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Abstract: Knowledge about the diversity and spatiotemporal variability of epiphytic diatom com-
munities in estuarine meadows has great relevance for coastal ecology and, thus, contributes to
understanding the impact of natural and anthropogenic changes on seagrass meadows. The com-
munity of epiphytic diatoms in Ruppia maritima L. meadows was investigated in two environments
with different levels of anthropogenic impact and nutrient loads. Both impacted and non-impacted
meadows had similar conditions in terms of water depth, temperature and transparency but distinct
nutrient loads and salinity ranges. A total of 159 diatom taxa were found on Ruppia maritima leaves
during the monitoring period, including freshwater (30.8%), marine (25.1%), brackish (9.4%) and
cosmopolitan (8.8%) taxa. The most abundant species were C. placentula, T. tabulata, M. pumila and
T. fasciculata, in addition to A. tenuissimus, C. adhaerens and M. moniliformis. Although present in both
sites, C. placentula and T. tabulata were the dominant species in the impacted site. We found that 32%
of the taxa were exclusive to the non-impacted site, 23% to the impacted site and 45% were common
to both sites. The study sites showed marked differences in community attributes; i.e., higher rich-
ness, diversity and equitability and lower dominance were found in the non-impacted site, which is
distant from anthropogenic sources of domestic and industrial sewage and has low concentrations
of dissolved N and P in water and low values of sediment organic matter. Nutrient concentration
and salinity were the main factors behind the spatial and temporal variability in the structure of the
epiphytic community when all other environmental variables were similar (water depth, temperature,
transparency and host plant). The influence of temperature and salinity on community structure
was site-dependent. This study revealed the high richness and diversity of epiphytic diatoms in
the meadows of the Patos Lagoon estuary (PLE) and the high spatial and temporal heterogeneity of
the communities, and it shows the potential of epiphytic community studies for the assessment of
environmental quality in seagrass meadow habitats.

Keywords: coastal lagoon; diatoms; diversity; eutrophication; submerged aquatic vegetation; spatial
variability

1. Introduction

Epiphytic algae enhance seagrass-meadow primary productivity, biodiversity and
structural complexity, sustaining a significant part of estuarine and marine food webs [1].
Epiphytes protect seagrasses from UV-B radiation and desiccation [2,3], are used as food by
invertebrates and small fishes [4–6] and can be more productive than their macroscopic
seagrass hosts [7].

In addition, epiphytic algae may contribute up to 50% of the carbon buried in seagrass
soils [8]. In the face of natural and human-induced perturbations, changes in seagrass
system biodiversity can influence resource use and productivity, alter trophic interactions
and reduce the stability of estuarine and coastal systems [9]. Therefore, understanding the
composition and abundance of epiphytic algae and how they vary according to abiotic
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variables can contribute to the understanding of marine and coastal biodiversity but also to
predictions of the impact of natural and anthropogenic changes on seagrass meadows.

Due to the faster growth rates and biomass turnover compared to their seagrass hosts
and the specific community responses to changes in environmental conditions, epiphytic
algae are excellent indicators of water quality, the integrity of seagrass meadows and the
overall aquatic ecosystem [10,11]. The degradation of aquatic ecosystems causes changes
in the structures of epiphytic algal communities, as well as subsequent reductions in
taxonomic diversity and proliferations of toxic and opportunistic species [12,13]. However,
few researchers have studied how epiphytic communities in general, and diatoms in
particular, respond to changes in water quality, such as nutrient enhancement [14].

Among the epiphytic algae, diatoms are the dominant or the most abundant compo-
nents in shallow estuarine areas [15,16]. The abundance and composition of diatom species
are dependent on abiotic factors (nutrients, light availability, current velocity, wave action,
temperature, salinity), biotic factors (especially herbivory action) [17–19] and intrinsic
factors, such as motility [20].

The species of epiphytic diatoms on the same seagrass species may differ among
different habitats [21]. For example, variability in spatial and temporal factors, such as
salinity, nutrient availability and temperature, has been suggested to structure the epiphytic
diatom community of Thalassia testudinum in Florida Bay, USA [22]. Another study [23]
found that epiphyte composition was influenced mainly by environmental factors, such
as wave energy, temperature, ammonium concentration and salinity compared to site
(ocean versus bay) and host species. On the other hand, salinity has been shown to be
the most important factor for diatom community dissimilarities between sites for both
seagrasses [24] and macroalgal hosts [25,26]. Therefore, variations in the physicochemical
characteristics of water have a significant influence on the epiphytic diatom community.

Despite their ecological relevance and their potential for water-quality monitoring, sea-
grass epiphytic algae are neglected in many areas where seagrass meadows occur mainly
around reefs and within coastal lagoons; additionally, their conservation status is critical [13].
The few records of seagrass meadow epiphytes concern filamentous macroalgae on R.
maritima [27] and Halodule wrightii [28], resulting in epiphytic diatoms remaining poorly
studied [28,29].

Patos Lagoon in southern Brazil is a dominant feature of the coastal plain, connected
to a large continental drainage basin (200.000 km2) and the Atlantic Ocean. The primary
producers in the Patos Lagoon estuary (PLE) sustain a highly productive food web [30]. The
PLE holds approximately 120 km2 of shoals and shallow bays, which are under different
levels of natural and anthropogenic impacts [31,32]. The distribution and abundance of
seagrass meadows in Patos Lagoon have diminished since the 1990s due to a complex
combination of natural and anthropogenic changes [33], with significant effects on the
structure of benthic macrofauna, the abundance of resident estuarine fish [34], trophic
links [35] and the fate of organic matter [36]. In the PLE, the composition, density and
biomass of microalgae are directly linked to the salinity regime, which depends on the
water circulation, driven by regional climate and local weather conditions [37], and can
influence the distribution of nutrients in the estuary [38,39].

Despite their small size and very thin leaves, Ruppia maritima meadows in PLE hold
an abundant epiphytic algal community [29,40] that can be visible to the naked eye during
periods of higher productivity. Knowledge about seagrass epiphytes in the PLE is scarce,
restricted to a single short-term study that followed the epiphytic colonization process
on R. maritima leaves and which identified only two species and nine diatom genera [29]
that are commonly found in many seagrass meadows around the world [20,22,29,41–49].
Epiphyte composition and diversity in mature seagrass meadows are unknown, limiting
the understanding of the role of seagrass in estuarine biodiversity and the causes of local
reductions. Knowledge about epiphyte algae diversity can be used for estuarine monitoring
and conservation planning.
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The present study aimed to describe the temporal variability in epiphytic diatom
abundance and community composition in R. maritima meadows at two distinct sites
marked by different levels of anthropogenic impact and different abiotic variables.

Based on the premise that the spatial variability in community composition and
abundance of epiphytic diatoms is structured mainly by the availability of nutrients and
that temporal variability is mainly determined by salinity and temperature, our hypothesis
states that the community attributes of the diatom assemblages will differ between the
impacted and non-impacted areas, with higher values expected for the non-impacted site.

