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Oceanography, University of Gdańsk, Av. Marszałka J. Piłsudskiego 46, 81-378 Gdynia, Poland

* Correspondence: anna.panasiuk@ug.edu.pl; Tel.: +485-8523-6844

Abstract: Appendicularians are one of the most common animals found within zooplankton as-
semblages. They play a very important role as filter feeders but are, unfortunately, inconsistently
reported in the Antarctic literature. The present paper attempts to describe the zonal diversity of
appendicularians and the main environmental factors influencing their communities in the Drake
Passage. Samples were collected during Antarctic summer in 2009–2010. A total of eight species of
larvaceans were identified. Fritillaria borealis was the species found in the highest numbers in almost
the entire studied area, and was observed at all sampling stations. The distributions of other taxa
were limited to specific hydrological zones and hydrological conditions. F. fraudax and Oikopleura
gaussica were typical of the areas between the Polar Front and the Subantarctic Front zones, and their
distributions were significantly correlated with temperature and salinity, likely making them good
indicator species. The F. fusiformis distribution was strictly related to South American waters. In
summary, temperature was the strongest environmental factor influencing the larvacean community
structure in the Drake Passage, and we also found that testing environmental factors on larvaceans
as a whole group did not give entirely reliable results.

Keywords: larvaceans; Drake Passage; latitudinal changes in assemblages; Fritillaria borealis; environ-
mental conditions

1. Introduction

Appendicularians are one of the common animals within zooplankton assemblages
and are widely distributed in all oceans [1]. These animals are filter feeders, consuming
small particles, such as pico- and nanoplankton [2,3]. They build complex mucous houses
that serve as filtering tools [4,5]. When the filters are clogged, these houses are rejected,
and new houses can be secreted by the animals, even as often as every 2 to 4 hours; the
houses can be used by other animals as food or as a fixation substrate [1]. Because of the
high efficiency with which appendicularians ingest nanoplankton and picoplankton [6,7],
they are able to create a path through which small cells cannot sink and, consequently,
can be transported out of the euphotic zone [8]. As a result, when appendicularians are
abundant, small phytoplankton cells can contribute much more to vertical carbon flow
than when the same community is dominated by, for example, copepods [9]. Moreover,
appendicularians have higher growth rates than copepods in response to an increase in
food in their waters [10], and even short-term changes in their community structure may
highly affect the particle flux in the local environment [8]. It should also be pointed out that,
in some regions, appendicularians can be an important source of food for economically
significant fishes, e.g., herring (Clupea harengus), South American pilchard (Sardinops sagax),
or the Argentinean anchovy (Engraulis anchoita) [11].

Studies on the diversity, distribution, and abundance of Appendicularia in the South-
ern Ocean are very sparse and are limited to the genus or family levels, probably due
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to the fragility of appendicularians and the selectivity of the nets used [12,13]. A recent
study conducted by some authors [14] noted a significant occurrence of appendicularians
in the seasonal ice zone (SIZ) in the Southern Ocean. Other scientists [3] also surveyed
Appendicularia diversity and abundance in the SIZ; they noted unusual high abundances
of appendicularians and finally suggested that these animals are probably an integral part
of the community structure of the zooplankton in the SIZ. Previously, Capitanio et al. [15]
analyzed the variability in the characteristics that define the Oikopleura gaussica group in
Antarctic waters. Furthermore, published data on appendicularians mainly concerned
their role and importance in the Southern Ocean zooplankton community structure in
general [13,14,16–19].

During the last few decades, the Antarctic ecosystem has been changing, mainly due
to climatic fluctuations and the direct impacts of human activity [20,21]. These changes are
visible not only in fluctuations of abiotic factors [22,23], but also at the functional level of
the pelagic communities [24–28]. The responses of zooplankton to the warming Antarctic
marine environment are very difficult to characterize due to the complex interactions
between predators and prey [29,30]. Appendicularians are gelatinous zooplankton and,
as mentioned above, they play an important role in global biogeochemical cycles because
of their high grazing rates and significant role in the export of organic carbon from the
ocean surface to the sea bottom [31,32]. However, it is still not clear how the abundance or
frequency of occurrence of appendicularians will be affected by climate change [32–34].

