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Abstract: Following similar studies of cell wall constituents in the placenta of Phaeoceros and Marchan-
tia, we conducted immunogold labeling TEM studies of Physcomitrium patens to determine the
composition of cell wall polymers in transfer cells on both sides of the placenta. Sixteen monoclonal
antibodies were used to localize cell wall epitopes in the basal walls and wall ingrowths in this
moss. In general, placental transfer cell walls of P. patens contained fewer pectins and far fewer
arabinogalactan proteins AGPs than those of the hornwort and liverwort. P. patens also lacked the
differential labeling that is pronounced between generations in the other bryophytes. In contrast,
transfer cell walls on either side of the placenta of P. patens were relatively similar in composition,
with slight variation in homogalacturonan HG pectins. Compositional similarities between wall
ingrowths and primary cell walls in P. patens suggest that wall ingrowths may simply be extensions
of the primary cell wall. Considerable variability in occurrence, abundance, and types of polymers
among the three bryophytes and between the two generations suggested that similarity in function
and morphology of cell walls does not require a common cell wall composition. We propose that the
specific developmental and life history traits of these plants may provide even more important clues
in understanding the basis for these differences. This study significantly builds on our knowledge of
cell wall composition in bryophytes in general and in transfer cells across plants.

Keywords: arabinogalactan protein; cell wall; pectin; hemicellulose; transfer cell; wall ingrowth;
Physcomitrium patens

1. Introduction

Because the sporophyte of bryophytes is matrotrophic, the placenta is the principal
site for nutrient uptake that drives the production and dispersal of spores [1,2]. In this
intergenerational zone, specialized cells facilitate an intensified unidirectional flow of
solutes to the sporophyte that is dependent on the persistent gametophyte [3,4]. Transfer
cells characterized by localized cell wall ingrowths are common in both generations in
bryophytes, but they are not universal, as they may be absent or restricted to either side
of the placental junction [1,5]. In transfer cells, wall ingrowths form an elaborate network
or labyrinths that vastly increases the surface area of the plasmalemma, which enhances
membrane-mediated nutrient transport in strategically located and specialized cell–cell
junctions [3,4,6]. Wall ingrowths create a more extensive and presumably specialized
apoplast and a cell wall/plasma membrane complex that is polarized and produces a direc-
tional apoplastic/symplastic exchange of solutes [7]. In addition to bryophyte placentae,
transfer cells are common in tracheophytes in areas of high solute transport, such as in
phloem, vascular parenchyma [8], angiosperm embryos [7,9–12], secretory glands [13], and
root nodules [14,15]. In the placenta of mosses, carbon in the form of sucrose moves within
the gametophyte symplastically and is actively loaded from the apoplast into the foot of
the sporophyte [16,17]. In Physcomitrium patens, as in most mosses and many liverworts,
transfer cells with cell wall ingrowths are located on both sides of the placenta [1]. Cell
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wall ingrowths and an abundance of mitochondria and plastids reflect the energy-intensive
process of transferring nutrients across the extensive surface area and the dependence on
proximally located sources of ATP [16]. Although the transport pathway at the placental
interface of P. patens is beginning to be understood, little is known about the composition
of wall polymers in these unique cells in mosses.

This study aims to fill in gaps in our knowledge concerning the polymer composition
in bryophytes by examining the placenta of P. patens. Similar studies of placental cell walls
in the liverwort Marchantia polymorpha [18] and two species of the hornwort Phaeoceros [5]
allowed for comparisons across all three bryophyte groups and across the two generations.
Phaeoceros has transfer cells restricted to the gametophyte side, while M. polymorpha is
similar to P. patens in the occurrence of transfer cells on both sides of the placenta. The
placentae in Phaeoceros and M. polymorpha have AGPs not found in other parts of the
plant that support signaling functions in this region of transport. In Marchantia, cell wall
ingrowths are rich in pectins, but arabinogalactan proteins (AGPs) and xyloglucans are
abundant only on the sporophyte side. In Phaeoceros, pectins are diverse and abundant,
while AGPs are restricted to the placenta region only.

Two fundamental questions were addressed in this study: (1) How do cell wall
constituents differ in the two generations of the bryophyte placenta within P. patens? and
(2) What differences are there in composition between these cell walls and those in transfer
cells of other plant groups? This comparative approach provides insights into the diversity
and evolution in cell wall composition of transfer cells among the three bryophyte groups
and across land plants.

