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Abstract: We previously showed that novel filterable bacteria remain in “sterile” (<0.2 µm filtered)
terrestrial environmental samples from Japan, China, and Arctic Norway. Here, we characterized
the novel filterable strain IZ6T, a representative strain of a widely distributed lineage. Phylogenetic
analysis showed that this strain was affiliated with the Rhizobiales (now proposed as Hyphomicrobiales)
of Alphaproteobacteria, but distinct from any other type strains. Strain IZ6T shared the following
chemotaxonomic features with the closest (but distantly) related type strain, Flaviflagellibacter deserti
SYSU D60017T: ubiquinone-10 as the major quinone; phosphatidylethanolamine, phosphatidyl-
choline, and phosphatidylglycerol as major polar lipids; and slightly high G+C content of 62.2 mol%.
However, the cellular fatty acid composition differed between them, and the unsaturated fatty acid
(C18:1ω7c/C18:1ω6c) was predominantly found in our strain. Moreover, unlike methyrotrophs and
nitrogen-fixers of the neighboring genera of Hyphomicrobiales (Rhizobiales), strain IZ6T cannot utilize a
one-carbon compound (e.g., methanol) and fix atmospheric nitrogen gas. These findings were con-
sistent with the genome-inferred physiological potential. Based on the phylogenetic, physiological,
and chemotaxonomic traits, we propose that strain IZ6T represents a novel genus and species with
the name Terrihabitans soli gen. nov., sp. nov. (=NBRC 106741T = NCIMB 15058T). The findings will
provide deeper insight into the eco-physiology of filterable microorganisms.

Keywords: filter sterilization; filterable bacteria; soil; phylogeny; taxonomy; Hyphomicrobiales; Rhizo-
biales

1. Introduction

Removal of microorganisms using a micropore filter (e.g., 0.2 µm pore size) is a com-
mon procedure in research laboratories as well as medical and industrial processes [1].
However, some bacteria in nature are known to pass through a 0.2 µm-pore-size filter
and to persist in “sterile” (<0.2 µm filtered) environmental samples (reviewed in [2–5]).
Culturing efforts targeting filterable microorganisms have uncovered novel filterable bacte-
ria, including obligate and facultative ultramicrobacteria as well as slender bacteria [3,5].
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Such filterable microorganisms have been explored and mined mainly in water samples
collected in aquatic systems [5]. On the other hand, culture-independent analyses have
also revealed that novel and/or rarely cultivated microorganisms are present in small cell
size fractions (<0.8 µm) of terrestrial soil systems [6]. Nonetheless, there are only a few
successes of isolating pure cultures from filtered fractions in soils (e.g., Verrucomicrobia
isolates [7]).

During the course of mining ultra-small microorganisms, we isolated and cultivated a
novel 0.2 µm-filterable Rhizobiales bacterium, strain IZ6T, from a filtered suspension of for-
est soil [8]. We also obtained its phylogenetically closely-related isolates from other filtered
samples (i.e., bark soil, sand, and travertine) collected in geographically remote areas such
as Japan, China, and Arctic Norway [8]. These isolates formed a novel genus-level cluster
in the 16S rRNA gene sequence-based phylogenetic tree [9]. Previous investigations also
showed that strain IZ6T was not a typical ultramicrobacterium (cell volume, <0.1 µm3 [3,5])
under the optimal culture condition, but it does exhibit cell plasticity resulting in some fil-
terable cells under a colder temperature condition [9]. This study characterized a cultivated
representative strain IZ6T of a widely distributed terrestrial lineage by using polyphasic
approaches including morphological, physiological, biochemical, and chemotaxonomic
analyses in addition to phylogenomic analysis. Based on the characterizations, we propose
the novel genus and species, Terrihabitans soli gen. nov., sp. nov., for this strain. Note
that the order Hyphomicrobiales of the class Alphaproteobacteria was recently proposed as
a replacement for Rhizobiales [10] and is herein tentatively described as Hyphomicrobiales
(Rhizobiales) in reference to previous research [11].