The present paper contributes to the study of the species and zonal diversity, abun-
dance, and biomass of appendicularians in the Drake Passage. We identified the main
environmental factors influencing the distributions and abundances of selected species, and
qualified the species that occurred in specific zones and preferred specific environmental
conditions. Our results can be considered the first detailed study of these animals in this
region, and may be an important contribution to a broader understanding of this rarely
studied group of animals.

2. Material and Methods
2.1. Study Area

The Drake Passage is located between the southern tip of Tierra del Fuego (South
America) and the Antarctic Peninsula, connecting the Atlantic Ocean with the Pacific Ocean.
The width of the strait is over 800 km, with an average depth up to 3400 m, and a maximum
depth of 4700 m [35]. In the investigated area, there is no latitudinal pressure gradient,
creating a natural barrier that inhibits north–south geostrophic flow [36]. One of the effects
of the zone’s existence is the shift of the region of deepening and deep-water-forming to the
north, which is also a key process shaping the global circulation system [37]. The volume
of water flowing through the Drake Passage is estimated to be 134 ± 11.2 Sv [38]. The
positions of the main current changes in this Antarctic region are very dynamic [39]. The
Drake Passage is considered a very productive area (mainly due to the high krill biomass),
but the primary production measurements obtained in the region are considered to be
rather low, with average values ranging from 0.10 to 0.30 g C m−2 d−1 [40]. In the southern
part of the Drake Passage, the primary production values range from 1.7 to 3.4 g C m−2 d−1

in December to 0.070–0.210 g C m−2 d−1 in March [40]. The chlorophyll concentration
in the passage during Antarctic summer ranges from 0.1 to 1.0 mg m−3, and only locally
reaches 2.87 mg m−3 (in the Subantarctic Front area and in the coastal waters of South
America) [41,42].

2.2. Sampling Collection and Laboratory Studies

Samples were collected randomly during the Antarctic expedition of the Russian
Academy of Sciences on the R/V "Akademik Ioffe" in January 2010 (Figure 1). Zooplankton
were collected with a 100 µm mesh size WP2-type net. The hauls were performed in layers
from the depth ranges of 100–0 m, 200–100 m, and 300–200 m. At some research stations,
it was not possible to close the net due to technical problems; therefore, at these stations,



Diversity 2021, 13, 286 3 of 15

hauls were made from depth layers of 100–0 m, 200–0 m, and 300–0 m. Hydrological
data, the temperature and salinity data of the surface water, as well as the concentrations
of chlorophyll a, were provided by the Shirshov Institute of Oceanology of the Russian
Academy of Sciences [41,42]. The investigated area was divided into seven characteristic
zones [41,42] based on the phytoplankton and chlorophyll a concentration values (obtained
during the same cruise). The following zones were identified (Figure 1): CAZ—Continental
Antarctic Zone, SF—Southern Front, AZ—Antarctic Zone, PF—Polar Front, PFZ—Polar
Frontal Zone, SAF—Subantarctic Front, SAZ—Subantarctic Zone.
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Figure 1. Geographical positions of the sampling stations, with the distinguished positions of the
main hydrological zones in the Drake Passage in January 2010; ACC—Antarctic Circumpolar Current,
CHC—Cape Horn Current, WSDW—Weddell Sea deep water.

In this study, collected zooplankton samples (51 in total; CAZ: 1, AZ: 16, SF: 3, PF:
3, PFZ: 12, SAF: 9, SAZ: 3, SACZ: 4) were analyzed to determine the qualitative and
quantitative compositions of appendicularians that occurred in the Drake Passage. Tax-
onomic identifications were made to the lowest possible taxonomic level [1,4,43,44]. The
obtained results were calculated as the number of individuals in 1000 m−3 of sea water.
The biomasses of the four most common larvacean species (Table 1) were also estimated.
For this purpose, morphometric measurements of all individuals identified in the samples
were performed (if possible, due to the state of preservation). The length of the tail part (Lo)
and length of the trunk (Lt) were measured, adding up to a total of 16,786 measurements.
In the cases of Fritillaria borealis and Oikopleura fusiformis, the regression patterns developed
by Capitanio et al. [45], and Sato et al. [46] were used. The measured dry weight (DW)
values were then converted to carbon (C) weights using the ratio C = 0.45 DW [47]. Due to
the lack of any equation in the literature representing a regression of the length of the trunk
to the mass of O. gaussica, the Deibel formula [48] was used, which has been tested for a
morphologically similar species, O. vanhoeffeni [43,49]. Similarly, in the case of F. fraudax,
the equation developed for F. borealis [45] was used. The obtained biomass values were
then converted into micrograms of carbon in a given volume of filtered water (µg C m−3)
and in the integrated water column (300–0 m).



