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Abstract: Federal land management agencies in the US are tasked with maintaining the ecological
integrity of over 2 million km2 of land for myriad public uses. Citizen science, operating at the nexus
of science, education, and outreach, offers unique benefits to address socio-ecological questions and
problems, and thus may offer novel opportunities to support the complex mission of public land
managers. Here, we use a case study of an iNaturalist program, the Tribal Nations Botanical Research
Collaborative (TNBRC), to examine the use of citizen science programs in public land management.
The TNBRC collected 2030 observations of 34 plant species across the project area, while offering
learning opportunities for participants. Using occurrence data, we examined observational trends
through time and identified five species with 50 or fewer digital observations to investigate as species
of possible conservation concern. We compared predictive outcomes of habitat suitability models
built using citizen science data and Forest Inventory and Analysis (FIA) data. Models exhibited
high agreement, identifying the same underlying predictors of species occurrence and, 95% of the
time, identifying the same pixels as suitable habitat. Actions such as staff training on data use and
interpretation could enhance integration of citizen science in Federal land management.

Keywords: traditional ecological knowledge; land management; restoration; community science

1. Introduction

Citizen or community science programs provide ecological data at spatial and tem-
poral extents previously unattainable due to financial or logistic constraints of traditional
studies [1,2]. Broadly, citizen science projects can be divided into categories based on
investment in volunteer training. High investment programs, such as Earthwatch (Earth
Watch. Available online: https://earthwatch.org (accessed on 25 June 2021)), generate
detailed, accurate data often at the population or community levels, comparable with
traditional ecological studies. Low investment programs are generally smart phone-based,
provide minimal instruction to volunteers, and generate coarse data (e.g., species-level
occurrence) at landscape scales. Programs with low investment in volunteer education are
increasing in popularity, since such programs reduce barriers to participation, allowing
volunteers to opportunistically collect data on self-directed time tables, without requir-
ing significant additional investment in equipment or travel. Several key technological
breakthroughs have revolutionized the way that citizen scientists collect or process data for
these programs, thus enabling project scaling and improved confidence in data products.
Cloud storage permits the remote storage of data, and internet connectivity allows global
contributions of information toward project goals. As an example, the project “Chimp &
See” hosted on the citizen science platform, Zooniverse (Zooniverse. Available online:
https://www.zooniverse.org/ (accessed on 25 June 2021)), curates thousands of camera
trap images of chimpanzees, which volunteers from across the globe review to classify
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behaviors. Advances in smart phone technology and decreases in the price point of these de-
vices now permit an estimated 5 billion people, including 96% of Americans, to carry Global
Positioning System (GPS) units and high-resolution cameras at all times [3]. Increased
access to technology has increased fluency with the use of electronic devices and related
software across all socio-economic levels, lowering economic and educational barriers to
public participation in science. Finally, development of analytical methodology, supported
by advances in computational speeds, now permits the analysis of large citizen science
datasets in ways that reduce observer bias and other problematic aspects of data collected
by the public [4]. Leveraging these advances, citizen science has meaningfully contributed
to monitoring climate change through impacts on phenology and species distributions,
tracked invasion of non-native species, provided baseline data prior to disturbance [5], and
assessed global patterns of species richness [6,7].

Major funders such as the National Science Foundation (NSF) and the National En-
vironmental Research Council in the United Kingdom now emphasize accountability of
the sciences to the public to justify use of tax revenues for scientific endeavors [2], thus
increasing the popularity of integrating citizens into research and promoting democrati-
zation of the sciences. Sociological investigations of citizen science projects indicate that
public-integrated projects have the potential to address multiple goals, beyond simple
data acquisition and analysis [8,9], Bonney et al. (2016) highlighted projects, which while
generating data, also served to enhance interest in science and nature, promote environ-
mental stewardship or awareness of conservation topics, and demonstrate the overall
value of science. Moreover, accessible application-based programs have the potential to
foster scientific engagement across socio-economic divides, thus supporting the diver-
sification of STEM fields in the long term [10]. The complex socio-ecological benefits
provided by citizen science uniquely address the multivariate goals of US Federal land
management agencies or any other manager of common property tasked with the respon-
sibility to sustain and provision ecological resources for a diverse public. Recognizing
this potential, US Federal agencies are promoting citizen science projects on public lands,
through organizational efforts, such as the citizenscience.gov site (citizenscience.gov. Avail-
able online: https://www.citizenscience.gov/# (accessed on 25 June 2021)), and funding
programs, such as the US Forest Service’s (USFS) Citizen Science Competitive Funding
Program (USDA Citizen Science Competitive Funding Program. Available online: https:
//www.fs.usda.gov/working-with-us/citizen-science/competitive-funding-program (ac-
cessed on 25 June 2021)), resulting in a multitude of on-the-ground projects (488 registered
to the Federal Crowdsourcing and Citizen Science Catalog).

