by locations CDP, PME and BTA, which were mostly explained
by S. radians, Millepora alcicornis, and Favia fragum recruits. Porites porites, P. astreoides, and
A. humilis recruits formed a second cluster composed of TAM and BRI. A third cluster was
composed of DAT, PCR, BSA, PCA in Culebra, and by TPA in the western coast, and was
dominated by S. siderea, M. complanata, P. furcata, and A. agaricites recruits. A small cluster
of PVA and PFI was mostly grouped by A. humilis recruits. A final group formed by CAC,
PDM, TAR and DAK showed a very low coral recruit species richness. Spatial patterns in
recruit species richness are also detailed in Figure S3.
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3.3. Water Quality Analysis

A nested PERMANOVA analysis showed significant differences in the spatial variation
in water quality parameters among the three different regions (Pseudo-F = 3.05; df = 2,
p = 0.0200) and among sampling locations (Pseudo-F = 8.33, df = 13, p < 0.0001). Variation
among locations explained most of the observed variation (

√
= 2.45). Pairwise tests showed

a significant difference between the western coast and Culebra (t = 2.16; p = 0.0128), and
only a marginal difference between the eastern coast and Culebra (t = 1.77; p = 0.0630).
No significant difference was observed between the eastern and western coasts (t = 0.95;
p = 0.5945). Data is summarized in Table S3. The highest turbidity levels were observed
at PFI (3.56 NTU) and PDM (2.52 NTU) along the eastern region (Figure 7a). These also
showed the highest concentration of chlorophyll-a with 2.15 µg/L at PDM and 2.46 µg/L at
PFI (Figure 7b), and the highest PO4 concentration with 3.5 µM at PDM and PFI (Figure 7c).
These localities also showed the lowest dissolved oxygen concentration with 4.0 mg/L at
PDM and 2.5 mg/L at PFI (Figure 7d).
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Figure 7. Spatial patterns in the mean values of six water quality variables by region (East, West,
Culebra) and by locality: (a) Turbidity; (b) Chlorophyll-a; (c) Phosphate (PO4); (d) Dissolved oxy-
gen; (e) Optical brighteners (OABs); and (f) Ammonia (NH3

+). Refer to the Methodology for the
description of acronyms.

Dissolved oxygen concentration showed high spatial variability within the different
regions. For instance, it ranged from 4.5 mg/L at CAC to 6.0 mg/L at BRI along the western
region, and from 2.0 mg/L at BSA to 6.5 mg/L at PVA along the Culebra Island region. The
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highest dissolved oxygen concentration was documented at CDP, off the eastern coast, with
9.0 mg/L. Optical brightener (OAB) concentration was also highly variable, with higher
values on the Eastern and western regions. CAC showed the highest OAB concentration
(98 ppm), followed by PFI in the east (82 ppm) and PDM with 54 ppm (Figure 7e). Ammonia
(NH3

+) also showed patterns of high spatial variability, with higher mean values within the
eastern and western regions. However, BSA at Culebra Island showed the highest mean
NH3

+ with 293 µM, followed by PDM (130 µM), BRI (100 µM) and TPA (60 µM), along the
western region, and by PFI (180 µM) and CAC (150 µM), along the eastern coast (Figure 7f).

PCA analysis showed three clustering patterns (Figure 8). One of the clusters was
dominated by PLM, PFI (eastern coast) and TPA (western coast) and was largely explained
by the high concentration of Chl-a, by higher turbidity, and to a lesser degree by higher
concentrations of OABs and PO4. A second cluster was composed by BSA (Culebra),
and CAC and BRI (western coast), and was dominated by total nitrogen, NO2, and NH3

+

concentrations. The final cluster was composed of the remaining nine locations in Culebra
and CDP (off the eastern coast) and was mostly explained by the higher concentrations
of dissolved oxygen. This PCA model explained 74.1% of the observed spatial variation
in water quality parameters. The noted differences in water quality among locations
could indicate actual long-term differences in water quality and suggest that a potential
distinctive spatial gradient of water quality variables may exist, which may influence coral
recruit assemblages.
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3.4. Relationship between Water Quality and Coral Recruit Community Structure

A multivariate correlation analysis (RELATE) resulted in a highly significant corre-
lation between the coral recruit community matrix and the global water quality matrix
obtained during the single sampling effort (Rho = 0.292; p = 0.0273). The BEST-BIOENV
multivariate routine showed that the best combination of environmental parameters that
explained the spatial variation observed in coral recruit community structure was the
combination of low concentration of OABs, PO4 and total N (correlation = 0.448). How-
ever, these analyses only indicate potential trends, which require long-term quantification
and validation.