2. Materials and Methods
2.1. Study Area

For the study of epiphytic diatoms, two shallow areas of the Patos Lagoon estuary
were chosen (Figure 1): Saco da Mangueira (SM) 32◦5′13.9704′′ S, 52◦7′14.9628′′ W and
Saco da Quitéria (SQ) 32◦2′8.3688′′ S, 52◦14′53.052′′ W. The hydrodynamics of the PLE
mainly depend on the relationships between the variability in continental discharge, wind
action and water exchange with the sea [50,51]. Shallow areas (<1.5 m) provide favorable
conditions for the establishment and development of submerged aquatic vegetation [33].
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Figure 1. Location of the study area: two meadows of Ruppia maritima in the Patos Lagoon estuary
(PLE) in the state of Rio Grande do Sul, Brazil. SQ = Saco da Quitéria, SM = Saco da Mangueira.
Based on Google Earth.

The SM is an environment with an area of approximately 23 km2 that is approximately
10 km long and 3.5 km wide in the central part, which is the widest part. The SQ is a
smaller environment with an area of approximately 4.4 km2, approximately 3.5 km long
and 1.7 km wide in more than half of its area, which tapers southwest to approximately
0.15 km wide. The SM is the largest shallow area of the PLE and is connected to this
environment through an entrance of approximately 200 m, which is where the Ponte dos
Franceses is located, a road that connects the city of Rio Grande to its industrial area. The
SM is more heavily subject to anthropic action (release of effluents) and salt water than the
SQ. The two sites were chosen for this study because they present a historical record of
the presence of seagrass meadows, dominated by Ruppia maritima, and differ in terms of
salinity and anthropogenic impact.

2.2. Epiphytic Diatom Sampling and Laboratory Procedures

Monthly monitoring of submerged vegetation was carried out (November 2015 to
February 2018) in two Ruppia maritima meadows in the PLE located in SM and SQ.
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At each site, vegetation samples were collected (N = 3) with a PVC extractor tube
(10 cm in diameter and 78.5 cm2 in area) buried 15 cm deep in the sediment. The samples
were collected, pre-washed in the field to remove the sediment and stored in plastic bags.
The material was sorted in the laboratory for the removal of epiphytes using tweezers,
brushes and jets of filtered water from the site (pore size 0.45 µm). The removed epiphytes
were placed in 100 mL flasks, and half of this volume was fixed with 4% formaldehyde.
To identify and quantify diatoms, two permanent slides were made per sample (N =
6 slides per site) according to the oxidation technique from [52] using Naphrax® resin
(Brunel Microscopes Ltd, Chippenhan, Wiltshire, UK), for a total of 180 slides. At least
400 diatom valves were counted per sample through counts of approximately 200 valves per
permanent slide. To determine the relative abundance, the number of valves counted and the
number of species found were considered. Abundant species were those with values greater
than the average calculated for the sample [53]. The epiphytic diatoms were identified and
photographed under optical (Olympus CX 40) and scanning electron (SEM) microscopes at
the electron microscopy center (CEME-SUL) of the University Federal do Rio Grande (FURG).

In each meadow, temperature, salinity, depth, transparency (Secchi disk) and water
samples (N = 3) were collected at monthly intervals for determination of suspended solids
and dissolved inorganic nutrients. The water samples were filtered with pre-weighed
cellulose acetate filters (0.45 µm porosity), dried in an oven (60 ◦C for one hour) and
reweighed to determine the material suspended in the water [54]. The water samples were
filtered on the same day of collection and transported to the Ecology Center of the University
Federal do Rio Grande dos Sul (CENECO-UFRGS) for analysis of dissolved inorganic
nutrients (total ammoniacal nitrogen - TAN (NH4+), nitrate (NO3¯), nitrite (NO2¯) and
orthophosphate (PO4¯)). Dissolved silica in water (silicate) data were obtained from the
database of the Long-Term Ecological Program of the Federal University of Rio Grande
(PELD-FURG), originating from a sampling point (museum station) located between the
two areas of this study.

Sediment samples (cores: 5 cm diameter, buried up to 5 cm in depth) were collected
each month until February 2017; after this period, they were collected seasonally to analyze
organic matter (OM) content. The samples were analyzed using the calcination method [55].
Data for precipitation (monthly accumulated) and continental discharge (sum of the Jacuí,
Taquari and Camaquã Rivers) for 30 days before collection were obtained from the National
Institute of Meteorology (INMET) and from the National Water Agency (ANA). Hourly
wind data for three days before collection were obtained from the Praticagem of Rio Grande
station (RGPilots).

2.3. Data Analysis

Differences in environmental variables between sites were analyzed using Student’s
t-test and the Mann–Whitney test after checking the assumptions of normality (Shapiro–
Wilk and Kolmogorov–Smirnov) and homogeneity (Levene test) using Jamovi software [56].

Shannon’s diversity (H’ log2), equitability (J’) and dominance (D’) indices were calculated
from the original matrix (159 taxa) using PAST software [57]. Diatom richness was treated
here as the total number of taxa found. To investigate the spatial and monthly variation
in richness, diversity, equitability and dominance, Student’s t-test and the Mann–Whitney
test were performed after verifying the statistical assumptions. Temporal comparisons were
undertaken by considering the month of collection and the following period (n = 12).

To test the expected spatial distribution and explore the monthly variation in species
abundance and composition, two-way PERMANOVAs were performed with a purified
matrix based on periods (n = 13) that presented vegetation in both locations (April 2016 to
February 2017, May 2017 and February 2018) composed of 80 taxa. The Bray–Curtis
distance was calculated from transformed data, and 9999 permutations were used. To
test for statistical significance, the p value of the Monte Carlo test was considered when
the number of possible permutations was low (<100) for greater test precision [58]. To
identify the taxa with the greatest contribution to the differentiation between the samples,
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a multivariate analysis of percentage similarity (SIMPER) was performed using PRIMER®

software, version 6 (PRIMER-e, Albany, Auckland, New Zealand. The ordination of the
samples, based on differences in diatom abundance and composition, was analyzed using
non-metric multidimensional scaling (NMDS) with the Bray–Curtis similarity index.

The relationships between the diatom community, the physical and chemical factors of
the water of each meadow and meteorological variables were examined through canonical
correspondence analysis (CCA) using matrices with monthly data for 104 taxa: 87 in the SQ
(16 months) and 61 in the MS (14 months). For the analysis of CCA and PERMANOVAs (except
composition), matrices with transformed data were used log (x+1), and rare taxa, defined as
those whose frequency of occurrence was less than 5%, were excluded [59,60]. To identify
relationships between the abiotic variables and the descriptor indices of the community
structure (richness, diversity, equitability and dominance), simple linear regression analyses
were performed.

3. Results
3.1. Environmental Variables

During the study period, the accumulated rainfall (30 days before each sampling date)
ranged from 0 mm (June and July 2016 and September 2017) to 192.6 mm (March 2017)
(Figure 2). The wind speed ranged between 2.6 ms−1 (June 2016) and 9.6 ms−1 (April 2017)
(average 5.6 ms−1). The fluvial discharge (average 1867 m3 s−1) varied between 435.66
(June 2016) and 5444 m3 s−1 (June 2017) (Figure 2).
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Figure 2. Average fluvial discharge, precipitation (30 days prior to each collection) and wind speed
(3 days prior to collection) during the study period (November 2015 to February 2018).