Here, we describe an initiative to identify plants traditionally used by Arizona Tribes
on USFS lands, the Tribal Nations Botanical Research Collaborative (TNBRC; Tribal Na-
tions Botanical Research Collaborative iNaturalist Site. Available online: https://www.
inaturalist.org/projects/tribal-nations-botanical-research-collaborative (accessed on 25
June 2021)), using the iNaturalist platform. The challenge of managing shared resources for
diverse constituencies with at times competing interests is a wicked problem, only inten-
sified by rapid global change, which decouples resources from established communities,
and increasing human population size, which intensifies competition for limited resources.
Simultaneously, societies are struggling to address inequities driven by racism systemic
across institutions, including those that manage public areas. This manuscript highlights
how citizen science can be used as a tool to uphold the interests of underrepresented
groups in land management, collect information to undergird the ability of these groups to
shape management priorities and actions, and educate land managers and the public about
conservation concerns. Specific programmatic goals of the TNBRC were to provide Tribal
members with harvest locations for focal plant species, generate information on species
status for Federal land managers, promote stewardship of shared resources to members of
the general public, and foster the connection between Tribal partners and USFS lands. In
an informal survey, USFS employees highlighted a lack of familiarity working with citizen
science data and concerns regarding data quality of such application-based projects as
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barriers to integrating data generated by citizen scientists in planning, monitoring, and
management efforts. For this reason, we provided an in-depth exploration of data analysis
and quality. Specifically, we asked: (1) What ecological information can citizen science
provide for public land managers? (2) What are the significant caveats, limitations, and best
practices to consider when interpreting citizen science data? Finally, we present this collab-
oration between Tribal Nations, scientists, Federal entities, and key public constituents as a
roadmap to address similarly complex socio-ecological issues on shared public lands.

2. Materials and Methods
2.1. Project History and Structure

The TNBRC, a collaboration between Arizona Tribal Nations, the USFS, and Northern
Arizona University (NAU), developed out of requests by USFS Tribal partners for informa-
tion on traditionally used plants on USFS lands. Harvest of wild plants for food, medicine,
ceremonies or other purposes remains a culturally and spiritually important practice for
many Native American Tribes. Because Native American Reservations represent a fraction
of the territory once inhabited by Tribes, access to public lands is integral to the continu-
ation of cultural practices, as these areas may contain traditionally important plants not
found on reservations. Variation in harvest permit regulations among Federal agencies
have disincentivized traditional harvests on public lands. For instance, the National Park
Service (NPS) restricted plant harvests in the past by levying high permit fees and requiring
Tribal Nations to demonstrate “no detriment” of harvests to natural resources in order to
comply with the NPS’s preservationist mission of “conserving unimpaired the natural and
cultural resources and values of the NPS for the enjoyment, education, and inspiration
of this and future generations”. While the NPS is actively striving to codify exemptions
that would facilitate traditional harvests by US Tribes [11], the legacy of stringent permit
requirements has resulted in Tribal members avoiding NPS lands for harvesting purposes,
and indeed led to general avoidance of harvesting on Federal lands because subtle differ-
ences in agency missions and management strategies are often not apparent to non-US
governmental entities (personal communication with meeting participants at Citizen Science
Organizational Meeting, 1 August 2018). For the USFS, engagement with Tribal partners
is core to the USDA Forest Service Strategic Plan (FY 2015–2020), and supports the goal
to “deliver benefits to the public”. Hence, the USFS was eager to promote access of Tribal
members to plant resources for traditional harvest, particularly in Arizona, which is home
to 21 federally recognized Tribes. Simultaneously, the TNBRC filled a significant infor-
mational gap because the USFS focuses on monitoring and management of tree species,
whereas many traditional use plants are herbs or shrubs. As these species are typically
neither invasive nor rare enough to be listed under the Endangered Species Act (ESA),
they are infrequently monitored. Moreover, while status of traditional-use tree species is
captured in USFS Forest Inventory and Analysis (FIA) surveys, precise harvest locations are
challenging to access from this database because FIA plot location is obscured to prevent
plot tampering. Because citizen science data are biased to easy-to-access areas, occurrence
data are ideal for identifying potential harvest sites even if a species is monitored under an
existing program (e.g., FIA). Leveraging volunteer efforts, the TNBRC generated data at a
landscape scale, with minimum Federal spending.

After receiving funding from the USFS Citizen Science Competitive Funding Program
in 2018, members of seven Tribal Nations (Hopi Tribe, Hualapai Nation, Navajo Nation,
San Carlos Apache Nation, White Mountain Apache Nation, Yavapai-Apache Nation,
and People of Zuni) convened with project partners at the USFS and NAU to generate
best practices for data collection and management and establish a list of 34 project focal
species. Focal species included plants used for food, medicine, fiber, dye, or ceremonies,
and excluded plants that were sensitive due to either immense cultural or economic
value (Supplementary Materials). Following protocols and guidance of Tribal members,
we established a project on the iNaturalist. We then hosted a series of activities to meet
TNBRC project goals, which fell into two broad categories: public outreach and education to
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promote project participation, and activities to foster connection of Tribal members to public
lands (Table 1). While general public participation was voluntarily, we provided travel
and food costs and stipends to Tribal participants. The USFS encourages compensation
of Tribes for providing specialized expertise, such as traditional knowledge, that could be
incorporated into restoration efforts (FSM 1563.01 and FHS 1509.11). The project is currently
in a phase of data collection and membership growth, with USFS meetings planned to
showcase informatic findings of analyses of citizen science data presented here.

Table 1. Key activities for the TNBRC. After assessing specific project needs and key audiences, we delivered a series of
activities to boost project participation, awareness, and data generation.

Activities Target Audience Purpose Example Activity

Conference
and invited

talks

US Federal agency
land managers
and scientific
community

Educate land managers and
scientists about the applicability
of citizen science to support the

missions of both groups.

We delivered the talk, ‘An evolving partnership between
Arizona Tribes, the Forest Service, and researchers to
ensure the availability and sustainability culturally

important plant species on federal lands’, at a
management-oriented conference, the Biennial Conference
of Science and Management on the Colorado Plateau and

Southwest region.

iNaturalist
‘Train the

trainer’
event

Federal
employees and
forest volunteer

groups

Educate key project participants
to train the public to use

iNaturalist.

