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Abstract: In Southeast Asian nations, cultured hybrid groupers are facing serious infestation by the
marine parasitic leech Zeylanicobdella arugamensis (Annelida, Hirudinea). They attach to the hybrid
groupers by sucking and biting on the surface of the skin, paving the way for secondary infection
upon the fish. The objective of the study is to utilize the locally available seaweed to control the
infestation of parasitic leeches. The methanol extracts of the brown alga Sargassum polycystum C.
Agardh, 1824 (Phaeophyceae) from Sabah were prepared and investigated for antiparasitic efficacy
against Z. arugamensis through in vitro bioassay. A total of 126 adult leeches from the host hybrid
groupers were obtained from the fish hatchery. The parasitic leeches were treated with the methanol
extracts of S. polycystum for 180 min by preparing five different dosages at concentrations of 100, 50, 25,
12.5, and 6.25 mg/mL. The brown alga was found to have high antiparasitic efficacy, resulting in 100%
leech mortality over a short period of time. It showed the highest antiparasitic efficacy (total mortality
of leeches) in a short time limit of 0.96 ± 0.44 min, for 100 mg/mL of the extract. Observations on
leech behavior in the positive control and the seaweed extract treatments showed vigorous swimming
before mortality. LC-MS/MS analysis was used to reveal the phytochemical composition of the
extract to understand the nature of the main components responsible for its antiparasitic activities. A
total of 29 metabolites were identified via Q Exactive HF Orbitrap mass spectrometry, including two
flavonoids (ephedrannin A and hinokiflavone), two organoarsenics (1-dimethylarsinoyl-heptadecane
and cacodylic acid), four heterocyclic compounds, and two chlorophyll breakdown products. The
presence of bioactive compounds could increase the mortality rate of parasitic leeches. Thus, this
study concludes that the brown alga showed high efficacy in its antiparasitic activities and can be
effectively applied for treatment in grouper aquaculture farms for sustainable aquaculture.

Keywords: aquaculture; parasites; antiparasitic activity; Sargassum polycystum; hybrid grouper;
bioactive compounds; Zeylanicobdella arugamensis

1. Introduction

Drugs derived from aquatic organisms are known as “marine drugs.” Since an-
cient times, these marine medications have been employed for various purposes [1–3].
Bergmann [1] published the first physiologically active marine natural product in late 1950.
Subsequently, it was discovered in the late 1970s that marine plants and animals are geneti-
cally and biochemically distinct. Since then, over 15,000 natural compounds with different
bioactivities have been identified from marine microorganisms, algae, and crustaceans [4].
Fatty acids, sterols, carotenoids, polysaccharides, dietary fibers, agar, carrageenan, alginate,
and phycocolloids are among the bioactive compounds that can be found in macroalgae.
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Scientists are focusing on a variety of bioactive chemicals found in seaweed because of
their antiviral, antitumor, anti-inflammatory, antilipidemic, and other effects [5].

There are three main categories of macroalgae: brown algae (Phaeophyceae), green
algae (Chlorophyta), and red algae (Rhodophyta). Brown algae comprise 1500–2000 species
worldwide. The presence of a xanthophyll pigment known as fucoxanthin causes brown
algae to have a yellowish or brown hue. Sargassum is one of the most common and
most abundant brown algae, with more than 400 recognized species worldwide, and
they are usually found in shallow waters of the subtropics and tropics [6]. One of the
common species is Sargassum polycystum C. Agardh, 1824 (rough-stemmed sargassum),
which belongs to the family Sargassaceae. It has filiform stalks, lanceolate leaves with
serrated margins, and many vesicles [7]. Sargassum polycystum extract has gained popularity
in the biomedical field because it includes fucoidan, which is known to have antioxidant
and anticancer properties [8].

Malaysia’s aquaculture industry makes a considerable contribution to the country’s econ-
omy. The development of Malaysia’s aquaculture sector is predicted to become one of the
country’s most important agricultural contributors, both as a source of foreign exchange and,
more crucially, as a supply of animal protein. Cage-culturing fish is a way to boost productivity
and it was introduced to Malaysia in the early 1970s [9]. In Malaysia, the major species of marine
fish cultured in cages are groupers (Epinephelus coioides, E. lanceolatus, E. fuscoguttatus), snappers
(Lutjanus johnii, L. argentimaculatus, L. stellatus), and seabass (Lates calcarifer) [10–12].