2. Materials and Methods
2.1. Gametophyte Culture

Mature capsules were sterilized using a 10% bleach solution. After three rinses in
autoclaved distilled water, capsules were ruptured, and the released spores were sown
on agar with Parker Thompson nutrient medium. Following gametophore development,
plants were transferred to vermiculite and kept in the growth chamber until antheridia and
archegonia were present. Cultures were then flooded to facilitate fertilization. Plants with
green capsules were harvested and processed as follows.

2.2. Preparation for Transmission Electron Microscopy

For TEM observation, plants were processed according to the standard fixation pro-
tocol outlined in Renzaglia et al. 2017 [19]. Excised potions of gametophytic tissue with
embedded sporophytes were fixed in 2.5% glutaraldehyde in 0.05 M Sorenson’s buffer
(pH 7.2) for one hour at room temperature and overnight at 4 ◦C. Following 3 rinses in
the same buffer for 15 min each, plants were post-fixed in 2% buffered osmium tetroxide
for 15 min and rinsed in autoclaved, distilled water. The specimens were dehydrated in
progressively higher ethanol to water concentrations and rinsed twice in 100% ethanol.
Infiltration was achieved by progressively increasing the concentration of LR White resin
diluted with ethanol from 25%−50%–75%, and finally 100%. Specimens were exchanged
three times in 100% LR White resin, placed in fresh resin in gel capsules, and cured in an
oven at 60 ◦C for 48 h. The samples were sectioned on an ultramicrotome until the placenta
was located. Either thin sections (90–100 nm) were collected on 200 mesh nickel grids for
immuno-labeling, or thick sections (800 to 1500 nm) were collected on glass slides and
stained with toluidine blue for light microscopy. Sporophytes with developing spores were
selected and examined.

2.3. Immunogold Labeling

The 16 monoclonal antibodies (MAbs) in Table 1 were used to probe cell wall polymers
in the placental cell walls of Physcomitrium patens. Specimens were processed as follows
and outlined in Lopez et al. 2017 [20]. Grids were placed in BSA/PBS overnight at 14 ◦C,
and then overnight on a primary antibody specific to the desired wall epitope. Samples
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were then rinsed four times in 0.05 M BSA/PBS for 4 min each. Samples were incubated
overnight at 4 ◦C in a secondary antibody with a 10 nm gold tag that attached to the
primary antibody. Samples were then rinsed in PBS four times at 4 min each and rinsed
with a jet of sterile H2O. The primary antibody, secondary antibody, and gold tag complex
attached to the desired wall epitope, making the targeted wall polymer visible as a black
dot in the TEM at 7000×magnification or higher. Control grids were prepared by excluding
the primary antibodies.

Table 1. Primary monoclonal antibodies (MAbs) used to immunogold label carbohydrates and
arabinogalactan proteins in placental cell walls of Physcomitrium patens.

Antibody Antigen(s)/Epitope Reference/Source

JIM7 Homogalacturonan/Methyl-esterified [21]
JIM5 Homogalacturonan/Unesterified [22]
LM19 Homogalacturonan/Unesterified [23]
LM20 Homogalacturonan/Methyl-esterified [23]
LM5 Galactan, rhamnogalacturonan-I/(1-4)-β-D-galactan [24]

LM13 Arabinan, rhamnogalacturonan-I/(1-5)-α-L-arabinan
(linear) [25]

LM15 XXXG motif of xyloglucan [26]
LM25 Galactoxylated xyloglucans [27]
LM21 Mannan/β-(1,4)-manno-oligosaccharide [28]
LM28 Glucuronoxylan [29]

JIM13 Arabinogalactan protein (AGP)/β-D-GlcA-(1,3)-α-D-GalpA-
(1,2)-L-Rha(glucuronicacid-galacturonicacid-rhamnose) [30]

LM6 Arabinan, rhamnogalacturonan-I/(1-5)-α-L-arabinan(also
labels AGP) [31]

JIM8 Arabinogalactan protein (AGP)/unknown [32]
LM2 Arabinogalactan protein (AGP) β-D-GlcA (glucuronic acid) [33]

Anticallose Callose/(1,3)-β-linked penta-to-hexa-glucan [34]
JIM12 Extensin [35]

Samples were observed before and after post-staining using lead citrate and uranyl
acetate. These stains allowed for better contrast, but can obscure the immunogold labels in
the TEM. Samples were viewed and digital micrographs were collected using a Hitachi
H7650.