2. Materials and Methods
2.1. Phylogenetic and Phylogenomic Analysis

The full-length 16S rRNA gene sequence of strain IZ6T was retrieved from the genome
sequence (AP023361 [9]). The sequence was BLASTn-searched against the NCBI nt/nr
database (accessed, June 2021) for the identification of the closest type strains, taxonomi-
cally undescribed strains, and uncultivated clones/phylotypes. To evaluate genome-scale
similarities, the whole-genome-based average nucleotide identity (gANI) of strain IZ6T

against the closest type strains identified using BLASTn was calculated using the ANI
calculator [12]. The two-way averaged amino acid identity (AAI) and alignment fractions
(AF) values were also calculated by using the AAI and AF calculators [13,14]. For the
whole genome-based taxonomic analysis, the genome sequence data were analyzed by
the Type (Strain) Genome Server (TYGS [15]) (accessed, June 2021). For the phylogenomic
inference, all pairwise comparisons among the set of genomes were conducted using the
Genome BLAST Distance Phylogeny approach (GBDP), and accurate intergenomic dis-
tances were inferred under the algorithm “trimming” and distance formula d5 [16]. A
total of 100 distance replicates were calculated for each genome. Digital DNA-DNA hy-
bridization (DDH) values and confidence intervals were calculated using the recommended
settings of the GGDC 2.1 [16]. The resulting intergenomic distances were used to infer a
balanced minimum-evolution tree with branch support via FASTME 2.1.6.1, including SPR
postprocessing [17]. Branch support was inferred from 100 pseudo-bootstrap replicates.
The trees were rooted at the midpoint [18] and visualized with PhyD3 [19].

2.2. Metagenomic Database Search for Potential Habitat Prediction

The potential distribution and habitability of strain IZ6T and its close relatives were
predicted by the IMNGS platform [20], which is a database search against metagenome-
derived 16S rRNA gene amplicon datasets, as well as the ProkAtlas search, which contains
multiple 16S rRNA gene sequences labeled by one environmental category [21]. Both tools
were performed with the sequence similarity threshold of 99%, using the sequence of IZ6T

as the query.
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2.3. Morphological, Physiological, and Biochemical Characterization

Strain IZ6T was originally isolated from a 0.2 µm filtrate of a suspension of forest soil
collected in March 2009 from western Japan, as previously described [8]. IZ6T is routinely
cultivated and maintained in R2A agar “DAIGO” (Nihon Pharmaceutical, Tokyo, Japan) at
25 ◦C. For colony observation, strain IZ6T was grown on R2A agar at 25 ◦C for 7 days. The
cell morphology was observed in a previous study [9]. The cell motility was examined by
microscopy (Olympus BX-50F4; Olympus Optical, Tokyo, Japan) after cultivation at 25 ◦C
in R2A liquid medium (R2A broth “DAIGO”; Nihon Pharmaceutical). Gram staining was
carried out using a Favor G Nissui kit (Nissui Pharmaceutical, Tokyo, Japan). Growth at
a range of temperatures (4 ◦C, 10 ◦C, 15 ◦C, 20 ◦C, 25 ◦C, 30 ◦C, and 37 ◦C) was assessed
on R2A agar. Growth at various pH levels (pH 4–12) and salt concentrations (0–2% [w/v]
NaCl) was also determined on R2A agar; the pH was adjusted by adding 1M or 6M
HCl or NaOH prior to sterilization. Anaerobic growth was tested using a chamber with
an Anaero Pack system (Mitsubishi Gas Chemical, Tokyo, Japan). Catalase and oxidase
activities were assessed following the previously reported method [22]. Physiological
and biochemical characteristics and enzyme activities were tested at 25 ◦C using the API
20NE and APIZYM test strips (bioMérieux, Tokyo, Japan) according to the manufacturer’s
instructions. Growth on methanol was tested with a minimal medium K containing
methanol (0.5%, v/v) as reported in a previous study [23]. Nitrogen fixation potential was
assessed based on the growth at 25 ◦C for 3–4 weeks on a nitrogen-free MS2N medium
following the method of Bao et al. [24]. To account for the effect of nitrogen carryover
derived from the pre-cultivation medium (R2A medium) before inoculation, cells grown in
MS2N were inoculated into a fresh MS2N medium, and further growth was confirmed.