Grouper (Family: Serranidae, Subfamily: Epinephelinae) aquaculture is a significant
portion of many countries’ aquaculture production portfolios, particularly in Asia. In
Malaysia, grouper aquaculture has been carried out in hatcheries and floating cages. There
are two systems involved in grouper aquaculture. The first one is “system” culture, and
the second one is “real” culture. In Sabah, E. coioides and E. malabaricus fry/fingerlings are
raised through real culture [13]. The fry/fingerlings are usually imported from Thailand,
the Philippines, or caught in local coastal waters [11]. Hybridization has been attempted
by researchers in order to improve grouper quality and productivity. Hitherto, the most
successful hybrid grouper combination is tiger grouper x giant grouper (TGGG), since
it has a fast growth rate [14], has improved feeding efficiency, and has a higher survival
rate [15].

Many fish producers in Asia have suffered significant financial losses as a result of
disease outbreaks in cultured groupers [16,17]. The cultured groupers (Epinephelus malabaricus)
experienced a higher number of infestations than wild ones [11]. Leeches, monogeneans,
caligids, copepods, protozoans, didymozoid digeneans, nematodes, and isopods are some of
the fish parasites that may plague the grouper culture sector [16–18].

Zeylanicobdella arugamensis de Silva, 1963 (Piscicolidae, Hirudinea), a parasitic marine
leech, is one of the most harmful parasites found on the body surface of cultured hybrid
groupers and other grouper species [18]. These leeches have striated bodies, a strong body
wall, and two suckers which they utilize to feed and move. Due to heavy infestations
of the leech Z. arugamensis, adult cultured orange-spotted grouper, E. coioides, have been
reported to die three days after bleeding out. Thus, marine leeches are a threat to the
aquaculture industry. Researchers have tested the effectiveness of freshwater and formalin
bath treatments to eliminate marine leeches from infested fish [18,19]. Furthermore, to
avoid the re-infestation of leeches caused by the hatching of cocoons deposited on the
walls of the fish tanks, aquaculture facilities have also attempted exposure of tanks to the
blazing sun. However, all these measures seem less effective and life-threatening than other
methods, especially formalin [19].

In the search for antiparasitic agents from natural products, researchers have recently
turned their attention to marine sources, particularly seaweeds [20]. The goal of this study
is to utilize S. polycystum extract to manage parasitic leech infestations and to use LC-MS
profiling to identify the probable bioactive compounds responsible for antiparasitic actions.



Diversity 2022, 14, 796 3 of 12

2. Materials and Methods
2.1. Chemicals

Formalin (37% aqueous formaldehyde solution) was purchased from Sigma, Leica,
Microsystem, and Germany. HPLC grade methanol and hexane were obtained from Merck
(Darmstadt, Germany). Polyvinylidene fluoride (PVDF) syringe filters with 0.22 µm pore
size and 13 mm diameter were purchased from Merck (Darmstadt, Germany).

2.2. Sample Collection

Fresh brown seaweed, S. polycystum (Figure 1), was collected in the morning manually
during low tides on reef flats from the shore at the Outdoor Development Centre (ODEC),
UMS (6.042911, 116.111421) in September 2021. The morphological identification was car-
ried out and a voucher specimen (IPMB-A 01.00001) was deposited at the Marine Specimen
Reference Collection Room of the Borneo Marine Research Institute, Kota Kinabalu. The
collected sample was cleaned of unwanted debris including epiphytes, sand, pebbles, and
shells by washing thoroughly with tap water.
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Figure 1. Fresh Sargassum polycystum collected from Kota Kinabalu, Sabah, Malaysia.

2.3. Solvent Extraction

The blade, stipe, and vesicles of the seaweed were cleaned with distilled water before
being dried in an oven for two days at 37 ◦C. The dried plant was ground into a fine
powder using a mechanical grinder and stored in an airtight container. The extraction of dry
seaweed powder was carried out using the maceration method [21] with slight modification.
A total of 60 g and 600 mL of dry seaweed powder and methanol, respectively, were utilized
in this single multistage extraction method. Sixty grams of dry seaweed powder was
extracted using 300 mL of HPLC grade methanol over three days in an incubator benchtop
shaker (25–30 ◦C, 120 rpm) (Orbicult IBS-NR-25-8, ESCO, Singapore). The mixture was
vacuum-filtered through Whatman No. 1 filter paper. The residue that remained on the
filter was collected in a conical flask. Then, the residue was added subsequently to another
300 mL of methanol, while the filtrate was stored in a Scott bottle. The residue was then
extracted after three days. The mixture was vacuum-filtered to obtain the filtrate. A
combination of filtrates from the first and the second filtration was concentrated using a
vacuum rotary evaporator (R-215, BUCHI, Flawil, Switzerland). A freeze dryer was used to
lyophilize the filtrate after it had been maintained at −80 ◦C for 24 h (Freezon 12, Labconco,
Kansas City, MO, USA). After the filtrate was lyophilized, the extract (5.10 g) was kept for
future research in the freezer.

