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Abstract: The immune response is affected by aridity, but it has been rarely examined in desert-
dwelling bats. For two consecutive years, we examined the seasonal variation in the innate immune
response of an insular desert bat, the fish-eating myotis (Myotis vivesi), in relation to its reproductive
activity and ectoparasite load. We evaluated the reproductive activity based on external morphologi-
cal traits and testosterone levels in the plasma for males and progesterone and estradiol for females.
We injected phytohemagglutinin (PHA) into the footpads of the bats to estimate the innate cellular
response, and we measured the bacterial killing ability (BKA) of the blood plasma to determine the
innate humoral response. Both the external morphological traits and hormone levels indicate that the
females were pregnant in spring and lactating in summer, and that the males were reproductively
active in autumn, when mating probably occurred. The swelling response of the female and male bats
was lower in spring. The BKA in the males did not vary seasonally; the BKA in the females varied
seasonally but only in the first year of the study, with lower values in spring and summer. The BKA
in spring was lower in the first year of the study, when the females appeared to be in early pregnancy,
compared to the second year, when the females were in advanced pregnancy. The swelling increased
as the body mass and body conditions of the males increased, but the BKA was not correlated with
body mass or body condition in either sex. Ectoparasite abundance and prevalence did not vary
among seasons. Ectoparasite abundance was not correlated with the PHA response in both sexes; it
was not correlated with the BKA in females, but it was inversely correlated in males. Of the three
hormones measured, only estradiol was correlated with the immune response: females with higher
estradiol levels had a higher PHA response and BKA. Our findings indicate that the cellular and
humoral innate immune responses of the fish-eating myotis varied throughout the year, following
the seasonal reproductive pattern of the species. Our evaluation of the proximal factors affecting the
expression of the immune response points to the potential immunoregulatory role of sex hormones
and body mass.
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1. Introduction

Parasites are present during the lifetime of wild animals, often having a deleterious
impact on their survival [1]. Parasites might reduce an animal’s fitness, decrease repro-
ductive success, diminish adult conditions and survival, and serve as vectors of other
pathogens [2]. Animals, in turn, respond to parasites with an immune system composed of
physical and chemical barriers [3]. The immune response is vital for animal survival, and
its expression might vary over time [4], regulated by physiological tradeoffs between the
reproductive and the immune systems [5]. Reproduction is one of the costliest activities
in which wild animals engage during their lifetime and affects their immune response
and their ability to cope with parasites. Rising concentrations of steroid hormones during
reproduction regulate the immune response [6]. In general, testosterone functions as an
immunosuppressor, and estrogens as immunoenhancers [7], although the effect might
vary depending on the immune response analyzed [8]. Parasites, in turn, reproduce more
intensely when the hosts are reproductively active [9–11], probably due to a depressed
immune response and/or behavioral and ecological changes favoring infestation [12,13].

The nature of the interrelations among immunity, reproductive activity, and parasitism
might depend on the sex examined. For instance, reproductive females of some bird
species [14,15] and mammals [16,17] have a lower immune response and a higher parasite
load than non-reproductive females. In turn, reptile males have a higher parasite load and
a higher immune response at the end of their mating season [18], and testosterone levels
are inversely related to immune resistance to parasites in mammals and reptiles [19,20].

Bats are the second most diverse mammalian order and are widely distributed world-
wide [21]. Bats are natural hosts of a significant number of disease vectors, including
bacteria, protozoa, and viruses [22,23], and the study of their immune system has gained in-
creasing attention recently [24–26]. A handful of bat studies have examined the relationship
of variations in immune function with reproductive activity and parasite burden [27–31]. A
common feature of these studies is that they have examined only arthropod-eating species
despite the remarkable dietary diversification found in bats and the link between dietary
habits and the expression of the immune response [32]. More remarkably, these studies
have not included species that live in habitats characterized by aridity and geographical
isolation, two factors expected to shape immune expression in animals [33].