The study sites showed differences regarding salinity and nutrient concentrations, but
no differences were found regarding water depth, temperature, transparency or suspended
material (Table 1). The water depth ranged between 0.37 and 1.17 m (mean 0.75) in the
SM and between 0.28 and 1.30 m (mean 0.71) in the SQ. The water temperature ranged
between 11.0 and 28.5 ◦C (mean 19.5) in the SQ and between 9.0 and 27.0 ◦C (mean 19.1)
in the SM. The suspended material values ranged between 3.6 and 166.0 mg L−1 (mean
32.6 mg L−1) in the SQ and between 4 and 128.0 mg L−1 (mean 31.8 mg L−1) in the SM.
Water transparency varied from 0.12 to 0.91 m (mean 0.48 m). The average salinity and
range were significantly higher (Tukey, p = 0.02) in the SM (0.0–25.0, mean 8.8) than in the
SQ (0.0–19.0, mean 5.5).
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Table 1. Values of environmental variables (temperature (◦C), salinity (‰), depth, transparency (m), total suspended solids, phosphate, total ammo-
niacal nitrogen (TAN), nitrate + nitrite (mg L−1) and organic matter in the sediment (%)) during the study period (November 2015 to February 2018).
SQ = Saco da Quitéria, SM = Saco da Mangueira.

Variables/Periods
and Sites

Temperature Salinity Depth Transparency
(Secchi Disk)

Total
Suspended

Solids
Phosphate Nitrogen

(TAN)
Nitrate +
Nitrite

Organic
Matter

(Sediment)

SQ SM SQ SM SQ SM SQ SM SQ SM SQ SM SQ SM SQ SM SQ SM

2015
November 24.20 20.40 0.20 1.18 0.65 0.43 0.42 0.13 7.33 74.00 0.02 0.08 0.36 0.67 0.68 2.12 0.48 0.74

December 21.70 26.50 1.60 6.80 0.55 0.63 0.38 0.20 32.00 42.83 0.01 0.03 0.50 1.28 0.54 0.39 0.70 0.50

2016

January 27.60 24.80 0.12 6.61 0.99 0.53 0.35 0.23 23.33 68.93 0.02 0.05 0.07 0.27 0.32 0.39 0.73 0.33

February 28.50 27.00 0.00 6.00 0.28 0.58 0.28 0.58 20.67 16.00 0.01 0.04 0.70 2.78 0.73 0.49 0.54 0.67

March 23.50 24.00 17.00 15.00 0.38 0.37 0.38 0.37 38.33 21.87 0.01 0.07 3.16 4.85 0.63 0.49 0.92 0.73

April 13.00 11.00 19.00 8.00 0.53 0.55 0.53 0.55 19.33 20.93 0.02 0.06 4.01 4.79 0.60 1.31 0.83 0.90

May 14.00 12.00 15.00 10.00 0.64 1.17 0.64 0.75 38.89 26.00 0.01 0.04 2.70 1.59 0.48 0.56 0.72 1.40

June 13.00 12.00 5.00 5.00 0.65 0.61 0.65 0.49 29.33 66.67 0.01 0.07 0.71 1.69 0.60 0.61 1.45 1.12

July 11.00 9.00 0.00 10.00 0.51 0.81 0.51 0.81 17.67 9.00 0.01 0.01 1.59 3.58 0.47 0.59 1.17 1.83

August 16.00 14.00 1.00 6.00 0.52 0.77 0.25 0.77 40.00 24.00 0.01 0.05 0.71 2.66 0.68 0.68 0.78 0.93

September 19.00 17.00 6.00 6.00 0.63 0.68 0.63 0.25 19.67 10.83 0.01 0.07 2.08 1.66 0.60 0.67 0.82 1.38

October 19.00 20.00 9.00 10.00 0.86 0.89 0.32 0.34 30.00 10.00 0.01 0.06 2.54 3.74 0.56 0.61 0.79 1.34

November 19.00 19.50 1.00 5.00 0.65 0.53 0.12 0.53 70.00 6.00 0.04 0.05 1.09 1.67 3.44 1.04 0.59 0.91

December 22.50 22.50 0.00 11.00 0.80 0.76 0.12 0.52 98.00 16.22 0.02 0.06 0.55 2.62 1.15 0.81 0.47 0.89
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Table 1. Cont.

Variables/Periods
and Sites

Temperature Salinity Depth Transparency
(Secchi Disk)

Total
Suspended

Solids
Phosphate Nitrogen

(TAN)
Nitrate +
Nitrite

Organic
Matter

(Sediment)

SQ SM SQ SM SQ SM SQ SM SQ SM SQ SM SQ SM SQ SM SQ SM

2017

January 25.50 24.00 5.00 8.00 0.58 0.74 0.58 0.72 15.33 29.67 0.01 0.04 2.24 2.13 0.90 0.68 0.56 1.35

February 22.00 22.00 9.00 10.00 0.64 0.86 0.64 0.86 5.60 8.40 0.01 0.05 3.54 3.79 0.78 0.68 0.90 1.45

March ND 19.50 ND 7.00 ND 0.97 ND 0.97 ND 23.33 ND 0.06 ND 3.15 ND 0.57 ND 1.18

April ND 18.50 ND 25.00 ND 0.81 ND 0.38 ND 25.33 ND 0.11 ND 2.05 ND 0.90 ND ND

May 15.00 15.50 18.00 20.00 0.55 0.70 0.55 0.70 20.67 10.27 0.01 0.07 5.00 5.30 0.65 0.69 1.05 1.99

June 13.00 17.00 0.00 0.00 1.29 0.81 0.35 0.81 29.67 19.33 0.02 0.07 0.98 0.70 1.34 1.01 ND ND

July 17.20 16.50 0.00 0.00 0.80 0.80 0.20 0.36 71.67 49.67 0.03 0.11 0.83 0.93 1.91 1.51 ND ND

August 15.50 15.00 4.00 6.00 0.85 0.60 0.85 0.60 7.00 14.00 0.01 0.07 0.52 3.11 1.16 0.93 0.78 1.08

September 17.50 17.50 0.00 5.00 0.79 0.86 0.32 0.52 18.00 28.00 0.07 0.11 1.03 2.26 1.65 1.44 ND ND

October 18.50 18.50 0.00 0.00 1.30 0.98 0.15 0.17 154.00 105.33 0.06 0.04 0.60 0.61 1.95 1.57 ND ND

November 21.00 19.80 17.00 20.00 0.91 0.99 0.91 0.55 15.67 23.67 0.02 0.06 2.75 2.72 1.17 1.00 0.51 0.81

December 21.50 22.00 1.00 6.00 0.69 0.89 0.69 0.15 15.67 74.67 0.03 0.05 0.44 1.77 0.89 0.97 ND ND