Figure S4 shows spatial patterns in remotely sensed water quality parameters across
study locations during the period 2017–2020 and evidence significant pulse events in most
parameters, particularly along the eastern and western coasts. A DISTILM marginal test of
the remotely sensed water quality data matrix based on maximum values of each parameter
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showed a significant effect (p = 0.0349; proportion = 0.2649) of chlorophyll-a concentration
on total coral recruit density (Table S5). This analysis excluded data from TAR and DAK,
which had no recruits. The sequential test showed a highly significant combined effect of
SST anomaly + Kd490 + chlorophyll-a concentration (p = 0.0083; proportion = 0.4400) on
coral recruit assemblages. A dbRDA analysis showed four clustering patterns of the coral
recruit community structure based on the water quality impacts (Figure S5). Extremely low
coral recruit density at PDM was mostly explained by higher chlorophyll-a concentration.
Kd490 was also highest at PDM, PFI, and CAC, which also exhibited low coral recruit
densities. The dbRDA model explained 98% of the observed fitted variation and 58% of the
total variation in coral recruit density.

3.5. Relationship between Coral Recruit and Benthic Communities

A multivariate correlational analysis (RELATE) showed a highly significant correlation
between the coral recruit community matrix and the coral reef benthic community global
matrix (Rho = 0.304; p = 0.0029). The BEST-BIOENV multivariate routine showed that
the best combination of coral reef benthic community parameters explaining the spatial
variation observed in the coral recruit community structure was the combination of high
percent cover of adult scleractinian corals and CCA, and the low percent cover of sponges,
R. textilis and PAC (correlation = 0.404).

3.6. Relationship between Water Quality and the Benthic Community Structure

A multivariate RELATE showed no significant relationship between the benthic com-
munity structure matrix and the water quality matrix obtained during the single sampling
event (Rho = −0.063, p = 0.6663). The BEST-BIOENV multivariate routine showed that
the best combination of environmental parameters that explained the spatial variation
observed in coral reef benthic community structure was the combination of high OABs
and PO4 concentrations, however, with a very weak correlation (0.084). The spatial pattern
of variation in shallow coral reef benthic community structure is influenced by a highly
variable combination of factors beyond water quality variables.

4. Discussion

Coral reef benthic community structure across shallow fringing marginal reefs in
Puerto Rico showed non-significant variation at regional scales (10–100 km), but significant
spatial variation at the location scale (1–10 km). Higher percent live coral cover was docu-
mented at CDP and PCR, areas presumably characterized by better water quality. Higher
percent macroalgal cover was documented at DAK, followed by PFI and PDM, locations
known to be impacted by runoff pulses. Similarly, coral recruit community structure across
shallow fringing marginal reefs in Puerto Rico showed non-significant variation at regional
scales, but significant spatial variation at the location scale as a combined function of a
presumed water quality stress gradient, hurricane mechanical impacts, and benthic as-
semblage composition. In general, higher coral recruit density and species richness was
observed across locations with apparently better water quality, limited hurricane physical
impacts, higher percent live coral cover and species diversity, in comparison to locations
showing signs of apparently chronic water quality stress, severe hurricane-driven frame-
work pulverization, instability, highly fragmented bottom, and/or limited percent coral
cover and adult coral species diversity. In general, this supported the hypothesis that
coral reefs in geographic areas with the greatest water quality degradation or the greatest
hurricane physical damage to the shallow reef framework showed lower coral recruit
density and diversity, therefore lower potential for natural recovery following disturbance.