We examined the seasonal variation of the innate immune response of a desert car-
nivorous bat, the fish-eating myotis (Myotis vivesi), in relation to reproductive activity
and parasite load. Carnivorous bats may face a higher risk of exposure to infectious dis-
eases than bats with other feeding habits [32] and consequently be particularly sensitive
to seasonal variations of immunocompetence. The fish-eating myotis feeds regularly on
marine fish and crustacea throughout the year [34,35], and it is endemic to desert islands
in the Gulf of California, Mexico [36]. Parasite pressure and immune response might
differ between animals living in arid and more mesic environments [37,38], and between
animals with insular and continental geographic ranges [39]. The loss of polymorphism
in the major histocompatibility complex (MHC) of the fish-eating myotis is compelling
evidence that a geographic distribution restricted to desert islands has played a role in the
organization of its immune system [40]. Studies on desert bats have indicated that their
immune system and parasite pressure might be particularly sensitive to the quality of their
scarce water sources [41,42]. In this study, we measured the inflammatory response after a
phytohemagglutinin (PHA) challenge and the bacterial killing ability (BKA) of plasma for
two consecutive years in male and female adults of the fish-eating myotis. PHA is a plant
protein that induces an inflammatory process in the place of an injection, a component of
the cellular innate immune response [43,44]. The BKA is used to estimate the ability of
complement proteins contained in the blood plasma to kill pathogens [45]. We evaluated
the reproductive activity based on external morphological traits and the plasma levels of
testosterone for males, and progesterone and estradiol for females. The interrelation of the
PHA response and the BKA with bat reproductive activity and parasite burden has not been
tested simultaneously in the same species, but a few studies have reported inconsistent
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patterns. Pregnant individuals of the greater mouse-eared bat (M. myotis) had a higher
ectoparasite load and a lower PHA response than lactating individuals [27], and the BKA
was higher in the greater sac-winged bat (Saccopteryx bilineata) infected with endopara-
sites [29], but it did not vary with the reproductive activity of male and female Daubenton´s
bats (M. daubentonii; 31). The relationship between steroid sex hormones and the immune
response has been largely ignored in bats, although one study described a decrease in the
plasma testosterone in males of Seba’s short-tailed bat (Carollia perspicillata) after an immune
challenge [46]. We tested the hypothesis that the PHA response and the BKA activity of
the fish-eating myotis would be significantly associated with the reproductive activity and
ectoparasite load. We predicted that the expression of both immunological factors would
be lower and that the parasite burden would be higher in gestating and lactating females
and in reproductive males than in non-reproductive individuals. Accordingly, we expected
a negative relationship between the immune response and the testosterone, progesterone,
and estradiol levels, and a positive relationship with the parasite load.

2. Materials and Methods
2.1. Study Area

We conducted the study on Partida Norte Island (28◦52′30′′ N, 113◦02′17′′ W), a
1.4-km2 island located in the midriff region of the Gulf of California, Mexico. This island
holds the largest known colony of fish-eating myotis (~8000 adults; 47). The population
structure in Partida Norte fluctuates throughout the year: in autumn and winter, it is equally
composed of males and females, whereas in spring and summer the island population is
mainly composed of pregnant and lactating females, respectively [36,47].

We visited the island in winter (December 2012 and February 2014), spring (April 2013
and 2014), summer (July 2013 and 2014), and autumn (October 2013 and November 2014)
and collected only adult individuals of male and female fish-eating myotis. We captured
between 13 and 34 individuals in their diurnal roost in each season, and we registered
their sex, body mass, forearm length, and reproductive status based on external signs
(females: non-reproductive, gestating, and lactating; males: non-scrotal and scrotal). We
measured each individual´s body mass (XSXScale, China; ±0.01 g) and forearm length
(Mitutoyo CD-6, Mexico; ±0.01 mm) to estimate the scaled mass index as an estimator
of the body condition index (BCI) [48]. Females with external signs of pregnancy were
excluded because their body mass included the fetus´ body mass. We then processed the
bats to determine the parasite load, immune response, and steroid hormone contents. We
took a blood sample (200 µL) from the bat´s antebrachial vein within 2 h after capture
before the immune challenge. The blood was centrifuged directly in the field, and plasma
aliquots were stored frozen in liquid nitrogen for 30 to 95 days. We collected samples
from a total of 194 individuals (116 females and 78 males), but due to logistic restrictions,
it was not possible to obtain all these parameters from the same individuals in all cases.
For example, the plasma volumes were not always sufficient to measure both the immune
and hormone parameters from the same individual, or constraints in processing time did
not always allow for counting the parasites from all individuals. All the procedures were
minimally invasive, and the bats were released in the place of capture within an hour after
the last measurement or sample collection after being rehydrated with fresh water and fed
with a small piece of fresh fish.

2.2. Parasite Load

The bats were checked for five minutes, and ectoparasites (flies and mites) were
collected from the dorsal and ventral body parts (neck, head, eyes, mouth, foot and claws,
forearm, genital area, wing membrane, and uropatagium). Ectoparasites were stored in
ethanol at 70% and posteriorly counted in the lab. We considered the ectoparasite load
as the total number of ectoparasites per bat. We estimated the ectoparasite prevalence,
mean intensity, and mean abundance for each season and the bat sex with the program
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Quantitative Parasitology–QPweb 1.0.15 [49] with a 95% confidence interval. We collected
ectoparasites in almost all seasons throughout two sampled years, except autumn 2014.