2.4. Scoring Label Intensity

Micrographs were opened in the PhotoScapeX editing app. Three counting frames
sized at 100 × 100 pixels were then randomly placed onto the wall in the image. The labels
within each frame were then counted and recorded. This process was repeated three times
per image, and for each MAb, 10 images were counted. The average of all counts was then
calculated. An average of 1 to 4 labels per frame were assigned a single plus (+). If the
average was 5 to 9 labels, two pluses (++) were given. Any averages that were greater than
10 labels per frame received a triple plus (+++). A few antibodies had scores <1 but >0, and
were assigned a plus/minus (±).

3. Results

The foot of P. patens is small, typically less than 500 µm long, and six or seven cells
in diameter (Figure 1a). A ring of gametophytic tissue (the vaginula), derived from the
archegonium, surrounds the foot that is cylindrical and gradually tapers to a pointed tip
where it penetrates the gametophore. The vaginula ensheaths the foot along most of its
length. The foot is fully developed when the sporophyte capsule begins to expand, and
sporogenous tissue is delimited (Figure 1a). At this stage, the capsule is emerging from
beneath the calyptra, and stomata are developed. Transfer cells reach maturation and
line both sides of the placenta by the time meiosis is completed, and persist throughout
spore differentiation (Figure 1b,c). Cell wall ingrowths are generally more elaborate on the
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gametophyte side of the placenta compared with the foot side, and they are less abundant
at the tip of the foot (Figure 1d,e and Figure 2a). Wall ingrowths in both gametophyte
and sporophyte transfer cells contain a fibrous core (sporophyte side) or vesicular dense
core (gametophyte side) and an irregular outer electron-lucent zone that is bordered by
the plasmalemma (Figure 2a). Along the sides of the foot, the two generations make
contact, and the intergenerational zone is obscured (Figure 1c,d and Figure 2a). At the
foot tip, degenerating gametophyte cells leave a mucilaginous matrix (Figure 1e). Transfer
cells of the foot are more isodiametric than those of the gametophyte, and they contain
numerous small vacuoles and peripheral cytoplasm with numerous mitochondria, and
elongated plastids with dense stroma, few membranes, and no starch (Figures 1d and 2b).
Gametophyte transfer cells contain dense cytoplasm with prominent rounded plastids that
are rich in starch (Figure 1d,e and Figure 2c).
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Figure 1. Anatomy of the sporophyte and placenta of Physcomitrium patens. (a) Developing sporo-
phyte with expanding capsule containing a central columella (co), sporogenous layer (sp), and a 
Figure 1. Anatomy of the sporophyte and placenta of Physcomitrium patens. (a) Developing sporo-
phyte with expanding capsule containing a central columella (co), sporogenous layer (sp), and a zone
of stomata (st) at the base. The seta (se) is short and continuous with the cylindrical foot (f), which
tapers at the tip. The calyptra (ca) was dislodged from the capsule and the vaginula (v) disrupted
in slide preparation to reveal the region where the foot and seta meet (*). Note: Ar, unfertilized
archegonium. (b) Spores in the capsule with mature placenta showing the stage of development
examined in (c–e). (c) Longitudinal light microscope section of the sporophyte (s) embedded in the
gametophyte (g) showing the cylindrical foot (f) at its upper limit and adjacent gametophyte transfer
cells. The foot with peripheral transfer cells connects to the vaginula (v). (d) Along most of its length,
the placenta consists of abutting sporophyte (s) and gametophyte (g) cells with extensive wall ingrowths.
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Sporophyte cells contain abundant small vacuoles (va) and dense plastids (p). Gametophyte cells
contain rounded plastids (p) with starch grains. (e) At the tip of the foot, cell wall ingrowths are few,
and an intergenerational zone (iz) is evident from the breakdown of gametophyte cells. Gametophyte
(g) cells contain starch-filled plastids (p), and sporophyte (s) cells have numerous dense plastids (p)
around the cell periphery and near the nuclei (n). Scale bars = 50 µm (a); 10 µm (b–e).
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in shape, dense, vesiculate, and contain few thylakoids. Mitochondria (m) and small vacuoles (va) 
are numerous in sporophyte cells. Note: n, nucleus. (c) Plastids in gametophyte (g) cells contain 
starch grains (s) surrounded by thylakoids. Note: m, mitochondria; n, nucleus. Scale bars = 0.1 μm 