Water quality sampling in this project was significantly limited to a single sampling
event, which provided limited evidence to reach any robust conclusion with respect to
water quality influences over coral recruitment dynamics. However, used in combination
with an analysis of the water quality dynamics between 2017 and 2020 obtained from
remotely sensed sources (Supplementary Data), it suggested apparently important trends.
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The observed spatial variation pattern of water quality conditions suggested that coral reef
distance from known pollution sources and the strength and direction of surface water
circulation (i.e., surface current and wave exposure) were important in affecting coral
recruit assemblages. Coral reefs showing apparently higher dissolved nutrient and OAB
concentrations and high turbidity evidenced significantly lower coral recruit density and
species richness. Such impoverished reefs also sustained low percent live coral cover and
high macroalgal and turf cover. In particular, locations such as CAC along the western coast,
PDM and PFI along the eastern coast, and BSA at Culebra, are known to be significantly
influenced by frequent runoff pulses (Hernández-Delgado, personal observations). In
addition, locations such as DAK, TAR, TAM, DAT and PVA at Culebra were decimated by
recent hurricane impacts (Hernández-Delgado, unpublished data), and exhibited impov-
erished coral recruit assemblages. The category five Hurricanes Irma and María inflicted
severe damage to the abovementioned coral reefs. Irma’s eyewall passed just 18 km north
of Culebra Island on 6 September 2017, with 290 km/h winds and a sea level pressure of
914 mb [81]. Hurricane María passed just 30 km south of Culebra Island with 280 km/h
winds and a sea level pressure of 908 mb, and made landfall directly over PDM with
260 km/h winds, and a sea level pressure of 913 mb [82]. Wave action, in combination with
storm swells, caused extensive coral colony dislodgment and fragmentation, as well as
localized reef framework pulverization. There was also extensive filling of reef grooves
and pavement channels with hurricane-generated debris and sediment shifts, which buried
an undetermined number of coral colonies, octocorals, sponges, and other benthic fauna.
Therefore, we argue that the combination of environmental history, hurricane disturbance
regimes, as well as recent impacts by mass coral bleaching and disease outbreaks, could
have played important roles in shaping coral recruit assemblages.

4.1. The Role of Poor Water Quality

Coastal eutrophication is one of the most critical factors affecting shallow coastal
coral reefs [25,27,29,76,77,83,84], and, therefore, their natural recovery ability through
coral recruitment, due to a combination of mechanisms resulting in coral larval settlement
interference and in post-settlement mortality. Water quality sampling in this study provided
a limited snapshot view of the environmental conditions across each location that might
affect recruitment. However, it provided an important insight into the apparently prevailing
conditions across multiple coral reefs that were confirmed using remote sensing sources.
The western region showed low dissolved oxygen concentration, high OAB concentration
and high turbidity (i.e., TPA) associated with sediment-laden, nutrient-loaded urban runoff
and sewage from Rincón [85] and influenced by the Rio Grande de Añasco outlet [86]. In
Culebra, the lowest dissolved oxygen concentration was found at BSA, which is located
adjacent to known sources of urban pollution [87,88]. The highest concentration of OABs,
although with high spatial variability, was found at CAC in the western coast. CAC is a
shallow reef located in front of the La Cacula urban creek outlet at Aguadilla, which empties
gray waters, raw sewage, septic tank leaks and stormwater runoff directly towards adjacent
marginal reefs. PDM and PFI in the eastern coast also presented high OAB concentrations,
and they are frequently impacted by recurrent runoff pulses from adjacent streams and
rivers. In the case of PDM, two important rivers, the Candelero and Humacao, as well as a
regional wastewater treatment plant with an ocean outfall close to shore, are factors that
can significantly influence local water quality. Our data suggest that locations adjacent to
urban areas showed the highest concentrations of OABs. OABs have been suggested as
chemical, organic and fecal pollution indicators on septic systems and surface and estuarine
waters [89–94]. A high PO4 concentration was also observed at BSA in Culebra, probably
influenced by sewage-polluted drainage of the adjacent Canal de Lobina during ebbing
tidal flows [87,88]. High NH3