Diversity 2021, 13, 286 4 of 15

Table 1. Trunk length—mass regression equations applied for the biomass calculations of investigated
larvacean species; DW (dry weight), TL (trunk length), C (carbon content).

Species Source

Fritillaria borealis log DW(µg) = 3.86 log TL(µm)–11.72 [45]
Fritillaria fraudax log DW(µg) = 3.86 log TL(µm)–11.72 [45]

Oikopleura gaussica C(µg) = 4.59 TL(mm) [48]
Oikopleura fusiformis Log DW(µg) = 2.1 log TL(µm)–6.82 [46]

2.3. Statistical Analyses

Statistical data analyses were carried out in RStudio using R version 4.0.3 [50]. Mul-
tivariate statistical analyses were performed using the vegan package version 2.5–7 in
R [51]. Pairwise dissimilarity matrices were obtained among samples using Bray–Curtis
dissimilarity (vegdist function). Nonmetric multidimensional scaling (NMDS, function
metaMDS) was carried out with the dissimilarity matrices calculated for the appendicular-
ian abundances, biomasses, and selected environmental factors. The NMDS plot was made
using environmental vectors representing temperature, salinity, and chlorophyll (function
envfit). Permutational multivariate analysis of variance (PERMANOVA) was performed
to identify the most important environmental factors among temperature, salinity, and
chlorophyll a for larvacean abundances and biomasses.

3. Results
3.1. Hydrological Conditions

The lowest temperature (<1 ◦C) obtained in this study was recorded close to the CAZ.
The value of this measured parameter clearly increased towards the north (min. 0.43 ◦C, max.
7.04 ◦C). The polar front zone was characterized by an increase in temperature to values above
2 ◦C, and, further north, the temperature rose rapidly and reached approximately 6–7 ◦C
close to the SAF (Figure 2). The lowest salinity values (33.59) were observed within the AZ,
and a minimum value was noted in the PF zone (Figure 2). The highest salinity (34.08) was
observed in the SAF area, and, close to the American continent, the salinity decreased slightly
again (Figure 2). The highest concentrations of chlorophyll a were recorded close to the front
areas: SF, PF, and SAF (max. 0.42 mg m−3, min. 0.09 mg m−3) (Figure 2).
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3.2. Biogeographical Distribution of Appendicularia in the Drake Passage

Eight species of Appendicularia were identified in the Drake Passage area: Fritillaria
borealis, F. haplostoma, F. pellucida, F. fraudax, F. antarctica, Oikopleura fusiformis, O. parva, and
O. gaussica. F. borealis was the most abundant species in almost the entire research area and
was observed at all sampling stations, although, north of the Polar Front zone, the density
of this species clearly decreased (Figures 3 and 4, Table 2). In the Antarctic Zone area,
F. antarctica was also recorded; however, this species was present in a very small abundance
(Figures 3 and 4, Table 2). Other investigated larvaceans were noted only at stations located
north of the Polar Front, and this barrier clearly delimited their southern distribution, and,
towards the north, the extinction and succession of these species were noticed. F. fraudax
was typical of the PFZ area, O. gaussica was typical further north (SAF), and the area close
to the American Continent (SAZ) was clearly an area of occurrence of O. fusiformis, while
the Subantarctic Front was a clear southern limit of its occurrence (Figures 3 and 4, Table 2).
Other observed species, F. pellucida, F. haplostoma. and O. parva, were rarely reported, and
their densities were very low (Figures 3 and 4, Table 2).

Table 2. Abundances (means ± SDs) (ind. 103 m−3) of appendicularians in the 300–0 m water layer of the Drake Passage in
January 2010.