2.4. Chemotaxonomic Analyses

The chemotaxonomic properties of strain IZ6T were characterized by data on the
cellular fatty acid composition, major respiratory quinone, polar lipids, and genomic GC
content. For the fatty acid analysis, cells grown on R2A agar at 25 ◦C for 5 days were
harvested and used. Fatty acids methyl esters were prepared and analyzed using the
protocol of the Sherlock Microbial Identification system version 6.0 (Microbial ID; MIDI
Inc., Newark, DE, USA). The fatty acid profile was compared and determined with the
TSBA library (TSBA6 6.20). For the quinone determination, cells were grown on R2A
agar at 25 ◦C for 5 days and were harvested and freeze-dried. The total lipids of the
cells were extracted by a modification of the previously reported method [25], and the
quinones in the crude extract were purified using a Sep-Pak plus silica column (Waters,
Milford, MA, USA). The molecular type and concentration of each quinone extracted
were analyzed by an ultra-performance liquid chromatography (UPLC) system (Acquity
UPLC system; Waters) equipped with a photodiode array detector (UPPDA-E; Waters), an
Eclipse plus C18 column (3.0 × 150 mm; pore size, 3.5 µm; Agilent Technologies, Tokyo,
Japan), and Empower 2 software (Waters). The quinone species was finally determined
based on the linear relationship between the logarithm of the UPLC retention time and
the number of isoprene units according to the equivalent number of isoprene units of
quinone components as reported by Tamaoka et al. [26]. For the characterization of polar
lipids, extracted lipids were also separated by two-dimensional HPTLC silica gel 60 (Merck,
Tokyo, Japan) following the previously reported experimental method and condition [27].
The genomic G + C content was calculated from the complete genome sequence of this
strain (AP023361 [9]).

3. Results and Discussion

3.1. Phylogenetic Affiliation and Phylogenomic Placement of Strain IZ6T

The full-length 16S rRNA gene sequence of strain IZ6T was moderately related to
Hyphomicrobiales (Rhizobiales) members of Alphaproteobacteria, but showed no more than 97%
sequence identity to those of known type strains as of June 2021. The closest type strain
was Flaviflagellibacter deserti SYSU D60017T, which was isolated from desert soil [28], and
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shared 96.9% sequence identity with strain IZ6T. Type strain SYSU D60017T is assigned to
the family Rhizobiaceae in the NCBI taxonomy and to Ca. Methylopilaceae in the Genome
Taxonomy Database (GTDB), although the family-level classification is not assigned in the
List of Prokaryotic names with Standing in Nomenclature (LPSN). Note that this taxonomic
issue regarding the placement of the family of strains IZ6T and SYSU D60017T will be
discussed later. As of June 2021, the taxonomically undescribed isolates most closely
related (16S rRNA gene sequence identities, 98.7–100%) to strain IZ6T were five filterable
strains (DDBJ/ENA/NCBI accession nos. AB539978, AB539979, AB539981, AB539982, and
AB540022) isolated from 0.2 µm-filtered fractions of terrestrial samples collected in Japan,
China, and Arctic Norway, as reported in our previous study [8]. These data indicate that
strain IZ6T and its close relatives are taxonomically novel candidates belonging to the
Hyphomicrobiales (Rhizobiales).

The whole-genome-based average nucleotide identity (gANI) and the alignment
fractions (AF) value of strain IZ6T against the closest type strain F. deserti were 75.4%
and 0.50–0.59, respectively. These values were somewhat higher than the threshold for
genus-level differentiation [29], while the value (69.9%) of the averaged amino acid identity
(AAI) falls within the genus-level threshold (60–80% [30]). Moreover, a phylogenomic
tree based on the Genome BLAST Distance Phylogeny (GBDP) approach indicated that
although this strain was relatively close to F. deserti, this represents a novel genus-level
lineage (Figure 1). This result was consistent with the phylogenetic novelty inferred from
the previous 16S rRNA gene-based phylogenetic tree [9].
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from the Genome BLAST Distance Phylogeny (GBDP) distances calculated from genome sequences.
The branch lengths are scaled in terms of GBDP distance formula d5. The numbers above branches
are GBDP pseudo-bootstrap support values of >60% from 100 replications, with average branch
support of 71.8%. The tree was rooted at the midpoint [18]. The distribution of the genome size is
shown as a bar graph on the right side; the genomes ranged from 3.1 Mbp to 9.8 Mbp. The data for
strain IZ6T are colored orange, and all other data are colored blue. The scale bar indicates the branch
length value.