+ concentrations were documented at PDM and PFI in the
eastern region and at CAC, BRI and TPA in the western region due to suspected urban
sources of fecal pollution.
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Locations most affected by runoff, such as PDM and PFI, as well as locations severely
impacted by hurricane mechanical impacts, such as DAK and TAR in Culebra, showed the
lowest density and diversity of coral recruits, and had an impoverished coral reef benthic
community structure. Locations with the strongest water circulation and presumed better
water quality in Culebra, BTA and PME, as well as CDP off the eastern coast, presented the
highest coral recruit density and diversity among surveyed locations. Findings in this study
are consistent with a previous study of coral recruitment spatial patterns in Puerto Rico that
suggested that low dissolved oxygen concentration, in combination with high turbidity
and OAB concentration were significantly correlated with low coral recruit density and
diversity, particularly on urban shallow coral reefs [95].

Increasing water quality stress gradients (i.e., sedimentation, high nutrient and chlorophyll-a
concentrations, turbidity, and strong light attenuation coefficient Kd490) may often result in
localized eutrophication impacts and may potentially have an effect on structuring coral
recruit assemblages. DISTLM analysis based on remotely sensed parameters for the period
of 2017 to 2020 showed that SST anomaly + Kd490 + chlorophyll-a concentration significantly
explained depauperate coral recruit assemblages in some locations across the eastern
and western coast of Puerto Rico. This could affect marginal coral reef natural recovery
ability through three mechanisms: (a) nutrient enrichment causing trophic alterations;
(b) turbidity causing light reduction, which affects photosynthesis; and (c) sedimentation
causing reduced larval settlement and mortality [19,25,84,96]. The long-term impact of
sedimentation and pollution pulses from coastal development or urban stormwater runoff is
considered one of the main stressors affecting natural coral recovery [25,26]. Sediments can
accumulate on reefs and can smother or suffocate corals and interfere with their ability to
feed, grow and reproduce [23,97]. Runoff can result in excess inputs of dissolved nutrients
(i.e., nitrogen and phosphate) through fertilizers, stormwater or sewage discharges. It can
lead to the proliferation of phytoplankton and macroalgae that obstruct sunlight, as well as
contribute to microbial growth [98]. Such potential mechanisms can interfere with coral
larval settlement, increasing mortality at this early stage. This may also lead to altered
carbon and nutrient dynamics [32], and to enhanced dissolved oxygen consumption,
fostering the proliferation of opportunist microbes, further increasing stress to corals
and other benthic fauna [31]. Macroalgal overgrowth can trap sediments and further
enhance interference mechanisms of larval settlement [99]. Opportunist microbes and any
potential physiological stress on settled coral larvae can enhance post-recruitment mortality.
Sewage and sewage-borne microbes have already been implicated in enhanced coral disease
prevalence and in coral reef degradation [77,78,83,100–110]. Further, a combination of other
synergic factors associated with sewage, such as freshwater, inorganic nutrients, pathogens,
endocrine disrupters, suspended solids, sediments, and heavy metals, can severely impair
coral growth and/or reproduction through a combination of potential mechanisms yet
unknown [110].

In addition, the nonlinear trajectories of coral reef benthic community succession across
sediment stress gradients, in combination with strong fishing impacts, have shown signifi-
cant interactions between sediment and herbivory that can have cascading effects on coral
recruitment [111], resulting in further post-settlement mortality. There is further concern
that the compounding effects of changing climate (i.e., extreme rainfall events, hurricanes)
may result in localized enhanced environmental stress pulses to coral reefs [112–114]. In-
creasing trends in coral reef decline, combined with water quality degradation, have already
been described in various studies in Puerto Rico, highlighting the interaction between wa-
ter quality and coral reef benthic assemblages [21,71–73,81,82,111–117]. This points to the
critical importance of incorporating watershed-scale conservation measures, the protection
of coastal water quality, and enhancing successful coral settlement and recruitment as part
of sustainable coral reef conservation-oriented management practices.
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4.2. The Role of Strong Hurricanes