2018
January 23.00 24.00 5.00 17.00 0.90 ND 0.90 ND 7.50 21.00 0.01 0.04 2.11 3.62 0.71 0.63 ND ND

February 25.50 26.00 10.00 15.00 0.50 0.90 0.50 0.23 15.00 23.67 0.01 0.01 0.70 4.96 0.80 0.65 0.78 1.56

Test Student’s t Mann–
Whitney Student’s t Student’s t Mann–

Whitney
Mann–

Whitney
Mann–

Whitney
Mann–

Whitney
Mann–

Whitney

p-value 0.756 0.025 0.505 0.629 0.840 <0.001 0.01 0.77 0.008
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TAN and phosphate values were higher in the SM (p = 0.00). TAN values ranged between
0.20 and 5.44 mg L−1 (mean 2.53 mg L−1) in the SM and between 0.04 and 5.08 mg L−1 (mean
1.60 mg L−1) in the SQ. Phosphate values ranged between 0.01 and 0.11 mg L−1 (mean
0.06 mg L−1) in the SM and between 0.01 and 0.08 mg L−1 (mean 0.02 mg L−1) in the SQ.
Nitrite and nitrate values did not differ (p = 0.65) between sites (SM: 0.36–2.18 mg L−1,
mean 0.86 mg L−1; SQ: 0.26–3.48 mg L−1, mean 0.98 mg L−1). The sites differed in terms
of sediment organic matter content (p = 0.00), which was higher in the SM (0.31–2.3%,
mean 1.10%) than in the SQ (0.42–1.79%, mean 0.78%). The variability of the environmental
variables is shown in Table 1.

3.2. Community Composition and Abundance

A total of 159 diatom taxa were found on R. maritima leaves during the monitoring
period (102 in the SM and 126 in the SQ) (Table S1), including freshwater (30.8%), marine
(25.1%), brackish (9.4%) and cosmopolitan (8.8%) taxa. Approximately 25.7% of the taxa
were not identified at the species level; therefore, their habitats could not be defined.
Comparing the sites (periods with vegetation), we found that 32% of taxa were exclusive to
the SQ, 23% to the SM and 45% were common to both sites.

The taxa were distributed in 67 genera. The genera with the highest numbers of species
were Nitzschia (19) and Navicula (12), followed by Amphora (8); Tryblionella (7); Planothidium (6);
Surirella and Diploneis (5); Cocconeis and Rhopalodia (4); Actinoptychus, Aulacoseira, Cyclotella,
Fallacia, Fragilaria, Mastogloia, Pseudostaurosira, Skeletonema and Staurosirella (3); Achnanthes,
Bacillaria, Caloneis, Desikaneis, Entomoneis, Eunotia, Gomphonemma, Halamphora, Hyalodiscus,
Melosira, Pleurosigma, Seminavis, Tabularia and Terpsinoe (2). Another 35 genera presented
single species.

Throughout the study period, 31 taxa were found to be abundant in the SQ and 21 in
the SM, with 14 of these taxa being common to both sites: Ambo tenuissimus, Bacillaria
paxillifera, Catenula adhaerens, Cocconeis placentula, Fistulifera saprophila, Melosira moniliformis,
Navicula cruxmeridionalis, N. cryptotenella, N. frustulum, Pleurosira laevis, Pseudostaurosira
brevistriata, P. clavatum, Skeletonema sp.3 and T. tabulata (Figures 3 and 4). While 17 abundant
taxa were found only in the SQ (Aulacoseira granulata, Chaetoceros sp., Cyclotella menegh-
iniana, Cyclotella sp.1, Mastogloia pumila, Nitzschia eutinensis, N. filiformis, N. subcohaerens,
Psedostaurosiropsis geocollegarum, Rhopalodia rumrichiae, Seminavis strigosa, Skeletonema pota-
mos, Skeletonema sp.2, Staurosirella guenter-grassii, Staurosirella aff. ovata, Tabularia fasciculata
and Tryblionella persuadens), only 7 abundant taxa were exclusive to the SM (Fragilaria
sp.1, Navicula sp.3, Navicula sp.5, N. microcephala, Paralia sulcata, Planothidium sp. and
Pseudopodosira echinus).

The abundant taxa that were present continuously over time at both sites were
A. tenuissimus, C. adhaerens and M. moniliformis. Three taxa were dominant in the SQ
(T. tabulata in September and October 2016, M. pumila in May 2017 and M. moniliformis
in February 2018) and three in the SM (C. placentula in January, February and May 2017;
T. tabulata from April to July 2016; and P. laevis in September 2016) (Figure 5).



Diversity 2022, 14, 787 9 of 25Diversity 2022, 14, x  9 of 24 
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sulcata (28–32); Cyclotella sp.1 (33–39); Cyclotella striata (40); Cyclotella meneghiniana (41–43); 

Pseudopodosira echinus (44–47); Ambo tenuissimum (48–60); Pseudostaurosira brevistriata (61–66); P. 

clavatum (67–69); Pseudostaurosiropsis geocollegarum (70–74); Staurosirella aff. ovata (75–82); S. guenter-

grassi (83–84); Fragilaria sp.1 (85–86). Scale bar = 10 μm. 

Figure 3. Melosira moniliformis var. octogona (1–14); Pleurosira leavis (15); Aulacoseira granulata (16–19);
Chaetoceros sp. (20); S. potamos (21–22); Skeletonema sp.2 (23–24); Skeletonema sp.3 (25–27); Paralia sulcata
(28–32); Cyclotella sp.1 (33–39); Cyclotella striata (40); Cyclotella meneghiniana (41–43); Pseudopodosira
echinus (44–47); Ambo tenuissimum (48–60); Pseudostaurosira brevistriata (61–66); P. clavatum (67–69);
Pseudostaurosiropsis geocollegarum (70–74); Staurosirella aff. ovata (75–82); S. guenter-grassi (83–84);
Fragilaria sp.1 (85–86). Scale bar = 10 µm.



Diversity 2022, 14, 787 10 of 25Diversity 2022, 14, x  10 of 24 
 

 

 

Figure 4. Tabularia tabulata (87–91); Cocconeis placentula (92–109); Fistulifera saprophila (110–117); 

Planothidium sp. (118–122); Navicula cryptotenella (123–129); Navicula cruxmeridionalis (130–133); 

Navicula sp.3 (134–139); Navicula sp.5 (140–142); Mastogloia pumila (143–146); Bacillaria paxillifera 

(147); Nitzschia filiformis (148); N. subcohaerens var. scotica (149); N. eutinensis (150–157); N. frustulum 
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Catenula adhaerens (180–185); Rhopalodia rumrichiae (186–188). Scale bar = 10 μm. 