2.3. Immune Challenge

We challenged bats (116 females, 71 males) in the field with phytohemagglutinin
(PHA). We injected 50 µL of PHA (PHA-P, No. L8754, Sigma-Aldrich, Toluca, Mexico) from
a solution of 3 mg of PHA diluted in 1 mL of PBS in the right footpad of each individual. As
a control, 50 µL of PBS was injected into the left footpad. The average thickness (from three
measures) of both footpads was measured with a digital caliper (Mitutoyo CD-6, Mexico;
±0.01 mm) before and 3, 6, and 12 h after the PHA or PBS injection. The PHA response
was measured as the swelling index (S) 3, 6, and 12 h after the injection as

S = (THtPHA− TH0PHA)− (THtPBS− TH0PBS),

where THt is the footpad thickness 6 or 12 h after the injection, and TH0 is the footpad
thickness before the injection of PHA or PBS [50]. A swelling index of 0 occurred when the
swelling in the PHA-injected foot was equal to that in the PBS-injected foot, indicating no
immune response.

2.4. Bacterial Killing Ability

We measured the BKA of the plasma collected from the bats (110 females and 68 males).
We carried out BKA experiments at the Instituto de Investigaciones Biomédicas of the
Universidad Nacional Autonoma de México. We performed in vitro experiments of the
BKA of the bat plasma against Escherichia coli following and adapting a method previously
used for bats [32]. E. coli (ATCC#8739, Microbiologics, San Diego, CA, USA) was diluted
so that 200–300 colony-forming units (CFU) were present in 50 µL of solution, and 3 µL
of plasma was diluted to 1:100 in 297 µL of RPMI-1640 medium (11875093, ThermoFisher
Scientific, Waltham, MA, USA) supplemented with FBS 5% (Gibco, Grand-Island, NY, USA).
The bacterial dilution (20 µL) and plasma dilutions (280 µL) were mixed and incubated
for 60 min at 37 ◦C (mammalian body temperature). After incubation, two plates were
prepared using a 50-µL aliquot of the plasma/bacteria mixture spread on LB Broth medium
(L30221, Sigma Aldrich, St Louis, MO, USA). A control mixture was made with 60 µL of the
bacterial dilution and 840 µL of media, and three control plates were prepared immediately
using a 50-µL aliquot per plate. Both the plasma and control plates were incubated for
~14 h. The number of CFUs was visually counted, and the mean of the plasma and the
control plates were estimated to quantify the bactericidal ability of the plasma for each bat
individual as

BKA = 1− (mean CFU in plasma plate/mean CFU in control plate) .

2.5. Steroid Hormone Analyses

The plasma concentrations of progesterone (P4) and estradiol (E2) for the females
and testosterone (T) for the males were determined in duplicate, using an enzyme-linked
immuno-sorbent assay (ELISA) kit (Diagnostic Systems, Webster, Tx, USA; Accu-Bind,
Monobind Inc., Lake Forest, CA, USA). A standard curve was obtained for each steroid in
duplicate; the manufacturer supplied the control steroid. The specificity of the antiserum
for the P4, T, and E2, as well as the linearity described by the manufacturer of each kit,
were validated by making assays in both the solutions of the hormones provided in the
kit and the previously purified P4, T, and E2 (Sigma Chemical, St. Louis, MO, USA). The
percentage of recovery (linearity) for P4 was 97 ± 2.2, with 94.5 ± 0.88 for T and 89.4 ± 2.4
for E2. The assay detectable sensitivity (minimum concentration) for P4 was 130 pg, with
40 pg for T and 7 pg for E2. According to the manufacturer’s indications, the ELISA plates
with the samples and reagents were incubated with steroid-specific antibodies. After excess
antibody removal in PBS-Tween, a secondary HRPO-conjugated antibody was added. The
sandwich interaction was detected by substrate addition and quantified at 450 and 620 o
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630 nm in an ELISA plate reader (Microplate Reader, MR 600, Dynatech Product® Dynatech,
Chantilly, VA, USA). A standard concentration curve was determined for each hormone.

