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Abstract: COLMENA is a microbial culture collection dedicated to the characterization, classifi-
cation, preservation, and transferal of native microorganisms isolated from various agro-systems
and other ecosystems in Mexico. This collection aims to protect microbial diversity, reducing soil
degradation, but also exploiting its agro-biotechnological potential. So far, COLMENA has isolated
and cryopreserved soil microorganisms from different crops in two major agricultural regions in
Mexico, the Yaqui Valley, Sonora, and the Fuerte Valley, Sinaloa. COLMENA has specialized in
the identification and characterization of microbial strains with metabolic capacities related to the
promotion of plant growth and the biocontrol of phytopathogens. Thus, COLMENA has identified
several promising plant growth-promoting microbial (PGPM) strains due to their metabolic and
genetic potentials and their beneficial effects in vivo and field trials. These findings demonstrate the
biotechnological potential of these strains for their future use in profitable agricultural alternatives
focused on enhancing global food security. To share the knowledge and results of the COLMENA
team’s scientific research, a virtual platform was created, where the database of the studied and
preserved microorganisms is available to professionals, researchers, agricultural workers, and anyone
who is interested.

Keywords: microbial culture collections; agriculture; bioinoculants; PGPM

1. Introduction

One of the most pressing challenges that humanity currently faces is global food
security, which is threatened by the effects of climate change, the incidence of pests and dis-
eases, the high cost of fertilizers, soil degradation, and loss of fertility [1]. According to the
Intergovernmental Panel on Climate Change, projections estimate that global temperatures
may rise 1.5 ◦C by 2040, 2 ◦C by 2065, and 4 ◦C by 2100 [2,3]. Several studies have found
that climate change causes alterations in plant growth, transpiration, respiration, and pho-
tosynthesis rates, which in turn result in a significant decrease in crop yields from the 2030s
onwards [4,5]. In the same manner, climate change alters the host-pathogen-environment
interaction and increases the incidence of pests and diseases [6,7], which are responsible
for the 20–40% decrease in agricultural production [8].

On the other hand, it is projected that the world’s population will increase to almost
10 billion people by 2050, requiring an increase of more than 50% in crop production to
satisfy the food demand [9]. Since the green revolution, intensive agricultural practices have
been used to increase the productivity of crops, which are characterized by the application

Diversity 2021, 13, 337. https://doi.org/10.3390/d13080337 https://www.mdpi.com/journal/diversity

https://www.mdpi.com/journal/diversity
https://www.mdpi.com
https://orcid.org/0000-0003-2234-7147
https://doi.org/10.3390/d13080337
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/d13080337
https://www.mdpi.com/journal/diversity
https://www.mdpi.com/article/10.3390/d13080337?type=check_update&version=2


Diversity 2021, 13, 337 2 of 13

of high doses of agrochemicals, large-scale irrigation systems, and new high-yielding
disease-resistant varieties [10,11]. Thus, intensive agriculture consumes a large volume of
inputs and has contributed to increasing environmental problems such as deforestation,
water scarcity, eutrophication, and soil degradation [10].

Soil is of vital importance due to its ability to provide multiple ecosystem services, such
as: (a) food, fiber, and energy production; (b) water and nutrient cycling; (c) regulation of
climate and greenhouse gases; (d) biological habitat; (e) genetic reserve; and (f) contributing
to food security, social and ecological sustainability [12–15]. Soil harbors the largest popu-
lation and diversity of microorganisms, which are involved in 80–90% of the processes that
occur within the soil [16] and are an important component involved in the maintenance of
its fertility [17]. However, it is estimated that 52% of global agricultural land is moderately
or severely degraded while rates of soil degradation are increasing [18]. Soil degradation
can disturb microbial communities causing loss of genetic and functional diversity of
soils and therefore, their fertility [19,20]. Studies have been conducted where the link be-
tween microbial diversity and soil fertility was demonstrated [21–23]. Lisuma et al. (2020)
showed that bacterial diversity was positively correlated with macronutrients (S, P, N, and
K) and soil pH, which is a determining factor in the availability of nutrients for plants [24].
Similarly, Lei et al. (2020) reported that the bacterial and fungal community structures in
the rhizosphere are positively correlated with the available phosphorus, total nitrogen,
sucrose, and soil organic matter [25].