Figure 4. Tabularia tabulata (87–91); Cocconeis placentula (92–109); Fistulifera saprophila (110–117);
Planothidium sp. (118–122); Navicula cryptotenella (123–129); Navicula cruxmeridionalis (130–133);
Navicula sp.3 (134–139); Navicula sp.5 (140–142); Mastogloia pumila (143–146); Bacillaria paxillifera
(147); Nitzschia filiformis (148); N. subcohaerens var. scotica (149); N. eutinensis (150–157); N. frustulum
(158–164); N. microcephala (165–169); Tryblionella persuadens (170–175); Seminavis strigosa (176–179);
Catenula adhaerens (180–185); Rhopalodia rumrichiae (186–188). Scale bar = 10 µm.
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In the sequence we present some information about the five dominant taxa.
Tabularia tabulata (C. Agardh) Snoeijs
Dimensions: 185.0–490.0 µm long; 4.5–9.0 µm wide; 11–13 striae of 10 µm.
Marine and freshwater diatom, originally described by Agardh in 1983 as Diatoma

tabulatum in the Adriatic Sea locality. The taxon was found in macroalgal samples in the
Baltic Sea [61] at salinities of 4 to 7%. Tabularia is an epiphytic and epilitic genus and has
a wide distribution worldwide [62]. The relative was similar at both sites (SQ: 0.5–78.7%,
mean 19.0%; SM: 0.1–84.5%, mean 22.4%).

Mastogloia pumila (Grunow) Cleve
Dimensions: 25.9–31.4 µm long; 6.6–8.4 µm wide; 26 striae of 10 µm; 6–8 partectas on

each side, 4 with sizes of 10 µm.
Marine diatom described by Cleve for slightly brackish waters of the Baltic and Hawaii.

The taxon can be epiphytic, epilithic and epipelic [63]. The genus is marine but can also
occur in brackish and freshwater environments [64]. The mean relative abundance was
higher in the SQ (0.1–57.9%, mean 8.4%) than in the SM (0.1–0.9%, mean 0.3%).

Melosira moniliformis var. octagona (Grunow) Hustedt
Dimensions: 12.3–33.3 µm diameter; 22 areolae of 10 µm on the valve face.
Freshwater diatom that is found in estuarine and marine environments. The species

has been found in plankton and sediment samples from the Praia do Cassino and Patos
Lagoon Estuary [63,65]. The variety has an octagonal shape in connective view, forming
long chains in unoxidized material and double chains after oxidation. Under experimental
conditions, it shows optimum growth in salinities between 20 and 30 [66]. The mean
relative abundance was similar at both sites (SQ: 0.5–46.8%, mean 7.1%; SM: 0.7–26.6%,
mean 8.6%).

Cocconeis placentula Ehrenberg
Dimensions: 17.0–30.5 µm long; 7.6–18.0 µm wide; 18–23 striae of 10 µm.
Freshwater diatom originally found in the roots of the aquatic macrophyte Lemna L. by

Ehrenberg. It is found in phanerogams, such as Ruppia maritima [29], Zostera noltei [67] and
Posidonia oceanica [48]. The genus and taxon are commonly found with epiphytic habits.
The mean relative abundance was higher in the SM (2.3–75.1%, mean 27.8%) than in the SQ
(0.3–18.5%, mean 6.1%).

Pleurosira laevis (Ehrenberg) Compère
Dimensions: 65.9–131.4 µm diameter; 11–16 areolae of 10 µm.
Brackish water diatom with cylindrical cells connected by ocelli, forming filaments in

a zig zag pattern. It is also found in estuarine regions with freshwater, such as the Rio de La
Plata estuary (salinity 0.5), where it was found to be epiphytic of S. californicus [68]. It has
also been found as epiphytic [69], as well as in the plankton [64] and sediment [70], in the
PLE. The genus is probably one of the few that has found its ideal niche in brackish waters,
such as estuaries [62]. The mean relative abundance was higher in the SM (0.1–53.7%, mean
9.9%) than in the SQ (0.1–4.5%, mean 1.1%).

3.3. Spatial and Temporal Variability
Community Attributes: Diversity, Equitability and Dominance

The mean values of the community attributes indicated variability across months and
significant differences between sites for all community attributes (Figure 6). In general, higher
richness (19–41), diversity (1.4–4.4; mean 3.3) and equitability values (0.3–0.8; mean 0.7) were
found in the SQ, and lower dominance (0.1–0.6; mean 0.2) was found compared to the SM.
For the SM, the ranges and average values for those attributes were: richness 8.0–30; diversity
0.9–3.7, mean 2.2; equitability 0.3–0.8, mean 0.5; dominance 0.1–0.7, mean 0.4. We found
significant spatial differences for all community descriptor indices.

Richness and diversity differed between sites in most comparisons, except in August
and November 2016 and February and May 2017. The sites were similar in terms of
equitability and dominance in the periods of August, September and November 2016 and
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in February and May 2017. In December 2016 and February 2018, the sites were similar
only in terms of equitability.

In the visual analysis of the NMDS graphs (Figure 7), as seen in both Figure 7A
(abundance) and 7B (composition), it was possible to observe that most of the samples were
distributed on opposite sides, revealing that the composition and abundance of the PLE
diatom community in the more heavily impacted site (SM) differed from the non-impacted
site (SQ).
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Figure 6. Monthly variability in richness (a), diversity (b), equitability (c) and dominance (d) for the
epiphytic diatom community of the Saco da Quitéria (SQ) and Saco da Mangueira (SM) during the
study period.

The results of the NMDS were confirmed statistically with PERMANOVAs, which
revealed that meadows were distinct in terms of diatom composition and abundance
(p < 0.05). According to the Monte Carlo test, the meadows were similar in terms of
composition only in the May 2016 and January 2017 periods (p > 0.05). At both sites,
temporal variability in the diatom composition and abundance was detected (p < 0.05). In
pairwise comparisons, when analyzing the month of collection and the following month
(N = 12), we observed distinctions regarding composition (SQ: N = 6; SM: N = 3) and
abundance (SQ: N = 10; SM: N = 8). At both sites, the abundance had a more pronounced
variability than the composition, which varied more in the SQ than in the SM (Table 2). The
differences between the sites in terms of abundance and composition were also observed in
the NMDS analyses (Figure 7).
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Figure 7. Results of non-metric multidimensional scaling (NMDS) analysis of samples from both
sites during the study period. (A) abundance and (B) composition (presence and absence). Matrix
composed of 80 sp. in both analyses. Q = Saco da Quitéria; M = Saco da Mangueira.
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Table 2. Summarized results from the PERMANOVAs. Spatial and temporal variation (monthly) in
the abundance and composition of the epiphytic diatom community in R. maritima meadows (Saco
da Quitéria = SQ, Saco da Mangueira = SM). The months are represented in abbreviated form. For
the Monte Carlo test, a p value < 0.05 = significant difference.