Species
Drake

Passage

Zone

CAZ SF AZ PF PFZ SAF SAZ SACZ

Fritillaria borealis 3177 ± 4514 5684 8887 3418 ± 5242 1989 1392 ± 1153 866 ± 1108 433 2125 ± 861

Fritillaria
haplostoma 1 ± 5 0 0 0 20 0 0 0 0

Fritillaria pellucida 2 ± 7 0 0 0 ± 2 0 0 0 0 20 ± 10

Fritillaria
antarctica 18 ± 62 81 0 45 ± 111 0 0 0 0 0

Fritillaria fraudax 405 ± 880 0 0 0 81 1490 ± 1561 623 ± 551 68 61 ± 86

Oikopleura
fusiformis 602 ± 1510 0 0 0 0 7 ± 14 821 ± 1180 284 4635 ± 1656

Oikopleura parva 1 ± 4 0 0 2 ± 0 0 3 ± 7 0 0 0

Oikopleura sp 212 ± 334 0 24 9 ± 42 183 330 ± 239 785 ± 501 122 41 ± 57

Oikopleura
gaussica 321 ± 484 0 11 0 508 641 ± 652 1011 ± 353 135 61 ± 48

Appendicularia 4779 ± 4310 5765 8911 3474 ± 5278 2274 3223 ± 2523 3095 ± 536 907 6882 ± 641

The biomass of Fritillaria borealis grew towards the northern region of the investigated
transect (in contrast to the abundance results), and the highest values were observed
north of the Polar Front zone (Figure 5). The two sampling stations at which the highest
biomasses of this species were recorded were in the SAZ (station 2333; 334.01 103 µg C m−3)
and within the SAF (station 2323; 259.60 103 µg C m−3). Another Fritillaria species, F. fraudax,
reached its highest biomass in the PFZ at 1.418.05 103 µg C m−3 (Figure 5). Its biomass then
decreased towards the north (Figure 5). The highest biomass of Oikopleura gaussica was
observed in the SAF zone at 12029.59 103 µg C m−3 (Figure 5). O. fusiformis was the species
with the highest biomass among the identified taxa (Table 3). The highest values were
observed in the northern part of the transect, such as the value of 2558.26 103 µg C m−3

recorded in the SAZ (station 2335), and smaller peaks were also noticeable in the SAF and
PFZ (Figure 5).
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Table 3. Mean biomasses (103 µg C m−3) of appendicularians in the 300–0 m water layer in the Drake
Passage in January 2010.

Species Biomass (103 µg C m−3)

Fritillaria borealis 73.79 ± 90.35

Fritillaria fraudax 96.85 ± 308.26

Oikopleura gaussica 101.69 ± 232.87

Oikopleura fusiformis 321.28 ± 677.54

3.3. Environmental Factors Influencing the Zonal Distribution of Appendicularia

The influences of environmental factors on the abundance and biomass of Appendic-
ularia in the Drake Passage were investigated based on the temperature (T), salinity (S),
and chlorophyll a (Chl a) concentration in the surface water layer. The results showed that,
among the tested factors, the surface water temperature (T) and salinity (S) were statistically
significantly (p < 0.05) correlated with the abundances and biomasses of appendicularians
(Table 4). Temperature was a very important factor influencing the distributions of Fritil-
laria antarctica, F. fraudax, Oikopleura fusiformis, and O. gaussica (Table 4). The chlorophyll a
concentrations were statistically significant only in the case of O. gaussica (Table 4). Based
on the obtained results, we were able to distinguish three types of species among the
investigated larvaceans: F. borealis, a cold-water species that occurred in all zones of the
passage and for which environmental factors were not statistically significant; F. fraudax
and O. gaussica, cold-water species that occurred between the PF and the SAF, were limited
by specific water masses and environmental conditions, and for which T, S, and Chl a were
statistically significant; and O. fusiformis, a warm-water species that occurred in the SAZ,
was limited by specific water masses and environmental conditions, and for which T and S
were statistically significant (Table 4, Figure 6).
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Table 4. The results of the 1- and 2-way PERMANOVA tests reported as pseudo-F values; significance levels are marked as follows: *** p < 0.001, ** p < 0.01, and * p < 0.05 (Ef –
environmental factors, Chl a—chorophyll a, T—temperature, S—salinity, Z—zone, App—Appendicularia, Fb—Fritillaria borealis, Ff—F. haplostoma, Fp—F. pellucida, Fa—F. antarctica, Ff—F.
fraudax, Of—Oikopleura fusiformis, Op—O. parva, Og—O. gaussica, and O—Oikopleura sp.).