Soil microorganisms contribute to the sustainability of agroecosystems, especially
plant growth-promoting microorganisms (PGPM), since they increase crop growth and
health, by improving the acquisition of nutrients by plants, mitigating biotic and abiotic
stress, and protecting against pests and diseases by various mechanisms [17,26]. Currently,
PGPM are used as microbial inoculants for biofertilization through direct mechanisms,
such as biological nitrogen fixation, solubilization of organic and inorganic phosphates,
and siderophore production. In addition, there are direct mechanisms that mediate the
phytostimulation of plants, including phytohormone production such as indole acetic acid,
gibberellins, and cytokinins, as well as the production of ACC deaminase that can decrease
the stress generated by ethylene in plants. The indirect mechanisms are involved in the bio-
control of phytopathogens including stimulation of systemic resistance, the competition for
nutrients and space, competition for iron through the production of siderophores, produc-
tion of antibiotics, lytic enzymes, hydrogen cyanide, and exopolysaccharides production
(Figure 1) [1,27–29].
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Therefore, due to the modification of the native microbial communities of agroe-
cosystems and their metabolic and genetic potentials, the isolation, characterization, and
protection of these microorganisms in certified microbial culture collections is essential.
The ex situ preservation of microbial diversity associated with crops will further explore the
microbial ecology of the current agroecosystems and safeguard their agro-biotechnological
potential. However, to promote the study and the extensive use of beneficial microorgan-
isms (such as PGPM), the digitization and dissemination of the biological information
of each preserved strain is necessary, as well as easy access for the scientific community,
farmers, public-private sector, and any interested person [1,13].

This review aims to describe the Culture Collection of Native Soil and Endophytic
Microorganisms (COLMENA) located in Mexico, which is a microbial culture collection
that focuses on the characterization, classification, preservation, and transferal of native
microorganisms isolated from various agro-systems and other ecosystems, as well as to
provide information about its positive impact on food security, and to describe the virtual
COLMENA platform for the first time.

2. Culture Collection of Native Soil and Endophytic Microorganisms (COLMENA)

The mission of the Culture Collection of Native Soil and Endophytic Microorganisms
(COLMENA) (www.itson.mx/colmena, accessed on 21 July 2021) is to reduce microbial
diversity loss related to intensive agricultural practices adopted in Mexican agricultural
systems and other ecosystems. COLMENA is dedicated to the preservation of microor-
ganisms as a soil conservation strategy, through the isolation, safeguard, characterization,
and typification of cultivable soil microbial resources. The collection also quantifies the
potential environmental and economic benefits of the re-incorporation of these strains into
ecosystems [12]. COLMENA’s vision is to lead the revolution of the microbial inoculants
used in Mexican agriculture, transferring native microorganisms to the field under specific
biotic and abiotic conditions [13].

Currently, COLMENA has cryopreserved a collection of 1464 isolated microorganisms
(where 70% of these are bacterial and the remaining 30% are fungal strains) from soil
associated with various crops of economic importance for Mexico, such as wheat (Triticum
spp.) (556), maize (Zea mays) (381), alfalfa (Medicago sativa) (73), potato (Solanum tuberosum)
(59), bean (Phaseolus vulgaris) (44), and others (Figure 2).
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Figure 2. Percentage of microbial strains preserved in COLMENA isolated from soils associated
with various economically important crops located in the Yaqui Valley, Sonora and the Fuerte Valley,
Sinaloa, Mexico.