2.6. Data Analysis

Because we could not obtain all measurements from the same individuals in several
cases, we were unable to test models that simultaneously included the effects of all variables.
We compared the body mass and BCI among seasons with separate analyses of variance
(ANOVA) for each sex. We excluded females with external signs of pregnancy for the reason
mentioned above. The content values for the sex hormones were not normally distributed,
and they were log-transformed for analyses. We compared the progesterone, estradiol, and
testosterone values among seasons using ANOVA. We further compared the progesterone
and estradiol values among reproductive categories because we found more than one
category in spring, but we did not include non-lactating females in summer because of a
small sample size (n = 3). We did not include males from spring in the comparison because
of a small sample size (n = 2). We did not include the year as a factor in these analyses
because virtually all samples in each season were collected in the same year. We compared
the swelling indices at 3, 6, and 12 h after the PHA injection using repeated measure
ANOVA separately for each bat sex. We then compared the swelling indices among seasons
using the time period with the highest value (Smaxper) with factorial ANOVA with the
year and season of the sample collection as factors. We defined years as “year 1” (from
December 2012 to October 2013) and “year 2” (from February 2014 to October 2014) for this
and subsequent analyses. We also compared the maximum swelling value registered for
each individual within the 3–12-h period after the PHA injection (Smaxindiv) with factorial
ANOVA because we noticed individual variation at the time when they reached the largest
swelling value. The BKA indices were compared separately for each sex with generalized
linear models (GLM) with a Gamma distribution. We included the year and season as
factors and excluded outliers from the analysis. We used Tukey´s HSD for unequal sample
sizes for post-hoc comparisons following the ANOVAs, and Kruskal –Wallis tests after the
GLM when applicable. A previous work showed that PHA-induced swelling is significantly
correlated with the body mass of lactating female bats [27], but the body condition was
not significantly related to the swelling and BKA in female bats [51]. Since the body mass
and body condition were highly correlated in females (r = 0.85, p < 0.00001, n = 114) and
males (r = 0.96, p < 0.00001, n = 77), we only present the tests of the relationship of the body
mass with the swelling indices (Pearson correlation analyses) and with the BKA (Spearman
Rank correlation analyses) for each sex regardless of reproductive status (excluding females
with external signs of pregnancy) and separately for lactating female´s swelling indices.
The results of the tests of the correlation of the BCI with the immune indices follow the
same patterns as with the body mass (not reported). We compared the ectoparasite load
among seasons separately for each bat sex with Fisher´s exact tests for prevalence and
with bootstrap one-way analyses of variance with 1000 replications for intensity and
abundance using the program Quantitative Parasitology–QPweb 1.0.15 [49]. We tested
the relationship between the swelling indices and the log-transformed values of the sex
hormone concentration using Pearson correlation analyses for males and females. We
tested the relationship between the BKA and sex hormone concentrations using Spearman
Rank correlation analyses. We tested the relationship between the log-transformed values
of the ectoparasite abundance (log x + 1 for females) and the swelling indices using Pearson
correlation analyses for males and females. We tested the relationship between the BKA
and the ectoparasite abundance using Spearman Rank correlation analyses for males and
females. The analyses were conducted in STATISTICA [52].



Diversity 2022, 14, 781 6 of 18

3. Results
3.1. Body Mass, Reproductive Condition, and Sexual Hormones

There were no significant seasonal differences in body mass among females (F3, 110 = 1.23,
p = 0.30; Table 1), but the BCI did vary seasonally (F3, 110 = 2.85, 0 = 0.04; Table 1): females
had a lower BCI in spring than in autumn (p = 0.04). Females captured in December 2012
(n = 14), October 2013 (n = 17), February 2014 (n = 17), and November 2014 (n = 9) did
not show any external evidence of reproductive activity. In April, we captured pregnant
females in 2013 (n = 5) and 2014 (n = 11) and females with no evidence of pregnancy in
both years (2013: n = 18; 2014: n = 4). In July, most females were lactating (2013: n = 18;
2014: n = 11), with a few individuals with no sign of reproductive activity (2013: n = 4; 2014:
n = 3). There were no significant differences in the progesterone content among seasons
(F3, 58 = 2.23, p = 0.09; Figure 1A), but differences among the reproductive categories were
significant (F3, 58 = 3.55, p < 0.0001; Figure 1B): females captured in spring with no external
signs of pregnancy had higher progesterone content than females with external signs of
pregnancy (p = 0.0001), lactating females (0.0001), and females with no external evidence
of reproductive activity captured in winter and autumn (0.001). There were no significant
differences in the estradiol content among seasons (F3, 58 = 2.16, p = 0.10; Figure 1C) or
reproductive categories (F3, 55 = 2.16, p = 0.10; Figure 1D).

Table 1. Body mass (BM) and body condition index (BCI) of female and male fish-eating myotis
(Myotis vivesi) during four seasons in Partida Norte Island, Mexico. The BCI was estimated using the
scaled max index (Peig and Green 2009). Females with external signs of pregnancy were not included
because their body mass was confounded by the body mass of the fetus. Values are mean ± SE.