2.4. Antiparasitic Bioassay

Parasitic leeches infesting hybrid grouper (Figure 2) were collected from the aquacul-
ture facilities. Based on their morphological characteristics, the leeches were identified [10].

Adult leeches were selected and divided into seven groups and each group consisted
of six leeches in a Petri dish. One milliliter of extract solution for each group was used
and placed in a Petri dish. Then, the leeches were exposed to the normal control, positive
control, and different concentrations of seaweed extract solution.

Group 1: Normal control, treated with seawater groups only Figure 3A.
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Group 2: Positive control, treated with formalin (0.25% v/v) solution Figure 3B.
Groups 3, 4, 5, 6, and 7: Treated with 6.25, 12.5, 25, 50, and 100 mg/mL of the methanol

extracts of S. polycystum, respectively (Figure 3C–H). The solution was produced using the
serial dilution technique.
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During the challenge, mortality time was recorded using a stopwatch for 720 min [21].
The experiment was performed in triplicate.

2.5. Observation of Leech Behavior

The changes in the behavior of leeches were observed visually after exposure to
formalin and different concentrations of seaweed extract, and the results are compared to
the normal control group.

2.6. Liquid Chromatography–Tandem Mass Spectrometry (LC-MS/MS) Acquisition

LC-MS/MS analysis was performed using the Dionex UltiMate 3000 UHPLC system
(Thermo Fisher Scientific, Waltham, MA, USA) coupled with the Thermo Scientific Q Exac-
tive HF Orbitrap mass spectrometry system (Thermo Fisher Scientific, Waltham, MA, USA)
as described in [22,23]. A Thermo Syncronis C18 column (2.1 mm × 100 mm × 1.7 µm;
Thermo Fisher Scientific, Waltham, MA, USA) was used for liquid chromatography and
maintained at 55 ◦C at a flow rate of 450 µL/min during analysis. All instrumental set-
tings and elution gradients were described earlier in [22], and instrument calibration was
performed before the analysis.

2.7. Data Analysis

The acquired data were processed and analyzed using MZmine 3.1.0 software [24].
Briefly, raw mass spectrometry data were processed for mass detection, chromatogram
building, smoothing, and alignment, before putative identification. Identification of metabo-
lites was carried out with MZmine 3 and the processed data were matched against the Hu-
man Metabolome Database (HMDB) [25,26], LIPID MAPS® Structure Database (LMSD) [27],
Global Natural Products Social Molecular Networking (GNPS) library [28], and ChemSpi-
der and matching tolerance was limited to 5 ppm mass error.

2.8. Statistical Analysis

Data analysis was carried out using the IBM SPSS Statistics 25 Window package (IBM,
Armonk, NY, USA). Significant differences between groups were investigated using a
one-way analysis of variance (ANOVA) followed by Tukey’s test. All data points were
shown as mean ± standard deviation (S.D.). p values = 0.05 were viewed as significant [21].

3. Results
3.1. Antiparasitic Properties of Sargassum polycystum

Table 1 shows the Z. arugamensis mortality time when treated with formalin and extracts.
The groups that were treated with seaweed extract showed the antiparasitic effect in a dose-
dependent manner. In comparison to the doses of 50, 25, 12.5, and 6.25 mg/mL of the methanol
extract, the time required for the parasitic leeches to die was shorter at 100 mg/mL (Figure 3).
No mortality was noticed in the negative control group throughout the 180 min observation.
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Table 1. Mortality time of the leeches at different concentrations of methanol extract of S. polycystum.
Each value represents the mean ± S.D of 6 parasitic leeches per group.

No. Group Mortality Time (min)
Mean ± S.D.