We hosted a training event at the Coconino County
supervisors office to demonstrate the use of iNaturalist to

collect data to the Coconino Friends of the Forest
volunteer group.

Plant walks Tribal partners

Train project partners to use
iNaturalist; connect key

constituent to project, and collect
data.

We led a plant walk at Keyhole Sink on the Kaibab
National Forest with Hopi and Zuni Tribal members.

Project
member en-
gagement

Project members

Engage project members and
create a sense of community in

order to foster continued project
participation and success.

We generated posts through the iNaturalist application
and on the projects Facebook page.

Public
recruitment General public

Recruit the public to collect
observation on traditional use

plants.

We gave an interview on the local radio station, Plants of
the Plateau, http://www.thecoloradoplateau.com/2019/0
3/plateau-on-radio-episode-41-plants-of.html (accessed

on 25 June 2021).

Targeted
outreach Botanical experts

After identifying a need for
experts to confirm identifications
to attain research grade status for
species observations, we actively

recruited botanical experts.

We presented a talk to the Arizona Native Plant Society.

2.2. Project Area

The project area included 9712.5 km2 in central Arizona across four national forests,
the Coconino, Tonto, Apache-Sitgreaves, and Kaibab, that comprise the project area of
the Four Forest Restoration Initiative (4FRI). The 4FRI is the largest Collaborative Forest
Landscape Restoration Program (CFLRP) nationally, with extensive fuel thinning projects
planned across the project area in order to restore density, structure, and composition of
ponderosa pine ecosystems to historical conditions that existed prior to the enactment
of widespread fire suppression policies of the 20th and 21st centuries. Fuel reductions,
aimed at restoring fire-adapted ecosystems and reducing the risk of catastrophic wildfire,
include timber harvests and prescribed burns. While the effects of these treatments on
overstory communities have been extensively studied, far less is known about the impact
to understory shrubs and herbs that comprise the majority of traditional-use plants. Thus,
there is an urgent need to document the pre-treatment status of understory species and
begin to link fitness response to treatment impacts.

http://www.thecoloradoplateau.com/2019/03/plateau-on-radio-episode-41-plants-of.html
http://www.thecoloradoplateau.com/2019/03/plateau-on-radio-episode-41-plants-of.html
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2.3. Platform Selection

The iNaturalist platform is a web-based application that can be downloaded to smart-
phones and used to make species observations. iNaturalist was an ideal platform to host
the TNBRC for several reasons. First, iNaturalist is free, user-friendly, and assists with
species identification by generating taxonomic suggestions when observations, in the form
of georeferenced photographs, are uploaded to the site; thus cost, technological acumen,
and botanical knowledge were not barriers to project participation. Second, iNaturalist
employs protocols to score species observations as “research grade”, once field observa-
tions have been confirmed by other iNaturalist volunteers. Once attaining “research grade”
status, data are ported to platforms such as the Global Biodiversity Information Facility
(GBIF), for which there exists an established literature of use in research [12,13]. Finally,
the platform allows extensive flexibility for designing iNaturalist projects, including data
protection mitigations (described below in Section 2.4).

2.4. Cultural and Botanical Protection Protocols

Tribal partners guided project structure, protocols, and data delivery to reduce the
risk of irresponsible harvests and protect culturally sensitive data. We enacted several key
protections. First, Tribal partners selected species that were not especially rare or likely
to be endangered by harvests. Second, to prevent non-Tribal communities from targeting
harvests of species for commercial uses, the project intentionally provided no cultural
information on the uses of these plants. Third, we blurred location information of TNBRC
focal species on the iNaturalist site, so that location information was not visible to the
general public. Accurate location coordinates of focal plant species were accessible only by
project leaders, which include USFS Tribal Liaisons, who then provide location information
to Tribal partners upon request.

2.5. Data Acquisition, Quality Control, and Analysis

We queried the GBIF database [14], an international repository for species occurrence
data, using R statistical software version 3.6.3. (R-package “rgbif”) for species identified in
the TNBRC project [15]. Searches were limited to North America to avoid downloading
information on species transplanted outside their historical range, and to retain focus on the
project area. We removed inaccurate data points following standard data cleaning proto-
col [13] using the R-package “CoordinateClean”, which purged duplicated entries, imprecise
points, or locations in unexpected areas (e.g., in the ocean). Cleaned observations were
used to examine trends through time and to create habitat suitability models (described in
Section 2.6). When examining temporal trends, we partitioned data from sources, such as
museum or herbaria specimens (data source referred to as “Other”), from geotagged pho-
tographs largely derived from citizen science projects (data source referred to as “Digital”)
and tested for observational change through time for both data sources using linear models.
We examined rates of observations between these two groups to isolate abundance change
patterns of focal species because application-based citizen science observations, generally,
have increased in recent years, whereas other forms of observation, such as collecting
herbarium specimens, are assumed to remain somewhat constant through time. Because
observations varied dramatically among species, we relativized observations across species
to express observations in a given year as the proportion of the maximum number of obser-
vations over a 1-year time period. To assess rarity, we also quantified observation numbers
for each species through time, with the caveat that observation number and frequency
should not be interpreted as a direct measure of abundance because these metrics conflate
abundance and observability (i.e., tendency for focal taxa to occur near human populations,
visibility, size, etc.). Low rates of occurrence, however, may serve to highlight species that
warrant further investigation of ecological status.
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2.6. Species Distribution Model (SDM) Comparison