Figure 2. Ultrastructural details of placental cells taken in the TEM. (a) Transfer cells in gametophyte
(g) and sporophyte (s) are separated by a narrow intergenerational zone (iz) and show elaborate cell
wall labyrinths. An electron-lucent region is delimited by the plasmalemma (pl) and surrounds the
dense inner core of cell wall ingrowths, which are more vesicular in the gametophyte. Mitochondria
(m) and plastids (p) are located near wall ingrowths. (b) Plastids in sporophyte (s) cells are irregular
in shape, dense, vesiculate, and contain few thylakoids. Mitochondria (m) and small vacuoles (va)
are numerous in sporophyte cells. Note: n, nucleus. (c) Plastids in gametophyte (g) cells contain
starch grains (s) surrounded by thylakoids. Note: m, mitochondria; n, nucleus. Scale bars = 0.1 µm.

Label intensities in the sporophyte and gametophyte cell walls for the 16 MAbs used
in this study are summarized in Table 2. Three of the four MAbs for HG pectins localized
epitopes of these pectins in the P. patens placenta (Figure 3). Labeling with JIM7 for methyl-
esterified HG pectins was light in the gametophyte basal wall layer and wall ingrowths
(Figure 3a). Moderate labeling for this MAb occurred in sporophyte transfer cell walls
(Figure 3a). The JIM5 MAb that also targeted a de-esterified HG epitope showed light
labeling in electron-dense regions in both the basal wall layer and cell wall ingrowths
in both generations (Figure 3b,c). The LM19 MAb recognized de-esterified HG labels
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throughout the electron-dense portions of the cell wall ingrowths, as well as the basal wall,
in both generations (Figure 3d,e). No labeling was observed for the LM20 MAb.

Table 2. Relative intensities of immunogold labeling for sporophyte and gametophyte placental cell
walls in P. patens with 16 monoclonal primary antibodies.

Primary Antibody Sporophyte Gametophyte

JIM7 ++ +
JIM5 + +
LM19 + ++
LM20 - -
LM5 + ±

LM13 ± ±
LM15 ± ±
LM25 ± +
LM21 + +
LM28 - -
JIM13 ± ±
LM6 * ± +
JIM8 - -
LM2 - -

Callose + +
JIM12 - -

Note: +++, very strong; ++, strong; +, weak; ±, present; -, absent; * LM6 binds to arabinan residues in RG-I pectins
and AGPs.

The presence of RG-I pectins was identified by two MAbs (Tables 1 and 2). The LM5
MAb lightly labeled the basal wall layer and wall ingrowths on the sporophyte side, and
less so on the gametophyte side (Figure 3f). The LM13 MAb showed very light labeling in
the basal cell wall and wall ingrowths in both generations (Figure 3g).

The LM15 hemicellulose MAb targeting xyloglucan sparsely labeled cell wall in-
growths in both generations (Figure 4a,b; Table 2). Galactoxylated xyloglucans, as localized
with the LM25 MAb, were found in the basal wall and wall ingrowths in transfer cells in
both generations, with fewer labels on sporophyte walls (Figure 4c,d). The LM21 MAb
that is specific to mannans lightly labels both generations in electron dense areas near the
basal wall layer and in wall ingrowths near the plasmalemma (Figure 4e). No labels were
detected for the LM28 MAb.

Of the four AGP-targeting MAbs, only JIM13 and LM6 localized in the placenta of
P. patens (Tables 1 and 2). JIM13 epitopes were found along the plasmalemma in wall
ingrowths in both generations (Figure 5a,b). Labels for the LM6 MAb targeting AGPs were
scattered along electron-lucent regions of wall ingrowths in both generations, with few
labels in the basal wall layer (Figure 5c). The JIM8 and LM2 MAbs did not label placental
cell walls in P. patens.