It should be noted that the genome size (3.11 Mb) of IZ6T is smaller than that (3.72 Mb)
of F. deserti and was one of the smallest sizes among the free-living members in Hyphomi-
crobiales (Rhizobiales) (Figure 2). The smaller genomes all belong to host-associated (e.g.,
parasitic) members of the genera Bartonella, Ca. Tokpelaia, Ca. Liberibacter, Ca. Hodgkinia.
In general, planktonic and filterable ultramicrobacteria in aquatic systems tend to have
small genomes, known as so-called “genome streamlining” (1–2 Mb [5,31,32]). Although
strain IZ6T does not exhibit the typical cell size of ultramicrobacteria, as described be-
low, its genome size is at the boundary between those of free-living and host-associated
bacteria. This suggests that genome reduction and/or streamlining of IZ6T is currently
underway, but this will require further validation, including genome analysis of other
filterable relatives.
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Figure 2. Relationship between the genome size and the number of protein-coding genes in Hy-
phomicrobiales (Rhizobiales) genomes. A total of 373 genomic datasets registered with the genome
completion status “finished” and the alphaproteobacterial orders “Hyphomicrobiales” and “Rhizobiales”
were downloaded from the Integrated Microbial Genomes and Microbiomes (IMG/M) [33,34] (ac-
cessed on June 2021). The scientific names of some representative members, including our strain
indicated by a yellow-filled circle, are shown; the host-associated (e.g., parasitic) members are circled
by a gray dashed line.
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3.2. Morphological, Physiological, and Biochemical Characteristics of Strain IZ6T

Cells of strain IZ6T were rods with a size of 1.5–2.0 × 0.4–0.5 µm (cell volume,
~0.36 µm3) under the 25 ◦C culture condition exhibiting good growth. This is not the
size of typical ultramicrobacteria, which generally have a cell volume of <0.1 µm3 [3,5].
However, our previous study showed that smaller cells, as well as some ultra-small cells
and cell-like particles (cell/particle volume, ~0.06 µm3), were observed when the tempera-
ture condition was changed from 25 ◦C to 15 ◦C [9]. This cell plasticity may be related to
the ability to pass through 0.2 µm-pore-sized filters. The strain was Gram-stain negative,
catalase-positive, and oxidase-positive. Growth was observed at 10–30 ◦C, but not at
4 ◦C or 37 ◦C, and at pH 6–10 with weak growth at pH 5 or 11; it should be noted that
potential changes in pH during cultivation can affect the pH growth range data. Growth
was also observed at 0–1.0% NaCl, with no growth at 1.5% NaCl or above. In the API 20NE
and API ZYM tests, alkaline phosphatase, esterase, esterase lipase, acid phosphatase, and
naphthol-AS-BI-phosphohydrolase were positive, and all others were negative.

The Hyphomicrobiales (Rhizobiales) group is phenotypically diverse and contains methan-
otrophs, methylotrophs, and nitrogen fixers [10,35]. In contrast, strain IZ6T exhibited no
growth on methanol-amended medium and nitrogen-free medium. This result is consistent
with the absence of the gene sequences encoding the key enzymes (i.e., methanol dehy-
drogenase and methane monooxygenase for one-carbon compound metabolism as well as
nitrogenase for nitrogen fixation) in the IZ6T genome [9]. The previous genomic annotation
also identified the presence of a nitrate reductase gene (nasA) in the genome [9], but the test
for nitrate reduction by using API 20NE was negative under the condition tested. Further
verification of this aspect of the characterization will be needed.

The characteristics of strain IZ6T lacking methanol utilization and nitrogen fixation
capacity were shared with the closest type strain F. deserti [28]. However, in addition to dif-
ferences in motility and growth temperature, pH, and salinity, several enzymatic activities
also differed between IZ6T and F. deserti, indicating clear phenotype differences (Table 1).
Moreover, strain IZ6T also showed a different trend from the phenotypic characteristics of
strains of two other relatively related genera (Table 1).

Table 1. Differential phenotypic characteristics of strain IZ6T, its closest type strain (Flaviflagellibacter deserti SYSU D60017T),
and two other related strains of the Hyphomicrobiales (Rhizobiales).

Characteristic 1 2 3 4

Isolation source Forest soil Desert soil Forest soil Wheat soil
Motility Nonmotile Motile Nonmotile Motile

Growth at/in the
presence of:

4 ◦C − + − −
37 ◦C − + + +
pH 9 + − + −

1.5% (w/v) NaCl − + − −
Assimilation of glucose − + + +

Enzymatic activities:
Lipase (C14) − + − −

Leucine arylamidase − + + −
Valine arylamidase − + + −

Cystine arylamidase − + + −
Trypsin − + + −

Strains: 1, IZ6T (data from this study); 2, Flaviflagellibacter (data from [28]). Both strains were Gram-stain negative, aerobic, catalase-positive,
and oxidase-positive. In the API 20NE kit, both strains were negative for all tests except for glucose assimilation, as shown below.
In the API ZYM, both strains were positive for alkaline phosphatase, esterase, esterase lipase, acid phosphatase, and naphthol-AS-BI-
phosphohydrolase, and were negative for all tests except for the enzymatic activities, where differences were observed as shown below.
Data from two other strains of the Hyphomicrobiales (Rhizobiales) were used for comparison purposes; 3, Pinisolibacter [36]; 4, Methylopila [37].
Note that these two relatively related genera were selected from the previous 16S rRNA gene-based phylogenetic tree [9].
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3.3. Chemotaxonomic Characteristics of Strain IZ6T