PERMANOVA Results

Spatial Variation Temporal Variation

Sites Abundance Composition
Monthly

Abundance Composition

SQ × SM p = 0.0001 p = 0.0001 p = 0.0001 p = 0.0001

Comparisons (Monte Carlo test p-value) Comparisons (Monte Carlo test p-value)

SQ × SM April 2016 0.0010 0.0115 SQ SM SQ SM

SQ × SM May 2016 0.0084 0.0568 April ×May 2016 0.0155 0.1127 0.0485 0.2005

SQ × SM June 2016 0.0015 0.0049 May × June 2016 0.0180 0.0326 0.0455 0.0999

SQ × SM July 2016 0.0052 0.0183 June × July 2016 0.0181 0.0115 0.0168 0.0307

SQ × SM August 2016 0.0187 0.0216 July × August 2016 0.0691 0.0131 0.0892 0.0904

SQ × SM September 2016 0.0061 0.0201 August × September 2016 0.0228 0.0135 0.0529 0.1170

SQ × SM October 2016 0.0061 0.0076 September × October 2016 0.0394 0.0216 0.0321 0.1540

SQ × SM November 2016 0.0104 0.0236 October × November 2016 0.0243 0.0106 0.0625 0.0165

SQ × SM December 2016 0.0050 0.0128 November × December 2016 0.0341 0.0412 0.1373 0.0281

SQ × SM January 2017 0.0400 0.0565 December × January 2017 0.0523 0.1226 0.1529 0.1506

SQ × SM February 2017 0.0126 0.0446 January × February 2017 0.0298 0.2053 0.0622 0.2385

SQ × SM May 2017 0.0078 0.0298 February ×May 2017 0.0039 0.1874 0.0127 0.6075

SQ × SM February 2018 0.0063 0.0105 May × February 2018 0.0051 0.0196 0.0139 0.0735

According to the SIMPER analysis, the species with the greatest contributions to
the dissimilarities between sites in terms of abundance were: T. fasciculata, M. pumila
and R. rumrichiae (April 2016); B. paxillifera, T. fasciculata and A. tenuissimus (May 2016);
N. eutinensis, M. pumila and P. brevistriata (June 2016); B. paxillifera, M. pumila and T. fas-
ciculata (July 2016); R. rumrichiae, N. cryptotenella and M. pumila (August 2016); P. laevis,
T. tabulata and P. brevistriata (September 2016); T. tabulata, C. adhaerens and P. sulcata (October
2016); Skeletonema sp.2, P. laevis and Navicula sp.3 (November 2016); P. laevis, P. brevistriata
and S. guenter-grassii (December 2016); T. tabulata, T. fasciculata and P. brevistriata (January
2017); C. placentula, T. fasciculata and T. tabulata (February 2017); M. pumila, T. tabulata and
C. placentula (May 2017); N. microcephala, P. laevis and P. sulcata (February 2018).

The periods with the highest mean dissimilarities (more than 70.0) were July 2016 and
May 2017. The taxa that most contributed to dissimilarities between sites in July 2016
(B. paxillifera (6.2%), M. pumila (6.2%), T. fasciculata (5.4%)) had greater abundances in the
SQ. In May 2017, M. pumila (12.6%) and T. tabulata (9.6%) had higher abundances in the
SQ, while C. placentula (9.4%) had higher abundances in the SM. In general, most taxa that
contributed to the dissimilarity had higher abundances in the SQ. The first three taxa of the
SIMPER analysis contributed approximately 30% of the dissimilarity between sites. Only
three periods had mean dissimilarities below 50 (May 2016, June 2016 and August 2016),
again confirming that the sites were distinct in terms of abundance (Table 3).

For the temporal variability of the community, among the comparisons made (n = 12),
periods of distinction regarding richness occurred in all the comparisons (SQ: n = 3; SM:
n = 6), and they were also noted for diversity (SQ: n = 7; SM: n = 5), equitability (SQ: n = 6; SM:
n = 4), dominance (SQ: n = 6; SM: n = 4), abundance (SQ: n = 10; SM: n = 8) and composition
(SQ: n = 6; SM: n = 3).
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Table 3. SIMPER analysis with the three taxa that most contributed (%) to the dissimilarities between
the impacted and non-impacted areas. AD = average dissimilarity.

Month Average
Dissimilarity Taxa and Contribution (%)

April 2016 AD = 52.56 T. fasciculata (12.51) M. pumila (10.6) R. rumrichiae (9.75)

May 2016 AD = 48.57 B. paxillifera (7.86) T. fasciculata (7.39) A. tenuissimus (6.69)

June 2016 AD = 46.37 N. eutinensis (10.28) M. pumila (9.54) P. brevistriata (8.74)

July 2016 AD = 71.71 B. paxillifera (6.17) M. pumila (6.17) T. fasciculata (5.41)

August 2016 AD = 45.41 R. rumrichiae (6.14) N. cryptotenella (6.01) M. pumila (5.9)

September 2016 AD = 67.21 P. laevis (8.26) T. tabulata (6.91) P. brevistriata (4.39)

October 2016 AD = 61.63 T. tabulata (8.81) C. adhaerens (7.09) P. sulcata (6.44)

November 2016 AD = 61.15 Skeletonema sp.2 (8.44) P. laevis (6.04) Navicula sp.3 (6.02)

December 2016 AD = 66.15 P. laevis (8.25) P. brevistriata (7.9) S. guenter-grassii (6.76)

January 2017 AD = 52.80 T. tabulata (8.52) T. fasciculata (4.88) P. brevistriata (4.5)

February 2017 AD = 54.17 C. placentula (11.85) T. fasciculata (10.38) T. tabulata (9.07)

May 2017 AD = 70.73 M. pumila (12.65) T. tabulata (9.64) C. placentula (9.36)

February 2018 AD = 53.12 N. microcephala (9.81) P. laevis (5.44) P. sulcata (5.39)

3.4. Correspondence between Epiphytic Diatom Assemblages and Environmental Variables

Canonical correspondence analysis (CCA) showed that the percentage of variance
explained by the relationship of the physical and chemical variables with the taxa was 64%
(sum of axes 1, 2 and 3) (Figure 8).
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to environmental variables across the entire study period (November 2015 to February 2018) at both
sites (Saco da Quitéria and Saco da Mangueira). Taxa with a frequency greater than 5%. Transformed
data log (x + 1).
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The CCA differentiates the sites, with most samples located on the positive side of
axis 1 being from the SQ and those on the negative side from the SM. Axis 1 was mainly
positively correlated with phosphate and organic matter and negatively correlated with
suspended material. Axis 2 was positively related to salinity and suspended material and
negatively related to temperature and nitrate + nitrite.

In the SM, the taxa with the highest abundances in periods with the highest phosphate
concentrations were: P. leavis, C. radiatus, T. circumsuta, N. cruxmeridionalis (September
2016) and C. placentula (May 2017). May 2017 was also the period with the highest organic
matter, TAN and salinity values. The taxa T. americana, T. compressa, M. moniliformis and
N. microcephala had their highest abundances in a period with lower phosphate concentra-
tions (February 2018). Despite the low concentration of phosphate, the period of February
2018 had a high concentration of TAN and high salinity. Navicula sp.3 was more abundant
in the period with lower suspended material (November 2016). In the SQ, the taxa with
the highest abundances in periods with lower salinities were C. crucicula (November 2015),
C. meneghiniana (November 2016) and Cyclotella sp.1 (December 2016). November 2016 was
also the period with the highest concentration of nitrate + nitrite, phosphate and suspended
material. The suspended material had a negative relationship with the water transparency
in the SQ (R2 = 0.58).