1 * Normal control 0.00 ± 00
2 # Positive control 1.59 ± 0.30 a

3 6.25 (mg/mL) 30.18 ± 7.69 a,b

4 12.5 (mg/mL) 11.10 ± 2.52 a,b,c

5 25 (mg/mL) 6.93 ± 2.44 a,b,c,d

6 50 (mg/mL) 2.77 ± 1.40 a,b,c,d,e

7 100 (mg/mL) 0.93 ± 0.44 a,b,c,d,e,f,g

a Significance at p = 0.05 compared with the normal control; b significance at p = 0.05 compared with the
positive control; c significance at p = 0.05 compared with 6.25 mg/mL seaweed extract; d significance at p = 0.05
compared with 12.5 mg/mL seaweed extract; e significance at p = 0.05 compared with 25 mg/mL seaweed extract;
f significance at p = 0.05 compared with 50 mg/mL seaweed extract; g significance at p = 0.05 compared with
100 mg/mL seaweed extract; * seawater; # 0.25% (v/v) formalin.

3.2. Behavior of Z. arugamensis

The leeches in the seawater moved in an orderly manner by using their anterior
and posterior suckers. The leeches were firmly attached to the Petri dish using their
suckers. Leeches that had been exposed to formalin initially swam vigorously before
deteriorating slowly and eventually ceasing to move. Some of the parasitic leeches were
able to attach with the anterior or posterior sucker at the bottom of the Petri dish before
they died, compared to the extract-treated group. Leeches exposed to methanol extract of
S. polycystum at various doses exhibited disorganized movement and were unable to use
their anterior or posterior suckers to move. The leeches exhibited vigorous swimming
behavior in a zig-zag pattern, then, the swimming gradually halted as the leeches were
paralyzed and died. No movements were observed after physical touch.

3.3. Physicochemical Parameters of Leeches Treated with Solutions

The water quality parameters of the control group and seaweed extract group solutions
applied for the antiparasitic assays are shown in Table 2. The pH value of the extract group
decreased as the concentration of extract increased. The presence of bioactive compounds
with acidic nature in the extract group resulted in slightly acidic conditions. The dissolved
oxygen for all groups was almost the same and ranges from 7.85 to 8.08 mg/mL. The
highest concentration of the extract group shows high salinity compared to other groups.

Table 2. Water quality parameters of the solutions applied for the fish treatment.

Group pH Salinity (ppt) Dissolved
Oxygen (mg/mL) Temperature (◦C)

* Normal control 6.53 23.1 7.91 26.2
# Positive control 6.36 15.3 7.90 26.2

6.25 (mg/mL) 6.27 24.0 8.08 25.5
12.5 (mg/mL) 6.23 18.5 7.81 25.1
25 (mg/mL) 6.01 29.1 8.04 25.2
50 (mg/mL) 5.76 34.7 8.03 25.4
100 (mg/mL) 5.43 46.9 7.85 25.9

* Seawater; # 0.25% (v/v) formalin.

3.4. LC-MS Analysis and Metabolite Identification

In the present study, a total of 29 metabolites were identified via Q Exactive HF Orbi-
trap mass spectrometry (Table 3). Among these 29 metabolites, there are two flavonoids
(ephedrannin A and hinokiflavone), two organoarsenics (1-dimethylarsinoyl-heptadecane
and cacodylic acid), three heterocyclic compounds, and two chlorophyll breakdown prod-
ucts (Figure 4). In addition, a steroidal compound, salvianolic acid (No. 28), was detected
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as well. However, identification of underivatized steroidal compounds via tandem mass
spectrometry is impossible and any putative identity could be misleading due to their
stable 4-ring skeleton and diverse stereoisomerisms [29]. Thus, the putative identity of the
steroidal compound was masked, and only provided with the detected m/z and formula.

Table 3. Matched metabolites in the methanol extract of Sargassum polycystum.