Callose, as labeled with the anti-callose MAb, occurred in the sporophyte placental
transfer cells in an electron-dense area where the basal wall layer transitioned to wall
ingrowths (Figure 5d; Table 2). Light labeling of anti-callose was seen in clusters throughout
the basal wall of gametophyte placental cells (Figure 5e). Extensin, as labeled with the
JIM12 MAb, was not detected in P. patens placental cell walls.
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Figure 3. TEMs of Physcomitrium patens placenta showing immunogold labeling with monoclonal
antibodies to pectin epitopes. (a) JIM7 labeled sporophyte (s) placental cell walls with more abun-
dance than those in the gametophyte (g). Labeling occurred throughout the basal wall (bw) and the
wall ingrowths (wi) on the sporophyte side. (b) JIM5 labeled the basal wall (bw) and wall ingrowths
(wi) in sporophyte transfer cells. (c) JIM5 labeled the basal wall (bw) and wall ingrowths (wi) in
gametophyte transfer cells. (d) LM19 labels were found in the sporophyte basal wall (bw) and wall
ingrowths (wi). (e) LM19 labels on the gametophyte side were more abundant in both basal walls
(bw) and wall ingrowths (wi) compared to the sporophyte cell walls. (f) LM5 and (g) LM13 sparsely
labeled the basal wall (bw) and wall ingrowths (wi) in both the gametophyte (g) and sporophyte (s)
placental cells. Scale bars = 0.5 µm.
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Figure 4. TEMs of Physcomitrium patens placenta showing immunogold labeling with monoclonal
antibodies to hemicellulose epitopes. (a) LM15 did not label the basal wall (bw), and sparsely labeled
(arrows) the sporophyte cell wall ingrowths (wi). (b) LM15 did not label the basal wall (bw), and
sparsely labeled (arrows) the gametophyte cell wall ingrowths (wi). (c) LM25 labeled sporophyte
placental cell wall ingrowths (wi) and the basal wall (bw). (d) LM25 labeled gametophyte placental
cell wall ingrowths (wi) and the basal wall (bw). (e) LM21 labeled sporophyte (s) and gametophyte
(g) transfer cell wall ingrowths (wi) and basal walls (bw). Scale bars = 0.5 µm.
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mately one month to reach maturation after fertilization, the placenta is short-lived com-

Figure 5. TEMs of Physcomitrium patens placenta showing immunogold labeling with monoclonal
antibodies to AGP and callose epitopes. (a) In the sporophyte placental transfer cell, JIM13 labels
(arrows) occurred along the plasma membrane and wall ingrowths (wi), but not in the basal wall
layer (bw). (b) Labels for JIM13 (arrows) occurred in the gametophyte along the plasma membrane
and wall ingrowths (wi), but not in the basal wall (bw). (c) LM6 labels were scattered throughout the
wall ingrowths (wi) and basal wall (bw) in the sporophyte (s), and mostly in the electron-lucent area
along the edges of the wall ingrowths (wi) in the gametophyte (g) side, with few labels in the basal
wall (bw). (d) Sporophyte and (e) gametophyte; labels for anti-callose (arrows) appeared along the
outer edge of the basal wall (bw) where it came into contact with the wall ingrowths, with few labels
in wall ingrowths (wi). Scale bars = 0.5 µm.

4. Discussion

The cylindrical foot of P. patens extends only slightly into the gametophyte tissue,
forming a tapering extension of the short seta. Because the sporophyte takes approximately
one month to reach maturation after fertilization, the placenta is short-lived compared to
most mosses in which the sporophyte is long-lived, typically one year [36]. Interestingly,
the placenta of M. polymorpha is similarly short-lived, as the sporophyte also completes
development in approximately one month. The placenta of both P. patens and M. poly-
morpha contains transfer cells with elaborate wall labyrinths on both the sporophyte and
gametophyte sides. The massive bulbous foot of Phaeoceros, in turn, persists through the



Diversity 2021, 13, 378 10 of 18

growing season, over many months, placing a continuous demand on the gametophyte for
nutrient transport across generations. The foot side of the placenta in this hornwort is lined
with elongated cells that lack wall ingrowths. During development, these haustorial cells
penetrate and interdigitate with gametophytic cells that contain extensive wall ingrowths.
These anatomical and developmental differences may account in part for the considerable
variability in occurrence, abundance, and types of polymers across the placental cells of
these three bryophyte taxa and between the two generations.

As in other bryophytes, cell wall constituents in the P. patens placenta include diverse
polymers that include pectins, hemicelluloses, AGPs, and callose (Table 2). In general,
placental transfer cell walls of P. patens contain fewer pectins and far fewer AGPs than those
of M. polymorpha and Phaeoceros (Figure 6). Transfer cell walls on either side of the placenta
of P. patens are relatively similar in composition, with slight variation in HG pectins. In
the other two bryophytes, cell walls are more variable in abundance and type of polymers
across generations, which is especially evident in M. polymorpha (Figure 6).
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Figure 6. Comparative diagrammatic representation of labeling with 14 MAbs to epitopes of cell
wall polymers in three bryophyte placentae: the moss Physcomitrium patens (this study), liverwort
Marchantia polymorpha [18], and two species of Phaeoceros [5]. The LM28 and LM12 MAbs yielded
no labels in any plant. LM13 labeling in Phaeoceros was inconclusive and omitted. Note: pectins,
red; hemicellulose, blue; AGPs, green; callose, black. The number of symbols per MAb corresponds
to label intensity as follows: three symbols, very strong; two symbols, strong; one symbol, weak;
underlined symbol, present but rare. S = Sporophyte, G = Gametophyte, IZ = Intergenerational zone,
WI = Wall ingrowth.