The isolation of the microorganisms was carried out in two main agricultural regions
in Mexico: the Yaqui Valley, located in the state of Sonora (26◦53′ and 28◦37′ N, 108◦53′

and 110◦37′ E), and the Fuerte Valley, located in Sinaloa (25◦53′ and 26◦38′ N, 108◦16′ and
109◦04′ W). These two regions are of great importance due to their contribution to the

www.itson.mx/colmena
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production of wheat and maize. The Yaqui Valley contributes approximately 50% of the
national wheat production [30,31] and the Fuerte Valley with 27% of the state production
of maize [32–34].

To date, 24% of the 1464 microbial strains preserved in COLMENA have been molec-
ularly characterized by amplifying the 16S rRNA gene for bacteria and 5.8S rRNA gene
for fungi. 28 bacterial genera were identified, where Bacillus (27%), Pseudomonas (8%), and
Stenotrophomonas (6%) were the most abundant; in addition 24 fungal genera were found,
with Aspergillus (8%), Penicillium (3%) and Myrothecium (3%) being the most representative
(Figure 3).
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These main genera identified are known for their high impact on agricultural pro-
duction. Bacillus species are the most extensively studied bacteria for the control of phy-
topathogens and inducing plant systemic resistance through the consumption of leached
exudates, production of siderophores, production of antibiotics, the activity of lytic en-
zymes (glucanases, chitinases, proteases), and biosynthesis of cyclic lipopeptides [29,35].
Likewise, Pseudomonas species are functionally diverse and ecologically remarkable mi-
croorganisms, they can be used as plant growth-promoting agents and as bio-remediators
due to their ability to fix nitrogen, solubilize phosphates, chelate iron, and produce phy-
tohormones. Pseudomonas can act as biocontrol agents due to their catabolic adaptability,
root-colonizing ability, and their capability to produce antifungal metabolites [36,37]. On
the other hand, Stenotrophomonas species have presented promising plant growth pro-
motion traits as well as biocontrol of phytopathogens. Some strains of this genus can
produce volatile organic compounds, antibiotics, and enzymes that degrade the cell wall of
fungi [38].

Several Aspergillus species have been identified as biocontrol agents and plant-growth
promoters; some strains can produce extracellular phytases, which can benefit plants in the
pretreatment of soils. Aspergillus species can also mineralize phosphate from inaccessible
organic sources or increase the availability of inorganic sources for plants, as well as induce
growth promotion [39,40]. Some species of the genus Penicillium, such as P. radicum and
P. bilaiae can enhance plant growth by increasing phosphorus nutrition [41], however,
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some species of this genus have been identified as phytopathogens [42]. Furthermore,
Myrothecium can help in the biocontrol of insects and diseases through the production of
secondary metabolites such as enzymes, antibiotics, sesquiterpenoids, and cyclopeptides,
among others. Nevertheless, species Myrothecium such as M. roridum and M. verrucaria can
infect different crops [43].

3. COLMENA and the Search for Agro-Biotechnological Alternatives

To achieve sustainability and agricultural profitability in Mexico it is necessary to
address the problem of soil degradation in our production systems. The excessive use of
agrochemicals (fertilizers and pesticides) has a considerable impact on the soil properties
and, with it, on the ecological balance, modifying the metabolic activities of the different
microbial populations of the agroecosystem [44,45]. The restoration of the soil microbiota
is a fundamental strategy to improve soil quality and sustainably increase agricultural
productivity, and thus the use of microbial inoculants formulated from PGPM is now one
of the alternatives that achieve the replacement (total or partial) of synthetic agrochem-
icals [15]. For this, it is important to understand the beneficial biological interactions of
these microorganisms in the soil and the diverse components that promote the ecological
processes to develop sustainable agroecosystems [46,47].

COLMENA has specialized in the identification and characterization of microbial
strains with metabolic capacities related to plant growth promotion and biocontrol of
plant diseases, as well as phytopathogenic microorganisms. Thus, to date, 396 strains of
the collection have been analyzed, where 12% can solubilize phosphorus, and 20% are
capable of synthesizing various types of siderophores. Furthermore, 50 strains in the
collection have the ability to produce indoles, a group of phytohormones that includes
indole acetic acid, the main natural auxin in plants. Also, 60 microbial strains with the
ability to produce cellulolytic enzymes have been identified, these enzymes may have a
role in various mechanisms of biocontrol [33,34,48–51].