Bat sex Season BM (g) BCI n

Female Winter 28.53 ± 0.50 204.55 ± 3.05 31

Spring 28.25 ± 0.59 197.57 ± 3.62 2

Summer 28.21 ± 0.46 200.69 ± 2.83 36

Autumn 29.52 ± 0.56 210.92 ±3.40 25

Male Winter 25.83 ± 0.49 187.15 ± 3.44 18

Spring 24.80 ± 0.55 178.48 ± 3.90 14

Summer 27.35 ± 0.41 196.80 ± 2.86 26

Autumn 27.56 ± 0.48 199.20 ± 3.34 19

There were significant seasonal differences in the body mass among males (F3, 73 = 6.70,
p = 0.0004; Table 1): males in spring had a lower body mass than in autumn (p = 0.002)
and summer (p = 0.002). Similarly, the BCI differed seasonally (F3, 73 = 7.14, p = 0.0002;
Table 1): males in spring had a lower BCI than in autumn (p = 0.002) and summer (p = 0.007).
Most males captured in autumn had scrotal testicles (October 2013: n = 14; November
2013: n = 3), with a few individuals with abdominal testicles (October 2013: n = 2). In
winter (December 2012: n = 5; February 2014: n = 13), spring (April 2013: n = 6; April 2014:
n = 6), and summer (July 2013: n = 11; July 2014: n = 14), all males had abdominal testicles.
There were significant differences in the testosterone content among seasons (F2, 41 = 71.36,
p < 0.0001; Figure 1E): males in autumn had higher values than in summer (p = 0.0001) and
winter (p = 0.0001).
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Figure 1. Concentration of steroid sex hormones in the plasma of female and male fish-eating myotis
(Myotis vivesi) in Partida Norte Island, Mexico. The values were compared among seasons for both
sexes (A,C,E) and among the reproductive categories for females (B,D). The values are the median
(square), interquartile range (box), and 5th and 95th percentiles (whiskers). Only significant differ-
ences among the log10-transformed hormone concentration values are pointed out using different
letters after factorial analysis of variance. NR = females with no external signs of reproductive activity.

3.2. Phytohemagglutinin (PHA) Measurements

The swelling indices for females varied among the measurement periods (F2, 236 = 8.12,
p = 0.0003), with the Smaxper occurring 6 h after the PHA injection (3 h: 0.81 ± 0.05 mm; 6 h:
1.04 ± 0.05 mm; 12 h: 0.91 ± 0.04 mm). The Smaxper varied significantly among seasons
(F3, 111 = 2.98, p = 0.03; Figure 2A), with no effect of the year (F1, 111 = 1.53, p = 0.22) or the
year–season interaction (F3, 111 = 0.37, p = 0.77): the mean value was lower in spring than in
autumn (p = 0.05;). The Smaxindiv varied significantly among seasons (F3, 111 = 5.17, p = 0.002;
Figure 2B), with no effect of year (F1, 111 = 3.62, p = 0.06) or the year–season interaction
(F3, 111 = 0.70, p = 0.55): the mean value was lower in spring than in autumn (p = 0.01),
winter (p = 0.01), and summer (p = 0.01). Neither the swelling indices were significantly
correlated with the body mass for all females (Smaxper r = 0.18, p = 0.06; Smaxindiv: r = 0.05,
p = 0.58, n = 107) nor for lactating females (Smaxper r = 0.13, p = 0.45; Smaxindiv: r = 0.09,
p = 0.58, n = 36).

The swelling indices for males varied among the measurement periods (F2, 142 = 9.76,
p = 0.0001), with the Smaxper 6 h (1.07± 0.06 mm; 3 h: 0.78± 0.06 mm; 12 h: 1.03± 0.06 mm)
after the PHA injection. The Smaxper varied significantly among seasons (F3, 66 = 3.63,
p = 0.01; Figure 2C), with no effect of the year (F1, 66 = 0.60, p = 0.44) or the year–season
interaction (F3, 66 = 1.83, p = 0.15): the mean value in spring was lower than in summer
(p = 0.04). In contrast, the Smaxindiv was not affected by the year (F1, 66 = 0.40, p = 0.52;
Figure 2D) or the year–season interaction (F3, 66 = 0.81, p = 0.49), although the effect of the
season was nearly significant (F3, 66 = 12.51, p = 0.06), with a trend to lower values in spring
than in summer. The Smaxper was significantly correlated with the body mass (r = 0.34,
p = 0.002, n = 75) but the Smaxindiv was not (body mass: r = 0.12, p = 0.28).

In females (n = 57), the progesterone content was not correlated with any inflammation
index (Smaxper: r = 0.12, p =0.37; Smaxindiv: r = 0.20, p = 0.14; Figure 3A,B). In contrast, the
estradiol content was significantly correlated with the Smaxindiv (r = 0.32, p = 0.02; Figure 3C)
and it had a nearly significant correlation with the Smaxper (r = 0.25, p = 0.07; Figure 3D).
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Among males (n = 45), the testosterone content was not significantly correlated with any
inflammation index (Smaxper: r = 0.18, p = 0.21; Smaxindiv: r = 0.05, p = 0.70; Figure 3E,F).
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Figure 2. Swelling index 6 h after injection of phytohemagglutinin (Smaxper) in female (A) and male
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significant differences after factorial analysis of variance are pointed out using different letters.
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Figure 3. Pearson correlation analyses between swelling indices (Smaxper and Smaxindiv) and steroid
sex hormone concentration in female (A–D) and male (E,F) fish-eating myotis in Partida Norte Island,
Mexico. The regression line is shown only when the correlation was significant.