No. Matched Metabolites Molecular Formula m/z Mass Error (ppm) Class

1 2-Aminoheptanoic acid C7H15NO2 146.1176 0.42 Amino Acid

2 5-Aminopentanoic acid C5H11NO2 118.0866 3.08 Amino Acid

3 1-Hydroxy-5-phenyl-3-pentanone C11H14O2 179.1069 1.47 Aromatic

4 2-(4-Bromophenyl) butanoic acid C10H11BrO2 243.0005 −3.88 Aromatic

5 2-Anilino-3-chloro-1,4-naphthoquinone C16H10ClNO2 284.0466 −2.26 Aromatic

6 2-Benzoyl-5-chlorobenzoic acid C14H9ClO3 261.0306 −2.46 Aromatic

7
3-(2,6-Diisopropylphenyl)-1-{1-[3-(2,5-
dimethylphenyl)-4-oxo-3,4-dihydro-2-

quinazolinyl]ethyl}-1-(2-phenylethyl)urea
C39H44N4O2 601.3529 −1.23 Aromatic

8

6-(3-Ethoxy-4-hydroxyphenyl)-8-[(4-
methylphenyl)amino]-1,3,7,9-tetraoxo-6a-

phenyl-3,3a,4,6,6a,7,8,9,9a,10,10a,10b-
dodecahydroisoindolo

[5,6-e]isoindole-2(1H)-carboxamide

C36H34N4O7 635.2504 0.73 Aromatic

9 Diphenyl sulfoxide C12H10OS 203.0529 2.28 Aromatic

10 Harderoporphyrin C35H36N4O6 609.2706 −0.23 Chlorophyll Breakdown
Product

11 Pyrophaeophorbide a C33H34N4O3 535.2708 0.86 Chlorophyll Breakdown
Product

12 11-Amino-undecanoic acid C11H23NO2 202.1803 0.80 Fatty Acyl

13 11-Oxo-undeca-5,8-dienoic acid C11H16O3 197.1175 1.84 Fatty Acyl

14 Erucamide C22H43NO 338.3416 −0.41 Fatty Acyl

15 3-(7-tetradecenoyloxy)-dodecanoic acid C26H48O4 425.3625 −0.09 Fatty Acyl

16 Termitomycesphin F C43H83NO10 774.6094 0.60 Fatty Acyl

17 Ephedrannin A C30H20O11 557.1078 −0.07 Flavonoid

18 Hinokiflavone C30H18O10 539.0977 0.86 Flavonoid

19 Ectoine C6H10N2O2 143.0815 0.43 Heterocyclic

20 Erinapyrone C C8H10O5 187.0603 1.40 Heterocyclic

21 Stachydrine C7H13NO2 144.1020 1.13 Heterocyclic

22 1-Dimethylarsinoyl-heptadecane C19H41OAs 361.2446 0.17 Organoarsenic

23 Cacodylic acid C2H7AsO2 138.9736 1.17 Organoarsenic

24 5-Bromo-2-hydroxy-N,3-dimethylbenzamide C9H10BrNO2 243.9971 1.49 Phenolic

25 Ethephon C2H6ClO3P 144.9822 4.59 Plant Growth Regulator

26
N-Benzyl-N~2~-isobutyl-N-{[1-(3-

methoxybenzyl)-1H-pyrrol-2-yl]methyl}-N~2~-
(2-naphthylsulfonyl)glycinamide

C36H39N3O4S 610.2743 1.58 Polyaromatic

27 Salvianolic acid L C36H30O16 719.1609 0.36 Polyphenolic

28 Steroidal compound C29H49NO2 444.3839 0.81 Steroid

29 α-Carboxydimethyloctylhydroxychroman C24H38O4 391.2842 −0.10 Vitamin E
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4. Discussion

The seaweed S. polycystum is known for its antibacterial activity [30] and antioxidant
and anticancer properties [8]. One of the brown seaweed compounds, fucoidan (fucose-
containing sulfated polysaccharide), has been extensively studied since it exhibits many
biological and pharmacological properties such as anticoagulant/antithrombotic, antitumor,
antivirus, and anti-inflammatory effects [31].

In this study on treatment, seaweed extract killed parasitic leeches effectively at the
highest concentration (100 mg/mL) in vitro within a shorter time (0.96 ± 0.44 min). A
previous study on neem plant (Azadirachta indica) leaf extract showed a strong antiparasitic
effect on Z. arugamensis when administered in vitro at a concentration of 100 mg/mL within
6.45 ± 0.45 min [22] compared to 100 mg/mL of Dillenia suffruticosa extract at which the
leech mortality time was 14.39 ± 3.75 min [32]. Likewise, the plant extract was tested
against the leech Limnatis nilotica. The treatment groups of common grape vine Vitis vinifera
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methanol extract (300 and 600 mg) on L. nilotica reported the death times of 260 ± 63 and
200 ± 50 min, respectively [33]. With another plant, Nephrolepis biserrata, Z. arugamensis
was paralyzed after administering 25, 50, and 100 mg/mL of the extract with an average
mortality time of 25.11 ± 3.26, 11.91 ± 0.99, and 4.88 ± 0.50 min, respectively [21]. These
corresponding results indicate that the antiparasitic efficacies of natural product extract
against leeches are vital for sustainable aquaculture.