Land managers at the USFS cited data quality as a barrier for incorporation of citizen
science data in land management and ecological studies. For this reason, we wanted
to compare habitat suitability projections for species distribution models (SDMs) built
using citizen science data with those constructed from traditional survey data collected by
professionals, to determine whether broad disparities existed in model projections between
these two categories of data sources in our study area. To conduct this comparison, for
the TNBRC focal species we selected Emory oak (Quercus emoryi Torr.) because location
information for this species was available both from the GBIF repository, which curates
principally citizen science data, and from the Forest Inventory and Analysis (FIA) data
portal, which collects data on tree growth and survival on standardized plots established by
the USFS. Notably, significant differences in data quality exist between these data sources.
The FIA database provides presence and true absence data across plots randomly located
within 24.28 km2 (6000-acre) hexagons, which grid the US. Alternatively, citizen science
data are presence-only data (no true absences) and are spatially biased towards areas with
high human traffic and access. In this comparison, sample sizes also differed; FIA sampled
3199 forested plots in Arizona, finding Emory oak at 384 sites, while GBIF included only
22 occurrences for the same area. While citizen science data quality will differ by species
and region, spatial bias, lack of true absence data, and small sample size are perennial
problems with these datasets. The existence of high quality, spatially extensive FIA data
offered an opportunity to test for broad-scale differences in predictions generated by
the two approaches. Such accuracy assessments are critical because for many species,
particularly herbs and shrubs, citizen science data will be the only information available.

2.6.1. Dataset Construction

For models built using professionally collected data, we generated presence–absence
data for each Phase 2 FIA plot, with presence indicating the occurrence of one or more
Emory oak trees at a plot in the 2011–2019 time period. Phase 2 ground sampling plots
consist of four 7.32 m fixed-radius subplots, which, with a buffer area around each, cover
a 0.004 km2 (1-acre) sample area in total. In Arizona, FIA Phase 2 plot stand surveys are
conducted on a 10-year rotation. Due to lag times in data posting, data presented here
represent FIA surveys from 2011–2019. Lack of 2020 data, while decreasing sampling
intensity relative to the complete decadal sample, does not introduce spatial bias because
plots are surveyed in a random order. To model Emory oak habitat using citizen science
data, we downloaded data from the GBIF data portal using the same protocols described
in Section 2.5, though in this case, we included observations collected within the same
time frame as the FIA to avoid model discrepancies caused by spatial distribution change
over time in response to factors such as climate or land-use change. We also expanded
the extent of the focal area beyond the national forests to improve model predictability.
Within the US, Emory oaks occur most abundantly in Arizona, with scattered populations
in southern New Mexico and western Texas. Here, we focused on Arizona data, in order
to (1) represent the core region of Emory oak distribution within the United States, rather
than outlying habitat, while focusing on the region encompassing participating national
forests, (2) constrain the focal area to the US because FIA data are not collected globally,
and (3) reduce cross-state heterogeneity in FIA data (i.e., census timing).
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2.6.2. Model Construction

For both FIA and GBIF datasets, we built SDMs to predict current suitable habitat
for Emory oak using R-package “SDM” [16] in R version 4.0.3 [15]. Predictor variables
included 19 bioclimatic variables acquired from the WorldClim database (WorldClim.
Available online: www.worldclim.org/current (accessed on 25 June 2021)) at a resolution
of approx. 4.5 km (2.5-min of a longitude/latitude degree) [17]. Bioclimatic variables
are derived from temperature and precipitation and summarized to maximize biological
relevance by reflecting variation in climatic means, extremes, and seasonality. For final
model structures, these 19 variables were culled by calculating the variance inflation
factor (VIF), which estimates collinearity among predictor variables, and removing highly
correlated variables (VIF > 10). Though we used the same model construction methodology,
slight predictor variables were selected for FIA- and GBIF-derived datasets, reflecting
inherent differences in these datasets that we wished to capture for comparison. For
the FIA data-based model, we identified 7 bioclimatic variables, though only 5 of these
were significant predictors in the GBIF model. Final bioclimatic predictors used in model
parameterization for both models included the following: (1) mean diurnal range (mean
of monthly (maximum temperature–minimum temperature)), (2) temperature seasonality
(standard deviation*100), (3) mean temperature of wettest quarter, (4) precipitation of driest
month, and (5) precipitation of coldest quarter. In addition to these variables, the FIA
data-based model included: (1) mean temperature of the driest quarter and (2) precipitation
seasonality (coefficient of variation). Because the GBIF dataset included presence-only
occurrence data, we generated pseudo-absence data at a sampling density equivalent to
FIA data.

We built SDMs implementing 6 modeling techniques, including 2 parametric, regression-
based approaches, flexible discriminant analysis (FDA) and generalized linear modeling
(GLM); 2 non-parametric regression-based techniques, multivariate adaptive regression
splines (MARS) and generalized additive modeling (GAM); and 2 machine-learning ap-
proaches, random forest (RF) and boosted regression trees (BRT). Models were compiled
into an ensemble model, weighting by the true skill statistic (TSS; described below). Model
accuracy assessments were performed using training and test datasets created through
iterative subsampling by bootstrapping and k-fold partitioning (k = 5; runs = 10). For each
iteration, we calculated the area under curve (AUC) and the TSS to assess the predictive
performance of this model [18]. For the AUC assessment, a receiver operating characteris-
tic (ROC), which compares sensitivities (proportion of correctly predicted presences) to
false positive rates (1—specificity, or the proportion of correctly predicted absences), was
calculated across the range of possible thresholds for classifying model scores and the area
under the curve (AUC) calculated to create a ROC curve. An AUC > 0.75 indicates a high
performing model, with an AUC of 1 indicating perfect predictive power. The TSS similarly
incorporates sensitivity and specificity comparing models against random, yielding values
that range from −1 to +1, where +1 indicates perfect prediction and ≤0 indicates a model
that performs no better than random. For each predictor variable, we calculated importance
of that variable to model predictions using both a method that examines cross-validation
among model runs when variables are excluded, and a permutation method that assesses
correlation of the focal variable and projections when the focal variable is manipulated [16].
We compared FIA- and GBIF-based models by predicting occurrences using a threshold
that maximized TSS across models, and subtracting the suitable habitat projected by the
GBIF dataset from that predicted by the FIA dataset.