3.3. Bacteria Killing Ability

The BKA in females was not affected by year (χ2
1 = 3.04, p = 0.08), but the effects of

the season (χ2
3 = 10.65, p = 0.01) and the year–season interaction (χ2

3 = 16.89, p = 0.0007)
were significant (Figure 4A): the BKA values were lower in spring (p = 0.001) and summer
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(p < 0.0001) than in winter but only in year 1 of the measurements and with no differences
among seasons in year 2 (p > 0.67). Interestingly, females in spring and summer in year 2
had a higher BKA than in spring (p = 0.002) and summer (p = 0.01) in year 1, respectively.
The BKA in males was affected by year (χ2

1 = 4.72, p = 0.02) but it was not affected by
season (χ2

3 = 2.52, p = 0.47) or the year–season interaction (χ2
3 = 6.62, p = 0.09; Figure 4B).

The BKA was not significantly correlated with body mass in females (all females: R = 0.06,
p = 0.51, n = 102; lactating females: R = −0.08, p = 0.62, n = 33) or males (R = 0.12, p = 0.31,
n = 70). The BKA in females (n = 55) was not correlated with the progesterone content
(R = 0.13, p = 0.32; Figure 5A), but it was significantly correlated with the estradiol content
(R = 0.34, p = 0.01; Figure 5B). The BKA in males (n = 44) was not significantly correlated
with the testosterone content (R = −0.09, p = 0.52; Figure 5C).
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Figure 4. Bacterial killing ability (BKA) in plasma of fish-eating myotis collected for two years in
Partida Norte Island, Mexico. BKA values of females (A) were significantly affected by the year–
season interaction, but the values for males (B) were not. Values are median (square), interquartile
range (box), and 5th and 95th percentiles (whiskers). Only significant differences after generalized
linear models are pointed out using different letters.
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Figure 5. Spearman Rank correlation analyses between bacterial killing ability (BKA) and steroid
sex hormone concentration in female (A,B) and male (C) fish-eating myotis in Partida Norte Island,
Mexico. Only BKA and estradiol concentration were significantly correlated.

3.4. Ectoparasite Load

In total, we collected 1151 and 493 ectoparasites from 121 female and 72 male bats
examined, respectively. Parasite prevalence did not vary seasonally in the female (p = 0.39;
Table 1) or male bats (p = 1.0; Table 2). The mean intensity (p = 0.07) and abundance (p = 0.07)
in the female bats did not vary among seasons, although both parameters showed a trend
towards lower values in spring and autumn (Table 2). Neither intensity nor abundance
varied significantly among seasons in males (p = 0.25; Table 2). Parasite abundance was
not significantly correlated with the inflammation indices in females (Smaxper: r = 0.04,
p = 0.66; Smaxindiv: r = 0.03, p = 0.68; n = 110; Figure 6A,B) and males (Smaxper: r = 0.007,
p = 0.95; Smaxindiv: r = 0.04, p = 0.69; n = 71; Figure 6C,D). Parasite abundance was not
significantly correlated with the BKA in females (R = −0.12, p = 0.23, n = 108; Figure 7A)
but the correlation was significant for males (r = −0.24, p = 0.04, n = 65; Figure 7B).
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Table 2. Prevalence, intensity, and abundance of ectoparasites in female and male fish-eating myotis
(Myotis vivesi) during four seasons in Partida Norte Island, Mexico. Values are mean (95% confidence
interval) and were obtained with the program Quantitative Parasitology–QPweb 1.0.13 (Reiczigel
et al. 2019). We used the Clopper–Pearson method for the prevalence confidence interval and the
bias-corrected and accelerated bootstrap method, with 2000 replications for intensity and abundance
confidence intervals.

Bat sex Season Prevalence (%) Intensity Abundance n

Female Winter 96.8 (83.3–99.9) 11.9 (8.3–20.0) 11.5 (8.2–19.6) 31

Spring 100.0 (90.5–100.0) 5.9 (4.7–7.6) 5.9 (4.7–7.6) 37

Summer 100.0 (90.3–100.0) 11.1 (9.5–13.0) 11.1 (9.5–12.9) 36

Autumn 100.0 (80.5–100.0) 7.7. (5.7–10.6) 7.7. (5.7–10.8) 17

Male Winter 100.0 (85.1–100.0) 5.72 (4.0–9.4) 5.7 (4.0–9.4) 18

Spring 100.0 (76.8–100.0) 7.57 (5.1–10.1) 7.57 (5.1–10.2) 14

Summer 100.0 (86.3–100.0) 5.0 (3.9–6.3) 5.0 (3.8–6.2) 25

Autumn 100.0 (78.2–100.0) 7.6 (5.5–10.3) 7.6 (5.4–10.2) 15
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Figure 6. Pearson correlation analyses between swelling indices (Smaxper and Smaxindiv) and ectopara-
site abundance in female (A,B) and male (C,D) fish-eating myotis bats in Partida Norte island. No
correlation was significant.
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Figure 7. Spearman Rank correlation analyses between bacterial killing ability (BKA) and ectoparasite
abundance in female (A) and male (B) bats in Partida Norte Island, Mexico. Parasite abundance was
significantly correlated only with BKA in males.