The dominant cellular fatty acids (>5% of the total cellular fatty acids) were C18:1ω7c
and/or C18:1ω6c (71.6%), C16:1ω7c and/or C16:1ω6c (5.9%), C19:0 cyclo ω8c (5.48%), and
C16:0 (5.26%). Other minor fatty acids (0.5%~5%) were C17:0 (2.94%), C18:0 (2.38%), C16:0
3-OH (1.99%), C17:1ω6c (0.86), C12:0 3-OH (0.72%), C17:0 cyclo (0.62), and C14:0 (0.5%). The
respiratory quinone of strain IZ6T was determined to be ubiquinone-10 (Q-10) that is a
typical trait of Hyphomicrobiales (Rhizobiales) members [36]. The polar lipids detected were
diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidyl-
glycerol, and two unidentified polar lipids (Figure S1). The genomic G + C content was
62.2 mol%, as calculated from the IZ6T genome sequence (accession no. AP023361). The
results of comparing these chemotaxonomic features with those of other relatives in the Hy-
phomicrobiales (Rhizobiales) are shown in Table 2. In particular, the unsaturated fatty acid(s)
(C18:1ω7c/C18:1ω6c) was predominantly (>70% of the total cellular fatty acids) found in our
strain, compared to the proportions (18–52%) of members of two related genera (Flaviflagel-
libacter and Pinisolibacter). This suggests that the unsaturated fatty acid-rich characteristic
is one of the key features of strain IZ6T.

Table 2. Differential chemotaxonomic characteristics of strain IZ6T and its three related genera of the Hyphomicrobiales
(Rhizobiales).

Characteristic 1 2 3 4

Major fatty acids C18:1ω7c/C18:1ω6c C19:0ω8c cyclo,
C18:1ω7c/C18:1ω6c

C18:1ω7c/C18:1ω6c,
C16:1ω7c/C16:1ω6c,

C16:0

C18:1ω7

Main quinone Q-10 Q-10 Q-10 Q-10
Polar lipids DPG, PC, PE, PG, UL DPG, PC, PE, PG, UL DPG, PC, PE, PG, PME, UL PC, PE

G + C content (mol%) 62.2 63.8 68.4 66–70

Taxa: 1, strain IZ6T (data from this study); 2, Flaviflagellibacter (data from [28]); 3, Pinisolibacter [36]; 4, Methylopila [38]. Note that the most
closely related genus to IZ6T and two relatively related genera were selected from the BLASTn-search result in this study and the previous
16S rRNA gene-based phylogenetic tree [9]. DPG, diphosphatidylglycerol; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PG,
phosphatidylglycerol; PME, phosphatidyl-N-methylethanolamine; UL, unidentified polar lipids.

3.4. Potential Distribution and Habitability of Close Relatives of Strain IZ6T

Comparative 16S rRNA gene sequence analysis revealed that strain IZ6T showed
high sequence similarities to uncultured environmental sequences, as shown below. En-
vironmentally derived sequences closely related (98.5–99.2%) to strain IZ6T were de-
tected in a low-level-radioactive-waste site (accession no. GQ264001 [39]) and loamy
soil (HQ119195 [40]) in the United States. Further, based on a search using the IMNGS
platform [20], which is a database search against metagenome-derived 16S rRNA gene am-
plicon datasets, we also found that the IZ6T 16S rRNA gene sequence matched 3718 datasets,
comprising mainly 2078 soil, 443 rhizosphere, and 219 plant metagenome datasets with a
sequence similarity threshold of 99%. In agreement with this, the top three potential habi-
tats inferred by using the ProkAtlas (which contains multiple 16S rRNA gene sequences
labeled by one environmental category [21]) with a threshold of 99% were soil (habitat
preference score, 45.4%), rhizosphere (31.0%), and plant (15.9%). These results suggested
that this filterable bacterium and its close relatives inhabit different habitats in the terrestrial
environment.