3. Results
3.1. Project Metrics

The Tribal Nations Botanical Research Collaborative (TNBRC), organized in late
2018, launched the project page on iNaturalist in Spring 2019. Roughly two years later,
as of 16 March 2021, the project has curated 2030 observations of the 34 focal species.
Seven hundred and nine individuals have contributed observations to the project, while

www.worldclim.org/current
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268 individuals confirmed species identifications to advance observations to research-
grade status. Seventy-two individuals are core project members, receiving routine project
communications and actively engaging in activities. Of the 2030 observations, 75.37% are
research grade. Plug-and-play R-code, which only requires that users enter a species name,
was created to provide up-to-date information on occurrence of traditional-use plants
within the 4FRI project area. Code was customized to provide useful products for each
primary stakeholder: (1) mapped locations for Tribal partners to facilitate harvests and
(2) trends through time and (3) predicted suitable habitat for USFS land managers and
ecological specialists (Figure 1).
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Figure 1. Example data products generated using “plug-and-play” R-code for the Tribal Nations Botanical Research
Collaborative focal species, Nicotiana attenuata, including (A) a map of locations to identify potential populations to harvest,
(B) change in observations through time by participating forest and nationally, and (C) a habitat suitability model.

3.2. Trends in Observations through Time

The GBIF repository appends the source of curated location information, allowing
data from various sources to be partitioned (i.e., smart phone-based digital observations
can be distinguished from herbaria specimens). Generally, observations from digital
platforms, largely comprising application-based georeferenced photographs from citizen
science projects, have increased through time (X2 = 544.72, p < 0.0001), particularly in
the last 20 years (Figure 2), whereas observations from herbaria and other sources in-
creased through time, but have declined in the last 20 years (Figure 2). The number of
observations through time also differ among species (X2 = 130.66, p < 0.0001), Examining
individual species trajectories within the last 20 years, most species followed the same
general trend. Observations from sources such as herbaria declined in recent years, while
digital observations increased (Figure 3). There were several exceptions, however. Saguaro
cactus (Carnegiea gigantea (Engelm.) Britton & Rose), ephedra (Ephedra aspera Engelm. Ex S.
Watson), and creosote bush (Larrea tridentata (DC.) Coville) declined in number of digital
observations, particularly in 2020 (Figure 3). As another way to assess risk to focal species,
we tallied observations in 2019 (prior to the COVID-19 pandemic) (Figure 4), and identified
five species with 50 or fewer digital observations, including Acourtia wrightii (A. Gray)
Reveal and King, Erythrina flabelliformis Kearney, Juglans major (Torr.) A. Heller, Mentha
arvensis L., and Nicotiana attenuata Torr. ex. S. Watson.
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3.3. Species Distribution Model Comparisons

All modeling techniques, which included FDA, GLM, GAM, MARS, RF, and BRT,
demonstrated a high level of predictive performance, regardless of data source (Table 2).
Consistently across models, precipitation in the coldest quarter, a measure of winter
precipitation, was the most important predictor of occurrence, explaining as much as
61.5% of the variation in Emory oak occurrence, depending on model technique (Table 3).
Increase in winter precipitation was correlated within an increase in likelihood of Emory
oak presence (Figures S5 and S6). Other important predictors for both models included,
bio4, temperature seasonality, and bio14, precipitation of driest month, both of which were
negatively correlated with occurrence (Figures S5 and S6). Initial removal of correlated
variables resulted in the largest disparity in the two models; FIA data-based models
included two additional predictor variables: bio9, mean temperature of driest quarter, and
bio15, precipitation seasonality, the latter of which was a statistically significant predictor
of Emory oak occurrence (Table 2). Current suitable habitat for Emory oak in Arizona is
estimated to be 26,806 km2 or about 9% of the state by the FIA model, and 11,065 km2

or about 4% of the state by the GBIF model. When converted to a binary prediction (i.e.,
presence, absence), habitat suitability predicted by SDMs constructed with FIA and GBIF
data agreed across 95% of the landscape. For 4.6% of the land area, FIA data predicted
that Emory oak would occur, while GBIF data predicted an absence, whereas GBIF data
over-predicted occurrence relative to FIA-based models by only 0.4% (Figure 5).
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Figure 3. Trajectories of TNBRC focal species through time for observations from digital sources (red) and other sources
(gray). Trend lines for polynomial relationships of observation variation through time indicated by gray lines. While
observational data are not a surrogate for actual abundance, these trends can be used to identify species of concern when a
decline in observations is detected across data sources. For TNBRC focal species, three plants, Carnegiea gigantea, Ephedra
aspera, and Larrea tridentata, showed downward trends the final year of this study.
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Figure 4. Number of observations for each Tribal Nations Botanical Research Collaborative focal species in 2019. In all
cases, digital observations (gray) exceeded observations from other sources (red), and were tallied to identify species with
few observations.
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Figure 5. Results of comparison of species distribution models (SDMs) for Emory oak built from (A) Forest Inventory
and Analysis (FIA) data and (B) models built from predominantly citizen science data curated in the Global Biodiversity
Information Facility (GBIF). Panels (C) and (D) indicate areas of predicted Emory oak occurrence for FIA and GBIF-based
models, respectively. Panel (E) highlights areas of model disagreement, in which blue areas indicate pixels predicted as
likely habitat by GBIF models, but not FIA models, while red areas indicate areas of likely habitat predicted by FIA models,
but not GBIF models.
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Table 2. Model performance assessed by AUC and TSS for SDMs created from FIA and GBIF data for
each modeling method that contributed to the ensemble model, including FDA, GLM, GAM, MARS,
RF, and BRT.