Pectins are GalA-containing polysaccharides that often account for a large portion
(~30%) of the primary cell wall of most angiosperms [37–39]. The pectin composition
imparts porosity, permeability, and flexibility to primary walls [40] (Table 3), cell wall
properties important to the development and directional transport of placental walls [18].
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In the placenta of P. patens, pectins are diverse in both generations (Figure 6). Pectins show
variable distribution and are particularly abundant on the sporophyte side of the Phaeoceros
placenta (Figure 6), which is likely related to the unique intrusive growth of the foot cells
and the requirement of haustorial cells to elongate unidirectionally [5].

Table 3. Cell wall polymers, the MAbs that target them, their reported properties, and the supporting references. * LM6
detects arabinan sidechains in both AGPs and pectin.

Cell Wall Polymer MAbs Wall Properties References

Esterified JIM7, LM20
• Porosity and permeability
• Expansibility
• Elasticity

[23,41,42]

HG Pectin De-esterified LM19, JIM5

Ca2+ binding
• Rigidity
• Resistance to mechanical stress
• Cell-to-cell adhesion

[23,42,43]

RG-I Pectin

Arabinan • LM13, LM6 *

• Spatial buffer
• Flexibility
• Expansibility and elasticity
• Porosity to wall
• Increases water holding capacity
• Signaling

[42–45]

Galactan • LM5 • Rigidity
• Tip growth [42,44]

Hemicellulose

Xyloglucan • LM15, LM25

• Regulates expansibility and yield threshold
• Cell-to-cell adhesion
• Cross-linkage/ tethering
• Nutrient source
• Sexual reproduction

[41,46–50]

Mannan • LM21

• Anchoring
• Interacts with soil particles, microorganisms
• Nutrient uptake
• Hydrated/de-hydrated cycles
• Cross-links with cellulose
• Nutrient source

[28,51–53]

AGP
• JIM13, JIM8,

LM2, LM6*

• Development
• Cell identity
• Structural integrity to walls
• Galactan turnover
• Ca2+ regulation/signal transduction
• Plasticity—unidirectional deformation
• Desiccation tolerance
• Membrane integrity
• Tip growth
• Sexual reproduction

[44,50,54–58]

Extensin • JIM12
• Cell wall assembly and growth
• Tip growth
• Cell wall/cytoplasm communication

[59–62]

Callose • Anticallose

Stress response
• Sieve plate/ sieve areas
• Scaffolding for cell plate formation
• Plasmodesmata
• Developmental processes
• Tip growth/ Pollen tube
• Spore wall development/structure
• Sperm cell differentiation
• Desiccation tolerance

[25,63–74]
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HG pectins play significant roles in cell wall properties and mechanics, and thus
affect functions such as apoplastic transport [40] (Table 3). HG is laid down in the methyl-
esterified form, which is stretchable, porous, and has a lower apoplastic pH, which facili-
tates nutrient uptake by membrane transport proteins [75]. These properties are consistent
with the function of transport in placental transfer cell walls, which explains the widespread
occurrence of JIM7 epitopes in these bryophytes (Table 3; Figure 6). The LM20 MAb that
also recognizes methyl-esterified pectins was not detected in P. patens, but epitopes of
this MAb occur in both generations in Marchantia and on the sporophyte side only in
Phaeoceros. LM20 epitopes are found in other bryophyte tissues, including the developing
gametophore apex and rhizoids of P. patens [70,76]. The more rigid unesterified HG epi-
topes (LM19, LM5 MAbs) are common across both generations in the three bryophytes,
with higher abundance in the gametophyte than sporophyte cell walls in P. patens, and the
reverse in Phaeoceros (Figure 6). Methyl-esterified HGs also occur in the wall ingrowths on
both sides of the placenta in Ceratopteris [77], in epidermal transfer cell walls of Vicia [78],
and the basal wall layers (but not wall ingrowths) in transfer cells of Elodea [79]. In Elodea,
unesterified HG epitopes were not detected in transfer cell wall ingrowths, but do occur in
other wall layers [79].