Shallow coral reefs that showed significant mechanical impacts by hurricanes were
characterized by very poor coral recruit assemblages. Strong hurricanes can severely affect
coral reef architecture [118–121], especially in shallow zones [122–124]. The stochastic
physical impact of the category five Hurricanes Irma and María in 2017 were important
factors influencing benthic community trajectories across some locations, and thus shallow
reef natural recovery ability. This study is one of the first accounts of post-hurricane me-
chanical impacts on natural coral reef recovery ability and suggests that the combination of
presumed chronic water quality degradation and strong hurricane physical impacts appear
to operate in a similar way on coral recruit assemblages across larger (regional) spatial
scales, but in significantly different ways at the location scale. There was high variability
among locations within each studied region. Many of Culebra’s shallow reefs, as well as in
CAC in northwestern Puerto Rico, were among the most damaged by hurricanes. Impacted
reefs showed flattened bottoms significantly dominated by unstable coral rubble and algal
turf. Coral recruit density and species diversity were very low on these locations and very
similar to that of locations chronically affected by environmental degradation. Hurricanes
can have a wide range of social-ecological impacts, which can affect shallow coastal ecosys-
tems [125]. They can also affect coral recruits as they can transport a large quantity of
sediments that can suffocate shallow marginal reefs adjacent to the shoreline [126], and
nutrient-loaded runoff that can foster algal growth increasing post-settlement mortality.
Further, strong hurricane physical impacts can include severe localized colony fragmenta-
tion and dislodgment [127], localized coral mortality resulting from catastrophic sediment
bedload associated with horizontal transport [128] or the mechanical destruction of the
shallow-water reef framework [124]. Such physical impacts can result in highly fragmented,
unstable benthic surfaces, which can also lead to increased post-settlement mortality.

4.3. Potential Impacts on Coral Larval Dynamics

In the long term, coral reef decline can alter natural coral larval dynamics. Coral
larval settlement and recruit survival and growth is fundamental to maintain coral popula-
tion viability and is necessary for natural coral reef recovery following disturbance [129].
Its success will depend on: (1) larval availability, which involves successful gamete pro-
duction, fertilization success, and connectivity to upstream sources of coral larvae not
affected by chronic pollution or by hurricane physical impacts; (2) settlement success,
which depends on larval and substrate condition, and on substrate selection behavior;
and (3) post-settlement ecology, which affects survival and growth. Coral reef trophic
state is also an important driver of coral recruitment success. A combination of ecological
interactions may influence coral recruitment success [130], including settlement behavior
and interactions with substrate components [131], post-settlement competition with algae
and sessile invertebrates [132], and incidental and targeted predation from fish and mobile
invertebrates [133].

Poor water quality, often leading to localized eutrophication, may result in reduced
water transparency and in increased turf and macroalgal overgrowth, with potentially en-
hanced sediment-trapping effects [23,27] and decreasing coral recruitment success [30,96,97].
Coral recruits are at least one order of magnitude more sensitive to sedimentation than
adult corals [30,96]. Hurricane-associated runoff events may also lead to major macroalgal
blooms [134,135], which may result in significant coral colony smothering and suffocation,
leading to post-settlement mortality. In addition, variation in light intensity [136,137], as
well as the spatial distribution of adult corals [138], can affect coral recruitment. Any
combination of these factors can lead to reduced recruitment success, particularly on
severely degraded reefs [139], including bomb- or dynamite-blasted coral reefs (with abun-
dant unstable rubble fields, similar to those generated by strong hurricanes, as in this
study) [140–142]. Depending on the level of storm-induced damage and on the reef’s
environmental history, recovery of coral reef communities may take from a few years to
centuries [143]. In some circumstances, a permanent shift to high algal dominance may oc-
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cur [24], such as the dominance documented in this study to occur at several locations (i.e.,
PFI, PDM, DAK). Further, mass bleaching events can also result in a significant loss of coral
recruits, both through direct and indirect coral mortality from post-bleaching macroalgal
blooms, particularly under overfished conditions [144], and in combination with strong
hurricane physical impacts [145]. This suggests the importance of managing reef trophic
conditions to ameliorate adverse impacts on coral assemblages. Increasing herbivory can
modify trophic cascades, which can, in turn, increase coral recruitment success [146].