FIA GBIF
Modeling Method AUC TSS AUC TSS

FDA 0.84 0.56 0.9 0.78
GLM 0.86 0.58 0.92 0.81
GAM 0.94 0.82 0.96 0.91

MARS 0.93 0.77 0.94 0.87
RF 0.95 0.82 0.91 0.79

BRT 0.93 0.76 0.93 0.83

Table 3. Analysis of variable importance to predict habitat suitability of Emory oak for FIA and GBIF data-based models.
Results of individual models that comprised the final ensemble model for each data type are presented. Asterisks beside the
variable name indicate a statistically significant contribution to final predictive model. Relative importance of each variable
is also estimated.

FIA

Modeling
Method Variable

Relative
Importance

(Based on AUC)
(%)

Modeling
Method Variable

Relative
Importance

(Based on AUC)
(%)

Modeling
Method Variable

Relative
Importance

(Based on AUC)
(%)

FDA bio2 0.2 GAM bio2 0.1 RF bio2 0.1
FDA bio4 * 1.5 GAM bio4 * 1.5 RF bio4 0.1
FDA bio8 1 GAM bio8 0.7 RF bio8 0.8
FDA bio9 0 GAM bio9 0.1 RF bio9 0.2
FDA bio14 * 6.7 GAM bio14 * 5.6 RF bio14 * 3.1
FDA bio15 * 12.4 GAM bio15 * 11.6 RF bio15 * 14.9
FDA bio19 * 39 GAM bio19 * 39.1 RF bio19 * 45.8
GLM bio2 0.3 MARS bio2 0.3 BRT bio2 0.1
GLM bio4 0 MARS bio4 * 1.7 BRT bio4 * 1.5
GLM bio8 1 MARS bio8 0.6 BRT bio8 0.9
GLM bio9 0.2 MARS bio9 0 BRT bio9 0.2
GLM bio14 * 2.1 MARS bio14 * 3.9 BRT bio14 * 2
GLM bio15 * 15.5 MARS bio15 * 12.4 BRT bio15 * 12.1
GLM bio19 * 46 MARS bio19 * 36.5 BRT bio19 * 37.6

GBIF

Modeling
Method Variable

Relative
Importance

(Based on AUC)
(%)

Modeling
Method Variable

Relative
Importance

(Based on AUC)
(%)

Modeling
Method Variable

Relative
Importance

(Based on AUC)
(%)

FDA bio2 0.6 GAM bio2 0.1 RF bio2 * 3.9
FDA bio4 * 11.6 GAM bio4 * 11.2 RF bio4 * 7.1
FDA bio8 0.8 GAM bio8 0.6 RF bio8 1.5
FDA bio14 * 6 GAM bio14 * 8 RF bio14 * 6.3
FDA bio19 * 54.5 GAM bio19 * 49.4 RF bio19 * 64.3
GLM bio2 0 MARS bio2 * 1.9 BRT bio2 0.9
GLM bio4 * 9.6 MARS bio4 * 9 BRT bio4 * 14.6
GLM bio8 * 1.2 MARS bio8 * 1.3 BRT bio8 * 1.2
GLM bio14 * 5.4 MARS bio14 * 6.3 BRT bio14 * 3.7
GLM bio19 * 61.7 MARS bio19 * 51.9 BRT bio19 * 43.7
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4. Discussion
4.1. Benefits of Citizen Science Data in Public Land Management: Tribal Nations Botanical
Research Collaborative Case Study