Comparing the community structure with the environmental variables, in the SM,
richness, diversity and equitability were positively (but weakly) related to temperature
(R2 = 0.24, 0.20 and 0.17) and negatively related to dominance (R2 = 0.20); in the SQ, richness
was negatively related to organic matter and TAN (R2 = 0.12 for both variables). Salinity
was negatively related to richness and diversity (R2 = 0.30 for both descriptors).

Our results supported the hypothesis that the community attributes of the diatom
assemblages would differ between the impacted and non-impacted areas, with higher
values found in the non-impacted site and higher dominance in the impacted site.

4. Discussion

The results of the present study revealed that meadows of Ruppia maritima in PLE
sustain rich and diverse epiphytic diatom communities. The total number of diatom taxa
found in our study (68 genera and 159 sp) was much higher than values reported for other
Ruppia meadows from estuarine areas [40,44]. The richness and composition found here
were similar to those found for local brackish marsh plants located in a pristine site [69].
This study also revealed that community structure and composition vary according to
season and between sites, driven mainly by changes in salinity and nutrient conditions.

The study sites were marked by significant differences in salinity, nutrients (phosphate
and TAN) and sediment organic matter. The higher values of salinity, nutrients and organic
matter found in the SM compared to the SQ may have been related to proximity to the
ocean and eutrophication sources, entailing receipt of both domestic waste and industrial
effluents [71]. Considering that the study sites were classified as brackish water—i.e.,
intended for the preservation and balance of aquatic communities—the values of nitrogen
(TAN) and nitrate found were above the limits established by Brazilian legislation (Nacional
Environmental Concil—CONAMA 357/2005 [72]): on average, 6.3 and 4.0 times higher in
the SM and SQ for TAN and, in terms of means, 1.2 and 1.4 times higher in the SM and SQ
for nitrate.

Values within the limit defined by CONAMA were found only in the period of
November 2015 in the SQ (TAN) and January 2016 in both sites (TAN and nitrate). Phos-
phate concentrations were compared to values considered normal in unpolluted estuaries
(0.03 mg L−1; [73,74]), and they were higher in the SQ only in the periods of September and
October 2017. In the SM, there were lower values only in the periods of December 2015,
July 2016 and February 2018.

According to our results, R. maritima is an important host for epiphytic diatoms, both
in impacted and non-impacted areas. The fact that the same species could be studied at both
sites implied that there was similar availability of microhabitats for epiphytes due to their
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similar morphologies. The abundance and diversity of epiphytic communities depend on
the host plant, since different seagrass morphologies tend to promote distinct microhabitats
for epiphytes [49]. Another study, however, found no differences in community structure
among seagrass species during a short sampling period, which agrees with the neutral
substrate hypothesis [42]. According to this hypothesis, the substrate does not stimulate
or prevent the growth of epiphytes. However, while some macrophytes can be neutral
hosts for their epiphytes, others can profoundly affect their production and, in both cases,
the community composition can vary significantly between hosts [75]. Despite the similar
availability of microhabitats, the differences in the epiphytic diatom communities between
the sites did not reveal specificity for R. maritima, which would have indicated the neutrality
of this substrate. However, the anthropogenic impact showed a greater influence on the
epiphytic diatom community than the morphological similarity of the substrate.

While host preference is an unresolved question in structuring epiphytic diatoms [76],
environmental conditions may have equal or greater importance. Despite colonizing
the same substrate (R. maritima), the studied epiphytic diatom community showed high
heterogeneity between sites. The greater richness, diversity and equitability and higher
percentage of exclusive taxa at the SQ site compared to the SM site reflect a better preserved
environment and higher water quality. In contrast, high nutrient loads decrease diatom
species diversity and promote the dominance of a few taxa [77–79], as we observed in the
SM. Epiphytic diatoms in sites with high levels of nutrients have a composition that favors
dominant species, while sites with lower levels of nutrients, although containing these
same species, have lower abundances [80]. Spatial differences in nutrient availability may
exert the greatest control over regional variations in epiphyte loads in seagrasses [81].

In addition to nutrient availability, salinity may be a structuring factor in the spatial
distribution of the seagrass epiphytic diatom community [22]. We found spatial differences
in composition and abundance (CCA) marked by both nutrient availability and salinity
(higher in the SM). While salinity negatively affected richness, diversity and equitability in
the SQ, the SM community structure was not affected by the variability in salinity, indicating
that diatoms may be more generalist and tolerant to salinity variability. In tropical seagrass
meadows, differences between communities of epiphytic diatoms growing on T. testudinum
were related to salinity levels (marine versus hypersaline) [82]. In the hypersaline site, there
were greater numbers of rare taxa and lower richness and diversity than in the more stable
marine environment. In our study, the degree of anthropogenic impact and proximity to
the ocean influenced the epiphytic communities at the study sites.

In a study with epiphytic diatoms from the Baltic Sea, no reduction in richness related
to salinity decrease was observed [26]. Another study found that, in the absence of anthro-
pogenic impacts, stable marine environments enhance algal species’ richness and diversity in
R. cirrohosa meadows [83]. In our study, the variability in salinity was very high throughout
the year (from 0 to 30), depending mainly on the seasonal cycle of precipitation and fluvial
discharge. The autumn months were marked by higher values. Temporal stability and range
variability may be more important structuring factors than the average salinity.

Seasonal changes in the epiphytic diatom community were found to be largely related
to temperature [22], which was also the main factor responsible for changes in the epiphytic
diatom community in subtropical mangroves in South China [84], while lower richness
and diversity in diatom epiphytes in marsh plants has been found during winter [85]. For
seagrasses, epiphytic biomasses are usually higher in summer months [49,86]. Additionally,
some authors found that temperature was positively related to the richness of algal species
associated with R. cirrhosa [83], and periods of increase in the diversity of epiphytic diatoms
accompanied increases in temperature [87]. The low diversity of epiphytic diatoms during
the winter and spring periods and the high diversity during the autumn and summer have
been attributed to plant substrate abundance, influenced by freshwater discharge [88]. In
addition to seasonality factors (temperature, salinity) and plant substrate availability, the
variability in the nutrient pulses was also found to influence the high variability in the
composition and abundance of the community over the months.
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In our study, seasonality appeared to have distinct effects on community attributes.
While it may have affected community composition, our analysis showed that temperature
did not have significant effects on diatom community diversity and equitability in the
non-impacted site SQ. Except for the reduction during the spring period (September and
October 2016), diversity and equitability in the SQ remained high during most of the
study period. However, in the impacted site SM, temperature appeared to be related
to community variability. In addition, months with similar average temperatures had
similar richness, diversity, equitability and dominance (April and May 2016, May and
June 2016 (except for equitability) and June and July 2016; and November and December
2016, December 2016 and January 2017 (except richness) and January and February 2017)
(Figure 6a–d).