Likewise, COLMENA identifies potentially pathogenic strains for humans, this is
carried out through taxonomic studies and β-hemolytic activity. To date, 258 microbial
strains have been evaluated, where 11% present β-hemolysis activity, restricting their use
as microbial inoculants for their application in crops [33,34,51].

Besides the evaluation of the metabolic potential of the cryopreserved strains, COL-
MENA performs tolerance tests to hydric, thermal, and saline stress [50,52], and fungicides,
as is chlorothalonil, a fungicide used according to the Official Mexican Standard on wheat
seeds to control partial carbon in wheat by the fungus Tilletia indica Mitra [44]. Conducting
studies of susceptibility to biotic and abiotic stress in conjunction with metabolic tests is
essential in the development of agro-biotechnological strategies, such as biofertilizers, to
ensure success in their implementation in agricultural systems.

COLMENA also preserves microbial species reported as plant pathogens, such as Fusar-
ium verticillioides (causal agent of maize ear rot), Sclerotinia sclerotiorum (causal agent of white
mold on beans), and Bipolaris sorokiniana (causal agent of spot blotch in wheat) [13,53–55].
The study of these phytopathogenic strains allows us to know the infection mechanisms
they carry out, leading to the development of more efficient and sustainable strategies for
their control through the use of biological agents.

The detailed molecular and metabolic identification of isolated strains is decisive to
address fundamental issues of systematic taxonomy and ecology, allowing us to: (i) identify
bioindicator microorganisms of the ecosystem [56]; (ii) identify PGPM strains and biological
control agents [12]; (iii) study novel microbial species [57]; (iv) identify pathogenic or
harmful strains for humans, plants and animals [58]; and (v) establish quality criteria in
products and services based on microorganisms [59]. In addition to metabolic, taxonomic,
pathogenicity, and agrochemical compatibility analyzes, other traits should be considered
during the screening process related to the scaling up of the biofertilizer production. The
strains selected for their bioformulation must be able to grow in artificial media (especially
culture media with minimal concentrations or without strict nutritional requirements to
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reduce costs), survive in carriers, overcome the technological production processes, have
genetic stability and the ability to produce beneficial effects on crops [59,60].

Currently, in COLMENA, different promising PGPM strains have been identified
for their ability to promote plant growth and control phytopathogenic diseases, based on
metabolic [44], molecular [61–63], and in vitro pathogenic assays [51]. COLMENA also
studies the effects of promising PGPM strains in plants [48–50], in order to verify the
abilities of these microorganisms in vivo and develop a cost-effective microbial inoculant
that improves soil health and crop growth.

COLMENA has studied the metabolic potential of native Bacillus strains with the
ability to promote growth, i.e., produce indoles, biosynthesize siderophores, solubilize
phosphates, tolerate abiotic stress (saline, thermal, hydric, and chlorothalonil). Some of
the strains most studied are B. paralicheniformis TRQ65, B. megaterium TRQ8, B. subtilis
TSO9, and B. cabrialesii TE3T. These strains have been reported to be able to solubilize
insoluble phosphorus (TRQ8, 38.0 ± 0.9%; TE3T, 43.2 ± 1.7%; TSO9, 54 ± 1%) and produce
indoles (TRQ65, 39.29 ± 0.30; TRQ8, 12.03 ± 1.93; TE3T 8.21 ± 1.35 µg mL−1), while
TRQ8 is the only one that has been shown to have the ability to produce siderophores
(8.1 ± 0.8%) [48,49]. Besides, all these strains have been reported with the ability to tolerate
saline, thermal and hydric stress [50] and to tolerate the fungicide chlorothalonil [44].