In the present study, a strong antiparasitic effect of formalin at 0.25 mg/mL was
observed in vitro. Previous studies have demonstrated the antiparasitic effectiveness of
formalin on adult leeches with particularly high success in vitro [18]. Formalin has also been
used to treat another type of fish parasite. For example, Thing et al. [34] demonstrated that
exposure to 100 and 200 ppm formalin killed pathogenic isopods, Caecognathia coralliophila,
in vitro within 24 h. In the antiparasitic test, 250 and 400 ppm of formalin were also
found to be effective to remove Benedenia seriolae and Zeuxapta seriolae monogeneans from
the yellowtail kingfish, Seriola lalandi [35]. In addition, the antiparasitic effectiveness of
formalin in the freshwater environment to control the protozoan parasite Ichthyophthirius
multifiliis had also been reported [36]. Few studies. [37,38] revealed that formalin was
effective against the monogenean Dawestrema cycloancistrium at high concentrations (440
and 550 mg/L) and short exposure time (1 h). So, it is assumed that formalin is an effective
chemical to control parasites but has adverse effects of its use.

The LC-MS/MS analysis of a methanol extract of S. polycystum indicated the pres-
ence of bioactive flavonoids (ephedrannin A and hinokiflavone), organoarsernics (1-
dimethylarsinoyl-heptadecane and cacodylic acid), and other potential bioactive metabo-
lites which possessed heterocyclic, aromatic, or phenolic functional groups. Ephedrannin
A, also known as a dimeric proanthocyanidin, was reported to possess anti-inflammation
properties [39]. On the other hand, hinokiflavone is known for cancer inhibition, anti-
inflammation, and antiparasitic properties [39–41]. In an antiparasitic study [40], hinoki-
flavone significantly inhibited the growth of Leishmania donovani and Plasmodium falciparum
with IC50 of 2.9 and 2.3 µM, respectively. The presence of lipid-soluble organoarsenic
metabolites in marine fishes and algae is common, but yet to be reported in any terrestrial or-
ganisms [42–44]. Arsenic-containing hydrocarbon, such as 1-dimethylarsinoyl-heptadecane
and cacodylic acid, is reported to possess neurotoxicity [44]. Furthermore, cacodylic acid,
also known as Agent Blue, is a commonly used active compound in herbicides [45,46].
Overall, the metabolites found in the methanolic extracts of S. polycystum are correlated
with the antiparasitic effect. However, further study on the quantitative evaluation of the
detected bioactive compounds is essential.

Most studies published to date have concentrated solely on the effectiveness of medici-
nal plants for the removal of parasitic marine leeches from host fish. Seaweed extract could
be a better alternative in controlling leech infestation as it has unique biological features
and is a natural component of the marine environment. Therefore, in the present study, the
effect of the seaweed extract on parasitic leeches was investigated. Previously, aqueous
seaweed extract of the common tropical seaweeds was shown to be ineffective in killing
adults of the monogenean ectoparasite Neobenedenia sp. [20]. However, there are materials
describing sulfated polysaccharides (SPSs), found in marine hydrobionts including algae
and invertebrates, as prospective treatments and preventative measures for protozoa and
helminthiasis [47–49].

5. Conclusions

This study has revealed the effects of a natural treatment utilizing the seaweed S. polycystum
to kill adult leeches. It took just 0.96 ± 0.44 min per 100 mg/mL concentration of the seaweed
extract to kill Z. arugamensis. The phytochemical components of S. polycystum methanolic
extract contained 29 metabolites, including two flavonoids (ephedrannin A and hinokiflavone),
two organoarsenics (1-dimethylarsinoyl-heptadecane and cacodylic acid), three heterocyclic
compounds, and two chlorophyll breakdown products. Notably, there are no treatments against
leeches from marine sources and currently available treatments only focus on terrestrial plant
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extracts. The use of marine sources could be a better alternative for the treatment of infested
cultured marine fish. Seaweed extracts can be applied directly in closed systems, however,
treatment waste disposal should be considered to avoid water pollution. More studies are
needed for the quantitative evaluation of the detected bioactive compounds and to explore the
mechanisms of bioactive compounds from the extract as well.
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