In contrast to HG pectins that are long-chain polymers, RG-I and RG-II have complex
side-chain configurations associated with them. The absence of antibodies to RG-II pectins
and the low levels of their occurrence in bryophytes (estimated at 1% of the amount
in angiosperm cell walls [80]) has limited our understanding of where they occur in
bryophytes. MAbs that detect RG-I pectin, both (1-5)-α-L-arabinans (LM13) and (1-4)-β-D-
galactans (LM5)-containing, showed relatively low levels of labeling in both generations in
P. patens. In Phaeoceros, the highest level of labeling of LM5 was present in the gametophyte
transfer cell walls, while in P. patens, in the sporophyte transfer cell walls. The placenta
of M. polymorpha did not label with MAbs (LM5, LM13) for RGI pectins (Figure 6) [18].
Galactan-rich RG-I is also present in the epidermal transfer cell walls of Vicia, which
sparsely contain LM5 epitopes [78]. However, this MAb does not label transfer cell walls in
Ceratopteris or Elodea [77,79]. The presence of galactan-rich RG-I pectin domains in moss and
hornwort placentae is consistent with the hypothesized role of these pectins in directional
growth as in root epidermal cells of Arabidopsis seedlings, where they are thought to
act as molecular markers for the cell-elongation transition zone [44,81]. Although RG-I
pectins are not abundant in the primary cell walls of bryophytes and ferns [25,52], labeling
for the LM5 MAb has been observed in the water-conducting cells in some mosses and
liverworts [76,82]. These polymers have also been observed in small amounts in P. patens
rhizoids [70] and protonemal cells, and in the rhizoids of Ceratopteris [83].

Xyloglucans (LM15), galactoxyloglucan (LM25), and mannans (LM21) were hemi-
cellulose constituents of the placental cell wall in P. patens (Table 2). As in Marchantia
and Phaeoceros, there was no labeling for glucoronoxylans (LM28) in either generation.
Galactoxyloglucan was more abundant than xyloglucans in the P. patens placenta, especially
on the gametophyte side. In Phaeoceros, light labeling for galactoxyloglucan occurred in
both generations, and in Marchantia, these epitopes were more abundant in the sporophyte
generation. Using a polyclonal antibody for xyloglucan, Vaughn et al. [78] observed an
abundance of this polymer in Vicia transfer cell walls. Xyloglucans are common cell wall
polymers known to associate with both cellulose networks and acidic pectins across land
plants [81,84]. A possible function in transfer cell walls is as a regulator of cell wall extensi-
bility by weakening the cellulose network to allow slippage during cell growth [41,42].

The transfer cell walls of both generations in P. patens had low levels of mannan-
containing hemicellulose, which was similar to the placenta of Marchantia, but differed
from that of Phaeoceros, which lacks mannans. Because mannans also occur in protonemata
and rhizoids in P. patens, these polymers have been speculated to facilitate nutrient uptake,
water sensing, and cell wall reinforcement, all of which would be important and useful
properties for transfer cell walls (Table 3) [52,53,85]. The combination of mannans and
small amounts of arabinan-containing RG-I pectin in P. patens may enhance water and
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nutrient movement, while the small amounts of galactan-containing RG-I may increase
rigidity of these walls [52,53,85].

AGPs are proteoglycans made of a protein backbone that is heavily O-glycosylated
(90% of the overall mass). As seen in Figure 6, arabinogalactan proteins (AGPs) were
the most variable cell wall polymers present in bryophyte placental cell walls. Transfer
cell walls in the P. patens placenta had lower diversity and amounts of AGPs than in
Marchantia and Phaeoceros. Gametophyte cell walls in the placenta were only slightly richer
in AGPs than those of the sporophyte in P. patens. In Marchantia, sporophyte cell wall
ingrowths showed an abundance of AGPs compared with gametophyte wall ingrowths. In
gametophyte transfer cells, AGP labeling was light in Phaeoceros and even less abundant
in Marchantia. AGPs were abundant in placental transfer cell walls of the Ceratopteris
gametophyte, with less labeling observed in sporophyte cells [77]. Vaughn et al. (2006)
found AGP epitopes in Vicia wall ingrowths along the plasmalemma around the outer
edges of cell wall ingrowths adjacent to an electron-lucent layer that contained callose.
AGP epitopes were not detected in Eldoea leaf transfer cells [79].