The potential of COLMENA strains as biocontrol agents has also been evaluated
by confrontational tests. Villa-Rodríguez et al. (2019) evaluated 195 bacterial strains
against different strains of the phytopathogenic fungus B. sorokiniana [51], which are also
cryopreserved in COLMENA. Fourteen strains exhibited antagonistic activity against B.
sorokiniana in different degrees, being Bacillus subtilis (strains TSO2, TSO22, TSQ24), a
new bacterial species Bacillus cabrialesii (TE3T), and Pseudomonas protegens (TRQ9), the
ones with the highest antagonistic activity. However, the strain TE3T was the only non-
potentially pathogenic strain for animals and humans, for which a cell-free culture was
evaluated against the phytopathogenic fungus. In this way, it was revealed that the strain
TE3T produces extracellular antifungal metabolites to suppress the growth of B. sorokiniana
(~98% of inhibition), concluding that this strain and its antifungal metabolites (lipopeptides)
are an effective and promising treatment to control the causative agent of spot blotch in
wheat [64].

Due to the growth-promoting characteristics, stress tolerance, and genetic potential
of the strains B. megaterium TRQ8, B. paralicheniformis TRQ65, B. cabrialesii TE3T, and B.
subtilis TSO9, COLMENA has performed in vivo assays on wheat plants to evaluate their
abilities to promote plant growth. Robles-Montoya et al. (2020) reported a bacterial consor-
tium with the four Bacillus strains (TRQ8, TRQ65, TE3T, and TSO9) and it was inoculated
(4 × 107 Colony-forming Units (CFU)) in wheat plants. The consortium inoculation in-
creased the length of the aerial part (28%), root length (25%), stem development (50%), dry
weight (72%), and the biovolume index (57%) [48].

Rojas-Padilla et al. (2020) evaluated the effect of individual inoculation and different
consortium combinations of the TRQ8, TE3T, and TRQ65 strains to explore their interactions
that improve the morphometric variables in wheat plants considering the edaphoclimatic
conditions from the Yaqui Valley. In this study, it was determined that the three strains
(TRQ8, TE3T, and TRQ65) and the different consortia presented in vivo growth promotion
characteristics; however, the co-inoculation of B. megaterium TRQ8 and B. paralicheniformis
TRQ65 showed the highest increase in aerial (6%) and root (10%) length, aerial (60%) and
root (82%) dry weight, and biovolume index (18%) [49].

To support the potential observed in vitro and in vivo and to know the feasibility of
designing a biofertilizer for use in current and future agriculture, inoculation assays have
been carried out under field conditions. Ibarra-Villarreal (2020) evaluated the inoculation of
five Bacillus strains (B. subtilis TSO9, B. subtilis TSO62, B. subtilis TSO64, B. megaterium TRQ8,
and B. paralicheniformis TRQ65) in wheat, along with 3 different doses of nitrogen; 0%, 50%,
and 100% of the recommended nitrogen fertilization (250 kg N ha−1). The application of
the Bacillus consortium (−1 × 107 CFU plant−1) showed multiple positive effects on wheat,
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such as larger spike size (2.16%), increase in the number of grains per spike (5.23%), higher
yield (+1 t ha−1), and reduction in the amount of nitrogen fertilizer applied (50% of the
recommended dose) [65].

Arellano-Wattenbarger (2019) applied a consortium with three of the studied native
Bacillus strains (TRQ8, TE3T, TRQ65) in wheat along with different doses of N. In this study,
it was determined that inoculation with the consortium (−1 × 106 CFU plant−1) increased
the number of spikes/m2 (25%), crop yield (15%), and improved grain quality by reducing
the presence of white belly and increased the percentage of protein. In addition, the
consortium inoculation reduced the use of nitrogen fertilizers at rates of 0 or 120 kg N ha−1,
maintaining the yield of the wheat crop in comparison with the dose of nitrogen fertilization
used conventionally (240 kg N ha−1) by optimizing the use of residual and applied nitrogen
to the agroecosystem [66].