4. Discussion
4.1. Immune Response and Its Relationship with Season and Reproductive Condition

In general, the swelling response of female and male fish-eating myotis was lower in
spring. Seasonal changes in the swelling response of bats to PHA have been examined only
in two species: mouse-eared bats and the fish-eating myotis. Pregnant mouse-eared bats
had less swelling than non-reproductive and lactating females [27] 6 h after PHA injection,
whereas in a study that did not include the pregnancy season, non-reproductive females
of fish-eating myotis had a lower swelling response in early winter than lactating females
and the swelling did not differ among males at the same post-injection period [53]. In
spring, some females of fish-eating myotis had external evidence of pregnancy, and some
did not. However, the progesterone levels of females with no external sign of pregnancy in
spring were the highest recorded in our study, suggesting that the females in this period
were in early pregnancy. Progesterone values are an adequate proxy for bat reproductive
status; for instance, progesterone values are very low in non-reproductive females of
black myotis (M. nigricans), peaking in early pregnancy with a slight decrease in advanced
pregnancy [54]. Higher testosterone levels were measured in autumn, but the two males
in which we measured the testosterone in spring had similarly high values (19.6 and
14.6 ng/mL). During spring, most males leave the colony, and the roosting groups are
formed of a single male and several females [36,47]. The biological reason behind this
pattern is unknown, but it is probable that the remaining males mated with several females.
Unfortunately, we did not have access to more plasma samples to test if high testosterone is
a general pattern for males in spring, but it might indicate territorial behavior. For instance,
testosterone is higher in males of the greater sac-winged bat engaged in defending harems
during mating [55]. All things considered, it appears that the cellular innate response is
downregulated in spring when females of fish-eating myotis are pregnant and when males
roosting with several females are probably involved in maintaining their territory.

The BKA varied seasonally only in female fish-eating myotis depending on the year
examined. The BKA in year 1 was lower in spring and summer than in winter and that in
spring and summer in year 2. Females collected in spring in year 1 were probably in early
pregnancy, whereas females in year 2 were in a more advanced pregnancy stage. Therefore,
it appears that the pregnancy stage might influence the BKA in fish-eating myotis similar
to the effect on other immune responses in other bats [27]. The females in summer in year 1
were all lactating, and in year 2, they were either lactating or not. However, the lactating
females in year 1 had a lower BKA than the lactating (median = 0.91) and non-lactating
females (median = 0.98) in year 2, which indicates that the interannual difference was not
related to differences in reproductive activity. Only one study previously examined the



Diversity 2022, 14, 781 13 of 18

relationship between the BKA and reproduction in bats, reporting no differences among
the reproductive categories in male (non-reproductive and reproductive) and female (non-
reproductive, gestating, lactating, and post-lactating) Daubenton’s bats [31].

4.2. Immune Response and Its Relationship with Parasite Load and Body Mass

We found no significant correlation between the ectoparasite load and the swelling
indices in fishing bats, but body mass appeared to play a role in the extent of inflammation.
Previous work with pregnant mouse-eared bats showed that the swelling response of
females was associated with the ectoparasite load and body condition. Females in early
pregnancy had a lower swelling index and higher ectoparasite abundance than females in
advanced pregnancy and lactation, and the swelling index of lactating females increased
as the body mass increased [27]. In contrast, PHA-induced inflammation was not related
to the body condition of females of Brazilian free-tailed bats (Tadarida brasiliensis) at four
maternity roosts [51]. The lack of a relationship between the swelling and the parasite
load in fish-eating myotis is not surprising given that the ectoparasite abundance was
relatively stable throughout the different seasons in both females and males. In contrast to
other colonial bats, fish-eating myotis roost under rockslides in groups of few individuals
throughout the year (3–5 individuals per roost; 36), which probably helps to maintain
ectoparasite transmission among individual bats at the same rate among seasons. The
swelling increased as the body mass (and body condition) of male fish-eating myotis
increased, indicating that bats in a better nutritional condition responded more strongly
to the PHA challenge. Additional evidence supporting this scenario is given by the fact
that the lowest inflammation response was found in spring, when males had the lowest
body mass. Interestingly, the energy cost of inflammation measured for the fish-eating
myotis is null: the resting metabolic rate and body mass of the bats injected with PHA were
not significantly different from those of the bats injected with a control substance [56]. No
detectable energetic cost of PHA-induced inflammation has been found in other mammals,
suggesting that the cost might be expressed in other terms [57] that are probably related to
body mass and/or body condition.