Modeling efforts demonstrated that under significant and frequent thermal stress an
unprecedented loss of benthic architectural complexity was predicted over the next two
or three decades due to major coral loss and net structural decline [147]. Warming-related
recurrent mass coral bleaching, coral disease outbreaks, and mass coral mortality events
across the northeastern Caribbean region have further contributed to extensive coral decline
and to the net loss of reef accretion by losing major reef builders [4,41,44,46,148–150]. There
was a large-scale loss of live coral following mass coral bleaching across the northeastern
Caribbean in 2005–2006 [4,5,39,42,151–153]. The geographical scale and magnitude of the
recent outbreak of stony coral tissue loss disease (SCTLD) across the wider Caribbean has
been unprecedented and have resulted in the decimation of local populations of critical
reef-building species [154–159]. At the time of sampling in this project, SCTLD was still
largely limited to coral reefs in Culebra Island and the eastern coast of Puerto Rico [149].
Thirteen out of the 16 sampling locations in this study were affected by SCTLD (81%),
with prevalence in Culebra ranging from 20 to 60% at the time of sampling (Hernández-
Delgado, unpublished data). No impacts were documented at that time across western
coast locations. Widespread mass coral mortalities can have long-term paramount adverse
consequences on the sustainability of reef carbonate budget and on its geo-ecological
functions [57,160–162]. The long-term recurrence of such events might have contributed
to the observed low coral recruit density and diversity observed in many locations in
this study.

4.4. Long-Term Consequences for Coral Reef Ecological Functions and Services

The findings of this study suggest important long-term consequences for shallow,
marginal coral reef benthic community trajectories under projected climate change and
sea-level-rise impacts. Overall, coral recruit densities in this study ranged from 4.4 to
8.5/m2 across regional scales, and from 0 to 19.4/m2 across locations, with reefs with
extensive hurricane physical destruction showing <2/m2. These values are comparable
to previous studies across the Caribbean. Recruit densities averaged 6.2/m2 at Belize,
26.7/m2 at St. Croix, 28.9/m2 at Barbados, 26.6/m2 at Port Antonio, 15.6/m2 at Bonaire,
and 33.8/m2 at Grenada [163]. Mean ranges from 2.2 to 2.8/m2 were documented at
Belize [164], from 0.8 to 1.3/m2 at Biscayne Bay, Florida [165], from 1.0 to 6.4/m2 at the
Mesoamerican Barrier Reef System [166], and from 1.2 to 9.5/m2 at Mona Island, Puerto
Rico [71]. However, studies prior to the Diadema antillarum mass mortality (1983–1984)
across the Caribbean showed coral recruit densities of 76 to 274/m2 at Jamaica [167], 13
to 20/m2 at Curaçao [168], and 13 to 33/m2 at the Salt River Canyon, St. Croix, USVI [61].
A decline in coral recruits from 4.8 to 2.8/m2 was observed between 2003 and 2005 at
La Parguera, Puerto Rico [70]. Coral recruit density in Exuma Cays, Bahamas, increased
between 2004 and 2007 from 3.8 to 8.4/m2 in P. astreoides, from 1.4 to 2.3/m2 for A. agaricites,
and from 2.1 to 3.1/m2 for O. annularis [169]. Recruit density ranged from 14.0 to 21.6/m2 at
St. John, USVI, but increasing temperature resulted in increasing mortality across a 12-year
time span [170]. This study also found that weedy species (i.e., P. astreoides, S. radians) with
limited reef-building value were the dominant recruiters across most locations, similar
to the findings of previous studies [70,71,171]. Therefore, present day recruit densities
and species assemblages may still reflect the long-term ecological consequences of the
D. antillarum mass mortality event nearly four decades ago. A recent D. antillarum mass
mortality event documented throughout the wider Caribbean region since February 2022
raised a major concern for rapidly declining coral assemblages and recruitment. This
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suggests that the environmental and ecological history of each location can play important
roles affecting coral recruit density and diversity.