Prior to European colonization, over 20 Native American Tribes lived in the territory
now called Arizona. Now, over half of the land area of Arizona is Federal public land,
with the US Forest Service managing the second largest area (approx. 15.4% of total land
area), the Bureau of Land Management managing the largest land area (approx. 16.7%),
and the Department of Defense (ca. 4.1%), National Park Service (approx. 3.6%), and
Fish and Fish and Wildlife Service (approx. 2.3%) managing lesser extents. Remaining
land is divided among Tribal Nations (ca. 27.2%), private holdings (approx. 17.8%), and
State and Local Governments (approx. 12.7%) [19]. For many Tribes, culturally important
wild-harvested plants occur off-reservation on federally managed lands, thus Federal
entities have a responsibility to provide access to these plants and to sustainably manage
these resources for future generations. This mandate aligns with two primary goals of
the USFS 2015–2020 Strategic Plan, (1) “Sustain our nation’s forests and grasslands”, and
(2) “Deliver benefits to the public”. Despite clear alignment with USFS goals, managing
for traditional-use species is generally not supported financially, thus national forests
necessarily focus management efforts on threatened and endangered species, which have
strong legal protections and associated management mandates, and invasive species, which
represent a risk to commodities such as timber or public experience. Thus, there was a
need, both from a USFS and Tribal perspective, to monitor plants traditionally harvested
by Tribal Nations, but little financial support to do so. Citizen science offered an ideal
solution, allowing the USFS to collect landscape-level spatial information on traditional-
use plants with little to no cost to the participating units. Citizen science delivers the
additional benefit of encouraging cross-sectional participation in science. In the case of the
TNBRC, the project provided a forum for Tribal Nation partners to steer land management
and ecological research, and encouraged all community members to engage with public
lands in a meaningful way. We have held a variety of events, including bioblitzes with
Tribal members, virtual workshops, school events, and volunteer trainings, all of which
incorporated educational and outreach components (Table 1). Such experiences provide
difficult to measure benefits, which nonetheless contribute to project goals and success. As
an example, TNBRC project managers led several trips with Tribal constituents, during
which time Tribal members were informed of opportunities to harvest plants on national
forests, with the objective of reducing obstacles to traditional harvests on public lands.
By using a citizen science platform, the TNBRC addressed multiple goals, providing data
to land managers on traditionally used plants, increasing awareness of the importance
of protecting these species, educating the general public on conservation-related topics,
and supporting Tribal engagement and access to these species. Citizen science provides a
unique opportunity to tackle problems with biological and social components, such as the
conservation of culturally important plants.

4.2. Citizen Science Data and Interpretation

As previously acknowledged, citizen science data conflates observations with actual
species abundance, obfuscating interpretations of species trajectories through time. For the
TNBRC focal species, we examined trends in observations from citizen science data, and
identified several species with recent downward trends in both digital observations and
herbaria collections, including saguaro cactus, ephedra, and creosote bush. In this case,
recent downturns likely indicate a reduction in tourism due to travel restrictions resulting
from the COVID-19 pandemic because all three species are large, common Sonoran Desert
species likely overlooked by local citizen scientists and botanists, but of interest and highly
visible to nature enthusiasts visiting from other regions. Because citizen science data
from projects conflate observation and occurrence, observational trajectories alone are
insufficient to identify actual population declines, and must be interpreted with caution.
These data, however, could be used as an early warning sign of decline if patterns are
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sustained through time and there is agreement among multiple data types (i.e., herbaria
collection rates and data from digital citizen science applications). By alerting forest
botanists of potential species decline, citizen science can be used to isolate specific issues,
creating a tractable target for investigations. On-line repositories for citizen science data,
in combination with the flexibility of statistical freeware, such as the R statistical software
platform, allow researchers to hone “plug-n-play” code to provide deliverables unique to
participant and stakeholder needs in near-real time with minimal effort once code has been
created. For instance, we developed code that generated maps to specific locations where
focal plants have been located to provide to Tribal Members, graphed the trajectory of
observations through time for participating national forests, and built SDMs for ecologists
seeking to understand constraints on these species or identify new populations. To increase
use of citizen science data in Federal land management, tutorials in data manipulation and
interpretation could be developed for practitioners utilizing citizen science data. However,
if this represents too great of a barrier for Federal land managers, partnerships with other
institutions, such as universities, may be a more efficient pathway to utilizing citizen
science data.

4.3. Reducing Statistical Bias of Citizen Science Data

Statistical methods for decoupling observation signals from abundance, such as in-
cluding a metric of overall observation intensity (e.g., observations of a local common
species or total observations across the overall search area) as a model covariate and/or
comparatively analyzing trends from different data sources, can be applied to improve
understanding of species trajectories through time. In this case, the GBIF database tracks
data origin, allowing collection rates of museum and herbaria specimens, which in recent
years have remained constant or declined, to be partitioned from smartphone-based obser-
vational rates (Figure 2). Analyzing across both data sources for agreement may highlight
instances of actual abundance changes, which then can be further investigated (Figure 3).
Other analytic approaches may offer more inferential power. For instance, a suite of statis-
tical methods have been developed to calculate diversity statistics and address inherent
challenges in calculating such metrics, given the high sensitivity of diversity parameters
to sample size and completeness [20]. Thus, observational data may be summarized in
diversity metrics and standardized by extrapolation using sample completeness, which
estimates false absences based on the number of rare species within an assemblage, to
allow comparisons across assemblages [21,22].

Similarly, habitat modeling and other forms of spatial modeling incorporate method-
ology to address observer bias in citizen science data. By employing techniques such as
spatial thinning and exclusion of observations of low integrity or spatial resolution, bias
and error in citizen science can be reduced, yielding useful data products [23,24]. Here,
FIA data allowed us to compare predictions of citizen science data-driven habitat models
against predictions of FIA data-driven models. Because FIA Phase II plots represent a
random, spatially-extensive sample of both species presence and absence, models gen-
erated from FIA data should generate far more accurate predictions relative to citizen
science-based models, which are inherently spatially biased toward areas of high human
occupancy and access and may include fewer observations [25,26]. In this case, FIA data
provided a far greater number of observations within the study area relative to GBIF;
384 Emory oak occurrence observations were generated by the FIA dataset, compared with
only 22 for the GBIF repository. Despite this, occurrence predictions of the two models
agreed 95% of the time, with GBIF underpredicting occurrence relative to FIA 4.6% of the
time and over-predicting only 0.4%. Importantly, models agreed in the drivers of habitat
occurrence, indicating that citizen science data may be used to understand basic ecological
relationships determining species occurrence. High agreement between models suggests
that use of citizen science data generates useful habitat suitability models, which could be
used to locate additional populations of focal species or better understand basic environ-
mental constraints on distribution. Indeed, other evaluations of citizen science datasets
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indicate a growing consensus that these projects provide useful, accurate data, which
yield meaningful products when properly analyzed with the emerging statistical toolkit
for citizen science data [4,26]. In this case, high agreement between FIA and GBIF-based
models suggests that habitat suitability models may reasonably be built from GBIF data for
the other TNBRC focal species, which are not represented in FIA datasets because they are
either herbaceous or shrub species.