Likewise, Ayala-Zepeda (2020) showed that the inoculation with the consortium of
the 3 Bacillus strains under lower fertilization doses (0 and 120 kg N ha−1) increased the
yield (up to 1 ton ha−1) and the quality of the wheat crop, unlike that obtained with 100%
of the conventional fertilization without inoculation. In addition, the efficiency in the use
of nitrogen from the crop increased by 14.4% when reducing the recommended dose of
nitrogen fertilization to 50% (120 kg N ha−1) and by 10.8% under the inoculation of the
consortium with 50% fertilization [67].

On the other hand, Valenzuela-Aragon et al. (2019) identified promising PGPM
strains through plant-assisted selection (PAS), of which eleven strains (Stenotrophomonas
sp. TS1, TS6 and TS7, Enterobacter cloacae TS3, Bacillus sp. TS8, Microbacterium foliorum TS9,
Bacillus cereus TS10, Cellulosimicrobium sp. TE6, and Paenibacillus lautus TE8 and TE10) were
reported to have the ability to promote wheat growth mainly due to the development of
the stem and the increase in the number of leaves through their inoculation in plants. They
also showed that these bacteria regulate the expression of the genes involved in the growth
of wheat; thus, strains TS1 and TS3 are responsible for the synthesis of chlorophyll through
the up-regulation of the GluTR gene; the nitrate transporter (NRT1.4) was slightly down-
regulated in wheat leaves by strains TS1, TS8, TS10, TE6, and TE10; while the synthesis
of water-soluble carbohydrates (up-regulation of the 6-SFT1 gene) was regulated by all
strains except TS6, TS7, and TE6 [50].

Chaparro-Encinas (2020) performed an analysis of the transcriptomic effect of the
co-inoculation of B. paralicheniformis TRQ65 and B. megaterium TRQ8 in wheat under condi-
tions of optimal and increased temperature (+2 ◦C). The gene expression patterns suggest
that the studied Bacillus consortium partially inhibited the oxidative stress machinery, and
promoted cell division and growth events associated with the progression of develop-
mental stages. Furthermore, the systemic response was simultaneously reprogrammed,
suppressing the defense mechanism and inducing central stimuli response (protein ki-
nases). This was carried out as a strategy to facilitate bacterial colonization, but also to
promote cell wall strengthening to face the increase in temperature [68].

Until now, COLMENA has sequenced the complete genome of the strains Bacillus
megaterium TRQ8 [62], Bacillus paralicheniformis TRQ65 [63], and the strain type Bacillus
cabrialesii TE3T [61], to provide a strong taxonomical affiliation based on the Overall
Genome Relatedness Index (OGRI), as well as information about their potential metabolic
traits. The 3 genomes revealed the presence of genes involved in: (1) tolerance to abiotic
factors in agroecosystems (response to osmotic and oxidative stress); (2) biocontrol of phy-
topathogens (biosynthesis of lipopeptides and antibiotics); and (3) plant growth promotion
(auxin biosynthesis, phosphate metabolism, siderophore production).

At present, COLMENA is developing different research projects, focused on the
development of fermentation and carrier strategies, as well as carrying out field trials with
the studied PGPM consortium to design alternatives that combine the use of PGPM and
lower doses of inorganic fertilizer that increase crop yields and the efficiency of the nitrogen
and water use by plants. Other current projects are focused on identifying the metabolic
and molecular mechanisms of PGPM involved in growth promotion and biocontrol, in
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addition to the study of comparative evolutionary genomics, metagenomic, metabolomics,
and transcriptomic. Furthermore, COLMENA is currently developing strategies to mitigate
soil erosion and conserve soil microbial resources using isotopic techniques.

4. Virtual COLMENA Platform

Biological databases play a central role in bioinformatics, providing access to a wide
variety of biologically relevant data [69]. Databases archive, store, maintain and share
information on sequences, protein structures, metabolites, and microbial diversity, among
other essential data required for the development of the science of microbiology [70].
In recent years, technological development has led to an exponential increase in the amount
of microbial sequencing and data identification [71], and all of this information needs to be
stored and organized in the best possible way, through computer systems that allow us to
generate free access platforms, and easy to use.