3.5. Proposal of a Novel Genus and Species for Strain IZ6T

Based on the clear phenotypic differences as well as the relatively low 16S rRNA
gene sequence identity (<97%) and low AAI (<70%), strain IZ6T can be distinguished
from the closest genus and species of F. deserti. F. deserti was first described as a novel
bacterium closely clustered with Methylocystaceae clade II on the phylogenetic tree but
with low sequence identity (<94%) to known neighbor genera [28]. Members of the
Methylocystaceae lineage are known not to be a monophyletic group in the phylogenetic
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tree and are separated into four different clades [28,35]: clade I (type II methanotrophs:
e.g., Methylocystis and Methylosinus), clade II (methylotrophs: e.g., Methylosulfonomonas,
and Methylopila), clade III (non-methanotrophs: e.g., Chthonobacter and Pleomorphomonas),
and clade IV (non-methanotrophs such as Terasakiella). In this context, it has been pointed
out that the classification of members of the class Alphaproteobacteria is difficult because
it relies on the interpretation of insufficiently resolved 16S rRNA gene-based trees for
diverse members [10]. On the other hand, recent genome-scale phylogenetic analysis has
improved the taxonomic classification of the alphaproteobacterial members, including
the aforementioned genera related to Methylocystaceae [10]. Future studies will need to
include strain IZ6T and F. deserti, as well as their relatives (e.g., Pinisolibacter; note that, as of
June 2021, no genome information is available in public databases), in such genome-based
taxonomic analyses to revisit their phylogenetic systematics.

On the basis of the phylogenetic, morphological, physiological, and chemotaxonomic
traits, we propose the novel name Terrihabitans soli gen. nov., sp. nov. for strain IZ6T.

Description of Terrihabitans gen. nov.

Terrihabitans (Ter.ri.ha’bi.tans. L. fem. n. terra, earth; L. pres. part. habitans, inhabiting;
N.L. part. adj. used as a masc. n. Terrihabitans, earth [soil] dweller, referring to the type of
ecosystem inhabited by the bacteria)

Cells are rod-shaped and grow chemoorganotrophically and aerobically. Gram-stain
negative, non-motile, and non-spore-forming. The cellular fatty acids are C18:1ω7c and/or
C18:1ω6c, C16:1ω7c and/or C16:1ω6c, C19:0 cyclo ω8c, and C16:0. The respiratory quinone
was ubiquinone-10 (Q-10). The polar lipids contain diphosphatidylglycerol, phosphatidyl-
choline, phosphatidylethanolamine, phosphatidylglycerol, and unknown polar lipids. The
DNA G + C content is circa 62 mol%. The genome size is circa 3.1 Mbp.

The genus is a member of the class Alphaproteobacteria [41] of the phylum Proteobacte-
ria [42]. The type species is Terrihabitans soli.

Description of Terrihabitans soli sp. nov.

Terrihabitans soli (so’li. L. gen. n. soli, of soil, the source of the type strain)
General descriptions of morphological and chemotaxonomic features are as given

in the genus description. Cells grown in R2A liquid medium are rod-shaped with a size
of about 1.5–2.0 × 0.4–0.5 µm (cell volume, ~0.36 µm3). Colonies on R2A agar medium
are circular, light white, smooth, <1.0 mm in diameter, and slightly raised. Grows on
R2A medium aerobically but not under anaerobic conditions. The temperature range for
growth on R2A is 10 ◦C to 30 ◦C. Cells of reduced size, as well as some ultra-small cells and
cell-like particles (cell/particle volume, ~0.06 µm3), are observed when the temperature
condition is changed from 25 ◦C to 15 ◦C. The pH range for growth on R2A is pH 6–10
(note that potential changes in pH during cultivation can affect the pH growth range
data). NaCl concentrations of 0–0.5% in R2A medium are tolerated, and weak growth
occurs at 1%. Catalase-positive and oxidase-positive. Enzymatic activities are positive
for alkaline phosphatase, esterase, esterase lipase, acid phosphatase, and naphthol-AS-BI-
phosphohydrolase.

The type strain, strain IZ6T (= NBRC 106741T = NCIMB 15058T), was isolated from
the 0.2 µm-filtered filtrates of a suspension of forest soil from Okuizumo, Shimane, Japan.
The G + C content of the genomic DNA is 62.2 mol%, and the genome size is 3.11Mb. The
genome sequence has been deposited in DDBJ/ENA/NCBI under accession no. AP023361.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/d13090422/s1. Figure S1: Polar lipids of strain IZ6T after separation by two-dimensional
HPTLC. DPG, diphosphatidylglycerol; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PG,
phosphatidylglycerol; UL1 and UL2, unidentified polar lipids.
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