4.4. Best Practices: Adaptive and Participatory Project Planning

During project development, we identified key stakeholders that directed the struc-
ture, focus, and safety protocols for the TNCRC citizen science project, thus building a
broad, engaged volunteer coalition. We held annual partnership meetings in which infor-
mal feedback was incorporated into project deliverables and activities. Additionally, we
delivered regular training events with key volunteer demographics identified by project
participants, which included Friends of the Forest groups, Tribal youth, and regional/local
botanical societies. In March 2021, feedback was formally assessed in a series of surveys,
delivered remotely using Google survey. Surveys were targeted to various audiences
to assess project needs. For instance, surveys to Tribal members sought information on
program satisfaction and solicited pathways to enhance participation in the TNBRC pro-
gram. For USFS audiences, we asked questions to determine the best form of data delivery
and appropriate methods of storing data (i.e., which USFS databases would be important
repositories for data generated by this project). Feedback, which is still being collected, will
be integrated into the 2021 project plan. Routinely soliciting and integrating feedback from
project partners supports an engaged volunteer base. However, such adaptive manage-
ment can be challenging when constrained by specific expectations from funders because
programmatic activities and foci emerge organically in often unexpected ways.

4.5. Integrating Citizen Science into Federal Land Management

Despite an increase in citizen science programs on public lands, no formal structure yet
exists to incorporate citizen science data into land management, or to integrate the mosaic of
projects occurring nationwide. Portals such as citizenscience.gov offer excellent launching
points to strategically construct a citizen science infrastructure. In conversations with land
managers at the CFLRP Monitoring Community of Practice Monthly Meeting (2 September
2021), land managers were generally unaware of statistical tools to accommodate bias
in citizen science data, or of the availability of data across their region. An educational
campaign to increase awareness of availability of citizen science data to address particular
management goals, such as tracking invasive species or monitoring Endangered Species Act
(ESA) listed species, could enhance the accessibility of these resources for land managers.
Moreover, the development of “plug-and-play” code targeting specific land management
units’ needs and incorporating statistical methodology to reduce observer bias in citizen
science data would promote active use in land management. Training could be provided
to highlight successful uses of citizen science data and address how to analyze such data
and interpret results. By partnering with research institutions, Federal citizen science
programs could tie to larger, experimental explorations of ecological questions or longer-
term datasets, which could be analyzed in a more comprehensive way. Additionally,
the development of Federal repositories for citizen science data and analysis could help
land managers connect to local resources. For the TNBRC, engaging in the next USFS
strategic planning process may provide additional institutional support for management
of traditional plants, a need that has been previously recognized by agency employees
and researchers.



Diversity 2021, 13, 293 16 of 18

5. Conclusions: The Future of Citizen Science Use in Land Management

Citizen or community science programs have the potential to address complex socio-
ecological problems in land management by integrating public guidance and participation
in the scientific process, while collecting data at management-relevant scales. Here, we
presented a case study in which citizen science was employed to respond to the request of
Tribal partners to collect data on traditional-use plants on public lands. A citizen science
platform allowed the TNBRC to address ecological, educational, and social goals simul-
taneously. We collected data for 34 species occurring across 9725.5 km2. In the case of
herbaceous focal species and shrubs, there previously existed little or no baseline ecological
data across most of the project area. We built an inclusive program, building upon the
inherently democratic structure of citizen science, by incorporating participant feedback in
order to represent Tribal Nations values and perspectives in land management. Simultane-
ously, citizen science encouraged participation by the wider public in collecting data and
engaging with public lands at a deep level, while providing opportunities to learn basic
botanical lessons and gain an understanding of the importance of conserving traditional-
use plant resources for Tribal community members. Citizen science is no replacement for
systematic Federal monitoring, or for scientific research, which, when properly designed,
has greater statistical and inferential power to address certain ecological questions, as
well as identify causal relationships and mechanisms for patterns observed in citizen sci-
ence projects. Citizen science programs are, however, excellent launch points for inquiry,
management, and engagement, providing surprisingly accurate ecological information
when data are properly analyzed. Development of easy-to-use software and increased
education could permit broad-scale adoption and use of citizen science data for public
land management. This would represent a unique benefit to managers, as citizen science
programs offer a tremendous opportunity to support multivariate missions of government
and non-government organizations managing public common areas globally. The work
presented here advances conservation in several critical ways. First, we demonstrated a
pathway for democratizing ecological science and land management, specifically detailing
a project aimed at increasing representation of indigenous voices in these fields. Secondly,
we illustrated how citizen science, which is collected at broad spatial scales and in real-time,
can be used to identify conservation concerns quickly. This informatic agility is increasingly
important in a rapidly changing environment and could be leveraged to implement timely
management intervention to protect biodiversity. Finally, we addressed one of the key
arguments levied to dismiss citizen science data in conservation planning—that citizen
science data quality is too low to permit use in science and management. We demonstrated
that analyses of citizen science data, if correctly interpreted, can be appropriately employed
to address a variety of ecological questions. Taken together, these lessons inform the
development of citizen science programs to promote a more inclusive and nimble system
for managing public lands.
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