Shallow coral reef physical structure imparts friction on waves and currents and is
extremely important for determining hydrodynamic environments adjacent to the shore-
line, and for accurately modeling wave, current, and surface circulation patterns [61,172].
Spatio-temporal variation in coral reef benthic roughness and friction [173–177], substrate
porosity [178,179], and storm surge dynamics [180,181] will affect long-term hydrodynam-
ics over any shallow coral reef. Altered hydrodynamics may have a long-term influence on
coral recruitment dynamics and reef accretion. Therefore, the impoverished coral recruit
assemblages on flattened reef bottoms documented in this study at some locations, were
dominated by weedy, poor reef-building species, with limited percent live coral cover.
Such reefs were dominated by algal turf and macroalgae. This highly prevalent condition
could have long-term vital implications for future conservation and the persistence of
reef benthic communities under projected climate change and sea level rise scenarios [73].
Such a declining reef, with limited natural recovery ability from disturbances may face a
restricted capacity to cope with recurrent warming events, mass coral mortalities, and from
rising sea level, potentially leading to enhanced coastal vulnerability to increasing wave
energy, runup and erosion.

Large, fringing coral reefs with higher benthic physical structure have been shown
to provide substantial protection against storm hazards by reducing wave energy by an
average of 97%, with crests alone dissipating most of this energy (86%) [10]. Higher
bottom roughness can affect water flow dynamics and sediment transport [182,183], and
can result in enhanced benthic habitat structural complexity, leading to enhanced benthic
and fish productivity [184–186]. However, declining coral reefs, with significant loss of
bottom roughness, rugosity index, bottom friction coefficient, and substrate porosity may
significantly lose wave attenuation effectiveness, possibly resulting in depleted biodiversity
and in major long-term impacts to life and coastal infrastructure due to stronger wave
exposure in the future. Therefore, poor water quality, as well as mechanical destruction
of the reef framework by strong hurricanes, may become critical drivers of depleted coral
assemblages by significantly limiting coral recruitment success, thus affecting natural
recovery following disturbances, and reef accretion in the long term.

This study had some important limitations. The most significant one is the limited
number of locations assessed across some of the surveyed geographical regions. In addi-
tion, this study did not consider the temporal variation of either water quality or coral
recruitment dynamics, which we supplemented with a temporal assessment of remotely
sensed water quality parameters. Our data only provides a snapshot view of presum-
ably chronically poor environmental conditions at some locations. Future studies should
consider assessing seasonal variation across larger scales and across additional locations.
Further, it would be of paramount importance to analyze the relative effects of parameters
such as long-term temperature trends, coral disease outbreaks, mass coral bleaching, storm
disturbances, etc., along with the spatio-temporal variation in water quality to enable
determination of effect sizes relative to each variable or combination of variables.

5. Conclusions

This study showed that shallow coral reefs affected by presumed poor water quality,
recurrent hurricanes and climate change-related sea surface warming are showing signifi-
cant signs of degradation which include low coral recruit density and diversity across large
spatial scales. This has resulted in a net loss in coral reef recovery potential following dis-
turbances. Declining coral recruitment across shallow marginal reefs could have important
implications under projected climate change and sea level rise impacts, particularly for
urban coastal locations. This can affect the long-term sustainability of shallow coral reef
ecological functions, such as buffering wave energy, runup, and shoreline erosion. It can
also compromise net reef accretion, biodiversity, and other services and socio-economic
benefits. As the capacity for natural regeneration is lost, in the long-term the resistance of
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the system to the impact of future environmental disturbances is lost, therefore, reef and
coastal resilience in general can become further compromised.

In light of these findings, it is predicted that, in the long-term, coastlines adjacent to
degraded shallow reefs will become more vulnerable to future storm and winter swell
events, and the potential impacts of climate change and sea level rise will occur sooner due
to the gradual loss of natural recovery ability across multiple locations. Therefore, stronger
immediate conservation measures are imperative to prevent further water quality decline
and coral reef degradation. This includes the need to implement more aggressive and
effective best management practices in environmental conservation (i.e., land-based source
pollution management), ecological restoration and community participation strategies
that facilitate enhanced coral settlement and recruitment success, and assisted recovery
processes through coral reef restoration across substantially enhanced spatial scales. Only
in this way can time be borrowed for the recovery of coral reefs during the Anthropocene.
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