The BKA of female fish-eating myotis was not significantly related to the ectoparasite
load or body mass. In contrast, although it was not related to body mass, the BKA was
inversely related to the ectoparasite load: bats with lower parasite abundance had a higher
BKA. Findings in other bats show no relationship of BKA with body mass (Daubenton’s
bat; 28), body condition (Greater sac-winged bat; 29), or ectoparasite load (Daubenton’s
bat; 28). However, parasites might play a role in the magnitude of the BKA, although not
in the same direction found with male fish-eating myotis. For instance, the BKA is higher
in greater sac-winged bats with trypanosome infections than in uninfected individuals and
tends to be higher in bats infected with nematodes [29].

4.3. Immune Response and Its Relationship with Steroid Sex Hormones

A significant correlation between female sex hormones and the immune response was
found only with estradiol: females with higher estradiol levels had a higher Smaxindiv and
BKA. Neither progesterone in females nor testosterone in males had a significant association
with any index of the immune response. In general, the correlation of testosterone with
male immune performance is negative, indicating an immunosuppressive effect of this
hormone [8]. However, an increasing number of publications indicate that the immune
response rather depresses testosterone [30,46,58]. Previous studies with other taxa have
found contrasting relationships between testosterone levels and PHA-induced swelling
and BKA. The swelling response to PHA increased with the baseline values of testosterone
in free-ranging tree sparrows (Passer montanus; [59]), but an experimental treatment with
testosterone decreased the swelling response in common wall lizards (Podarcis muralis; [60]),
dark-eyed juncos (Junco hyemalis; [61]), and European starlings (Sturnus vulgaris; [62]), but
not in house sparrows (P. domesticus; [63]). Testosterone had a positive correlation with the
BKA in free-living Grant´s gazelle (Nanger granti; [64]), but this relationship was negative
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in red-winged blackbirds (Agelaius phoeniceus; [65]) and in American alligators (Alligator
mississippiensis; [66]). Among bats, the relationship between testosterone levels and the
immune response has been examined in a handful of studies, but with different immune
components from those included in our study. For instance, there was no significant
relationship between testosterone levels and the dinitrofluorobenzene-induced swelling
response in Seba’s short-tailed bat [46], nor with lytic and agglutination immune responses
in big brown bats (Eptesicus fuscus; [30]). Furthermore, greater sac-winged bats showed no
correlation between testosterone levels and parasite infestation [55].

In contrast with testosterone, most studies on the relationships between immune
response and progesterone and estradiol levels have been conducted with humans and
laboratory animal models. Both positive and negative effects on immune function have
been reported for estradiol depending on the immune function examined [8]. For instance,
estradiol administration enhanced the number of IgG- and IgM- producing cells [67] and
the level of IgG [68] in mice. It increased IgG plasma levels in zebra fish (Dario rerio; [69]),
and it augmented lymphocyte proliferation following PHA administration in Siberian
hamsters (Phodopus sungorus; [70]). In contrast, estradiol administration depressed the
swelling response [68,71] and the production of interleukin-6 in mice [71]. Recent evidence
in humans also indicates a protective effect of estradiol against coronavirus disease 2019 [72].
Progesterone can have both stimulatory and suppressive effects on the immune system
but is typically regarded as immunosuppressive and anti-inflammatory [12], especially
when compared to estradiol. For instance, rather than progesterone, estradiol enhanced
immunity during malaria infection in mice [73]. In rats, estradiol augmented IgG and IgA
production, whereas progesterone reduced IgA production [74], and estradiol elevated
circulating levels of key inflammatory mediators after an in vivo endotoxin challenge in
mice [75]. Our findings of a positive correlation of inflammation and BKA with estradiol
but not with progesterone are in line with the preponderant role of estradiol as an enhancer
of the immune response found in model animals.

5. Concluding Remarks

Similar to other bats in more mesic environments, the cellular and humoral innate
immune responses of fish-eating myotis varied throughout the year, following the seasonal
reproductive pattern of the species. Our evaluation of the proximal factors affecting the
expression of the immune response is not conclusive since we could not measure all vari-
ables simultaneously from all individuals, but it points to the potential immunoregulatory
role of sex hormones and body mass. With a few exceptions [41,42], eco-immunological
studies have largely ignored bats in arid zones. Arid environments are limited in food
and water availability, and the health of bats that live in these zones is highly vulnerable
to anthropogenic impacts [41,42]. For instance, its unique marine-based feeding habits
expose fish-eating myotis to the presence of heavy metals in the food chain [35], which
might, in turn, affect their immune response [76]. Further research on the immune ecology
of insular desert bats is warranted, as they are particularly vulnerable to anthropogenic
environmental changes [77].
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