To make the knowledge and results of the scientific research carried out by the COL-
MENA team accessible, a virtual platform was created to store the database of the mi-
croorganisms studied and preserved. This platform represents a significant mechanism for
global dissemination of the potential of these strains, promoting their use for the solution
of agro-biotechnological problems. The platform is available to professionals, researchers,
agricultural workers, and anyone interested in microorganisms with the agronomic poten-
tial to promote crop growth and control plant diseases.

The platform of COLMENA’s virtual database, so far only presented in Spanish,
was developed in the C# programming language, with SQL Server 2008 as its database
manager. Visual Studio 2010 environment and NET Framework 4 or higher were used. The
platform is compatible with Explorer, Firefox, and Google Chrome browsers. This virtual
database is published in the following internet link: http://apps2.itson.edu.mx/colmena
(released November 2019, accessed on 21 July 2021), in its home page it shows a screen
that contains a search categorization system of the strains of interest, as shown in Figure 4.
The COLMENA platform is composed of 4 filters for the user to select and access the
microorganism of interest. In the first filter (1), the strain code can be entered directly
with the nomenclature shown in the example (“COLMENA_0042”); in the second filter
(2), users can select between 41 different microbial genera; the third filter (3) consists of
75 species options; and finally, in the fourth filter (4) it is possible to choose between 9 crops
associated with the isolated strains. All this information is updated frequently to include
more data about strains, location, crops, and metabolic functions.
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accessed on 21 July 2021).

The platform is open access and free of charge. The user interface was designed for
easy and intuitive use. There are only four types of searches available, but cross-search
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allows for a wide range of combinations. First, it is necessary to fill in at least one of the
four platform filters, depending on the information that is of interest, as shown in Figure 5.
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Figure 5. Filter selection in the COLMENA’s platform.

Once the information has been captured in the search system, as indicated in Figure 6,
the user must click on the filter search button (5), which will display a series of microorgan-
isms that coincide with the indicated parameters. The platform allows the user to continue
reviewing the options by selecting the “next” arrow (6), and finally, to select the strain of
interest by clicking on it (7).
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Figure 6. Strain search results in the COLMENA’s platform.

After selecting the strain, a box with information will open as shown in Figure 7. The
data displayed for the strain of interest are a macroscopic image, the strain code, genus,
species, crop from which it was isolated, and its potential agro-biotechnological use. These
strains can be requested from the COLMENA curator using the contact information shown
below. To continue reviewing the other strains, the user can close the box in the upper right
and select another strain from the list.
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Figure 7. Basic information about the strain.

Through this platform, COLMENA intends to make more efficient use of its database
dissemination to promote the study and extensive use of beneficial microorganisms such



Diversity 2021, 13, 337 10 of 13

as PGPM, and to make it accessible not only to the scientific community, but also to the
general public.

5. Conclusions

Due to the increasing need for food as a result of the exponential growth of the world
population, there is a growing demand for agricultural productivity, which can be met by
employing efficient and sustainable agricultural practices. Soils provide us with a poten-
tial agro-biotechnological resource for agriculture, therefore, the use of native microbial
diversity associated with crops is a promising alternative. However, the continuous loss of
soil microbial diversity due to soil degradation generates the need to preserve and transfer
microorganisms to carry out research, teaching, and their biotechnological exploitation.
For this reason, microbial culture collections play an important role in the preservation and
bioprospection of the microbial resource, providing authentic, stable, and useful biological
material for the development of agro-sustainable strategies.

COLMENA represents an alternative for the identification of microorganisms that
exhibit characteristics associated with the promotion of plant growth and biocontrol of
phytopathogens. Thus, its online catalogs and virtual database are fundamental tools
to increase the dissemination of information, results, and discoveries. These tools bring
knowledge to other sectors and at the same time promote the study of microorganisms and
their potential uses for solving agro-biotechnology problems.

It should be noted that COLMENA is a dynamic project, which is expected in the
future to expand to more agricultural areas across the country, as well as increase the
metabolic and molecular analysis of the microorganisms preserved in the collection to
extend the content of its database and make it accessible to everyone.
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