Dominant diatom species are the main food source for grazers [89], and the reduced
abundance of high-profile dominant taxa, such as T. tabulata (August 2016) and P. laevis
(October 2016), may have been caused by grazing. A previous study [90] found higher
densities of benthic macrofauna in the PLE in the summer period, which was related to
temperature, but, in February 2018, the non-dominance of C. placentula, observed in the pre-
vious period, reflected a community that was more developed and, possibly, experiencing
low herbivory. In the SM, abundance in most periods was different but similar in periods
of similar temperature (April and May 2016, December 2016 and January 2017 and January
and February 2017). The taxa with similar abundances were T. tabulata and C. placentula,
which were dominant in some periods. With regard to composition, most periods were
similar. The difference in composition between the periods of June and July 2016 may have
been due to the different concentrations of nutrients (phosphate), whereas the periods of
June and July 2016, October and November 2016 and November and December 2016 may
have been distinct due to the reduction in salinity in November 2016.

Increases in TAN concentration and salinity may have altered the community in the
SQ, as they coincided with periods of richness and diversity reduction (March, April
and October 2016, February and May 2017 and February 2018), and some species were
probably not tolerant. Since salinity and TAN concentration varied together, it was difficult
to determine which of these factors was most important, but we found that they had
no positive effect on the community. The high levels of variability in salinity and TAN
concentration can be considered stress factors for the community, but some taxa, such as
T. fasciculata and R. runrichiae, were tolerant to variations and were present in abundance
under different salinity and TAN conditions. Periods of similar diversity, equitability
and dominance (April and May 2016, July and August 2016, November and December
2016 and December 2016 and January 2017) had similar salinities. In July 2016, an increase
in diversity occurred together with a reduction in salinity to zero, which may explain the
significant difference found in relation to the previous period (June). The observation
of differences between the periods in both abundance and composition (April and May
2016, May and June 2016, June and July 2016, September and October 2016, February and
May 2017 and May 2017 and February 2018) showed that epiphytic community taxa are
constantly dynamic, possibly as a result of the variability of environmental conditions, such
as salinity and nutrient availability.

According to the CCA results, the community attributes were significantly related to
salinity variability (Figure 8). Freshwater taxa, such S. potamos, N. eutinensis, P. brevistriata,
P. clavatum and R. runrichiae, showed higher abundances in the SQ. The negative relationship
of S. potamos with salinity was observed by [91] in phytoplankton samples from Patos
Lagoon and confirmed in our study. Some marine taxa had higher abundances in the SM
(C. jonesiana and P. sulcata), and also in the SQ, during periods of higher salinity (N. obtusa).
A greater distance from the estuarine mouth and high variability in salinity (from 0 up to 25),
as observed at the SQ site, favor the development of abundant freshwater species, which
developed mainly during winter and spring. With increased salinity (summer and autumn),
freshwater diatom species were reduced in abundance. At high salinity, freshwater diatoms
may not have the ability to produce the osmolarity necessary to generate the same turgor
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pressure as at low salinity [92]. However, some freshwater taxa negatively related to
salinity were still present in lower abundances at intermediate salinities (17 and 19), which
shows that they can tolerate salinity variability. As richness and diversity in the SQ were
negatively related to salinity and TAN, and these factors vary together, it was difficult to
distinguish the main influencing factor. Perhaps environmental fluctuations can lead to the
coexistence of various species based on different responses to environmental gradients [66].

The results of the CCA revealed that part of the community variability was also
related to nutrient concentrations (Figure 8). Some abundant taxa tolerated the high N
and P concentrations found in the SM. Some of these taxa have already been recorded
in environments with high nutrient loads, such as C. meneghiniana, N. cryptotenella [93],
F. saprophila [94], N. microcephala [95], P. sulcata [96] and P. laevis [97]. Cocconeis placentula
also showed tolerance to the highest concentrations of nutrients in the SM, being dominant
in May 2017, the period with the highest concentration of phosphate and organic matter.
The greater availability of nutrients and lower competition for light in the biofilm may
have stimulated the growth of the taxon. In a study with epiphytic diatoms on Z. marina, a
positive response from C. placentula to nitrate enrichment was found [98]. Its dominance in
the SM may have been the result of a disruption of the community involving a reduction in
the abundance of larger species, such as M. moniliformis and P. leavis, which can overlay the
innermost layers of the biofilm, where C. placentula is found. This taxon represents the pioneer
stage of succession in R. maritima [29] but remained abundant throughout the study period
in both study sites. According to [18], low-stature and prostrated taxa, such as C. placentula,
are the dominant forms at low nutrient levels. Additionally, in the periods when this taxon
was dominant (January, February and May 2017), there was a reduction in the diversity of
the community. A previous study [99] also found a reduction in the diversity value when
C. placentula was dominant. Some abundant taxa, such as M. pumila and T. fasciculata, were
negatively related to nutrients (phosphate and nitrate + nitrite) and their highest abundances
occurred in the SQ. Tabularia fasciculata showed a positive relationship with the increase in
nutrients in an experimental study, regardless of the presence of grazers [100]; however, the
taxon has already been recorded in abundance as an epiphytic in a preserved environment
of the PLE [69]. Mastogloia pumila lives in saline environments, such as ponds, estuaries
and salt lakes and salt marshes [69,70,101], and we did not find records of its presence
as epiphytic in eutrophic environments. Suspended material was also important in the
CCA, and higher amounts represented a reduction in water transparency, confirmed by
the negative relation found in the SQ. Diatoms can adapt to low light levels and are
able to survive in dark estuaries [102]. Some abundant SQ taxa, such as Cyclotella sp.1,
S. guenter-grassi, P. brevistriata, S. potamos and T. persuadens, which have positive relations to
suspended material, showed that they are also able to develop in higher turbidity in the
water column.

5. Conclusions

This study presents, for the first time, a detailed analysis of the spatial and temporal
variability of the epiphytic diatom community in Ruppia maritima meadows in Brazil. The
meadows of the Patos Lagoon estuary sustain abundant and diverse epiphytic assemblages
of diatoms, which are important primary producers and food sources for local economic
species, such as invertebrates (shrimp) and small-sized fish (such as juveniles of the Mugili-
dae family). The distinction between the communities in the impacted and non-impacted
sites showed the influence of the anthropogenic nutrient load on epiphytic diatoms, which
are less diverse under environmental impacts. The temporal variability of the community
structure was influenced by abiotic factors, such as salinity and temperature. The present
study contributes to the knowledge about benthic diatoms, one of the most abundant and
important groups of epiphytic organisms. Reductions in seagrass meadows, as observed
during recent decades, may decrease the complexity of benthic habitats, which is likely to
change the abundance and diversity of epiphytic diatoms and their ecological functions, and
these are still poorly understood. In addition to studies on other epiphytic groups, future
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directions should integrate studies on the effect of nutrient increase and grazer pressure on
the abundance and diversity of epiphytic algae and the consequences for seagrass abundance.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/d14100787/s1, Table S1. Complete list of epiphytic diatoms
found on Ruppia maritima meadows of Patos Lagoon Estuary between November 2015 and February
2018, registered montly in two studied sites: Saco da Quitéria (SQ) and Saco da Mangueira (SM). The
relative abundance (%) of each taxa is indicated for each month. Abundant taxa (•).
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