The varied and important roles of AGPs in plant biological processes are increasingly
becoming clear [86]. These proteoglycans are speculated to be involved in differentia-
tion, cell-to-cell recognition, embryogenesis, programmed cell death, tip growth, pectin
plasticization, and pH-dependent signaling by releasing Ca2+ as a secondary messenger
that regulates development [53,55,87–90] (Table 3). The contribution of AGPs to placental
development and functions is likely varied. Regulated signaling by AGPs would facilitate
the interaction between generations, and the systematic directional transport of nutrients.
In angiosperms, cytosolic Ca2+ accumulation is important in the development of reticulate
cell wall ingrowths that are similar to those in bryophytes [91]. AGPs are also hypothesized
to act as markers that aid in directing the polarized growth of wall ingrowths [92]. AGPs
may act as pectin plasticizers by preventing HG domain crosslinking [93].

Across bryophytes, AGPs have been observed in the walls of water-conducting cells in
both mosses and liverworts [82], in apical cell extensions of protonemata and water balance
in P. patens [57,94], and in hyaline cell walls in Sphagnum [95]. AGP have been implicated
in protonemata differentiation [96], cell wall regeneration of the cultured protoplasts [97],
and cell plate formation in M. polymorpha [98]. Their significance in sexual reproduction
has been observed in the process of spermatogenesis in Ceratopteris [50] and the moss
Aulacomnium palsutre [99]. The female gametes of Ceratopteris also express AGPs during
development [58].

Callose occurs in both generations of P. patens along the electron-dense base of wall
ingrowths. Callose labeling does not occur in the Marchantia placenta, and in Phaeoceros it
is restricted to the gametophyte generation around plasmodesmata. In contrast, callose
is more prominent in Vicia and P. sativum cell wall callose, where it is localized in the
electron-dense areas of wall ingrowths and the basal wall [79,100].

As has been observed in tracheophytes, unique cell wall compositions characterize
transfer cells across taxa, and the variability in the placentae of the three bryophytes may
be explained in part by differences in the developmental and physiological interactions
between the generations, and the longevity of the sporophyte and associated protective
structures. It is logical to link the differential polymer composition in the placenta of
Phaeoceros to differences in development and function between gametophyte transfer cells
and sporophyte haustorial cells [5]. The placenta of hornworts is long-lived and nutrient
demands from the growing sporophyte are high, so differential cell wall composition
would make sense for efficient unidirectional transport [5]. Generational differences in
cell wall polymers are also evident in Marchantia, and these also likely reflect directional
movement [18]. In this liverwort, the foot is small and anchor-shaped and the sporophyte
is surrounded by three protective structures (calyptra, pseudoperianth, and involucre)
throughout development [18,101]. A constant nutrient transport via the gametophyte
would be critical for sporophyte development, as photosynthetic activity of this generation
is limited. Compared to most moss sporophytes that persist for approximately one year,
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the longevity of the P. patens sporophyte is highly abbreviated. The sporophyte is green
throughout development with significant autonomy. This may explain the lack of genera-
tional variability in placental transfer cell walls in this moss. Although placental cell walls
in P. patens are less pectin- and AGP-rich than those of M. polymorpha and Phaeoceros, the
ratios of carbohydrates in these transfer cell walls are similar to those described in moss
primary cell walls [76,84,102]. Compositional similarities between wall ingrowths and
primary cell walls suggest that wall ingrowths may simply be extensions of the primary
cell wall in P. patens, as hypothesized in Vicia by Vaughn et al. [78]. Whether this hypothesis
is valid, or P. patens placental cell walls simply represent an evolutionary reduction in
complexity awaits further testing with immunolabelling on placentae of mosses with more
extended life cycles.

Transfer cells have evolved multiple times and are important in directional transport
and tissue function across algae, fungi and plants [15,103–105]. It is therefore surprising
that transfer cell wall composition is poorly characterized and known only from Elodea,
Vicia, Pisum, and the placenta of three bryophytes. The occurrence, abundance, and types
of polymers is considerably different among these taxa and between the two generations,
suggesting that similarity in function and morphology of cell walls does not require a
common cell wall composition. We propose that the specific developmental and life history
traits of plants may provide even more important clues in understanding the basis for
these differences. Understanding which polymers are present, their abundance, and their
associations with each other is foundational to further work on plant cell walls. Additional
studies of cell wall polymers on a broad spectrum of tissue types across bryophyte diversity
are necessary to assess the variability in cell wall composition and its impact on the function
and evolution of cell walls across plants.
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