Abundance (ind. 10−3 m3) Biomass (103 µg C m−3)

Ef Df
R App Fb Fh Fp Fa Ff Of Op Og O Fb Fa Of Og

Chl a 1
45 0.607 1.2827 0.4724 0.5911 0.0166 1.1251 1.3576 0.4371 3.5536 * 0.2951 2.3743 0.0193 2.4803 1.7626

T 17
29 2.0373 *** 1.1479 0.7985 2.0905 10.319 *** 8.5419 *** 6.8241 *** 0.7509 2.5872 *** 3.9824 *** −1.7976 × 1017 9.156 × 1017 *** 9.6813 × 1016 36.071 ***

S 1
45 5.6876 *** 0.6531 0.9379 0.0561 2.0514 2.7163 30.529 *** 0.1458 6.4235 *** 8.2766 *** 6.1528 ** 2.4086 39.397 *** 5.5897 **

T *
Chl_a

17
29 2.0373 *** 1.1479 0.7985 2.0905 10.319 *** 8.5419 *** 6.8241 *** 0.7509 2.5872 *** 3.9824 *** −1.7976 × 1017 9.156 × 1017 *** 9.6813 × 1016 36.071 ***

T * S 17
29 2.0373 *** 1.1479 0.7985 2.0905 10.319 *** 8.5419 *** 6.8241 *** 0.7509 2.5872 *** 3.9824 *** −1.7976 × 1017 9.156 × 1017 *** 9.6813 × 1016 36.071 ***

Z 1
45 9.9469 *** 1.8119 0.0213 2.6486 1.0618 26.043 *** 27.878 *** 0.0906 16.678 *** 30.08 *** 24.818 *** 1.2421 32.616 *** 25.034 ***
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4. Discussion

In January 2010, during the 2009–2010 expedition to the Drake Passage area, we found
eight species of larvaceans. During previous research conducted in the southern part of
the Bransfield Strait (Antarctic Peninsula region), some authors [52,53] only noted the
presence of unidentified appendicularians. On the western side of the Drake Passage,
Takahashi et al. [54] reported the presence of species from the genus Oikopleura, while
Capitanio et al. [15] identified Fritillaria borealis, O. fusiformis, and O. gaussica in the waters
of the Bellingshausen Sea and around South Georgia. The abundances of appendicularians
observed in the Drake Passage during our study were comparable to the results presented
by Jażdżewski et al. [52], but the abundances obtained herein were significantly higher
(even 100× higher) than those reported by Witek et al. [53]. It should be pointed out
that the zooplankton samples analyzed in the studies of Jażdżewski et al. [52] were col-
lected in February and March, and those analyzed by Witek et al. [53] were obtained in
December and January, while, in our study conducted in 2010, samples were collected at
the beginning of January. Presumably, in the case of the results of Witek et al. [53], the
Appendicularia population had not yet developed, while, during our studies, most of
the recorded individuals were relatively small and were supposedly at early stages of
ontogenesis. Jażdżewski et al. [52] explained that large abundances of rather small appen-
dicularians are typical for the water masses around the Bellingshausen Sea. During our
study, samples were taken from a similar region—south of the PF zone—and we noted a
distinct dominance of relatively small F. borealis individuals. In comparison to the northern
parts of the Drake Passage (along Argentina’s eastern coast), the abundance and biomass
observations obtained in this study were approximately 1000 times lower than the values
reported by, e.g., Capitanio et al. [45]. Most likely, the very high abundances observed by
Capitanio et al. [45] can be explained by the high abundances of O. dioica reported in their
study; this species was not found in the Drake Passage during our study.

4.1. Biogeographical Distribution of Appendicularia in the Drake Passage and the Main Zones
of Occurrence

During our study, Fritillaria borealis was observed within all investigated areas; how-
ever, the highest abundances were noted in the AZ area, while, in contrast, the biomass of
this species grew to the north. In our opinion, this result is mainly due to the reproductive
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process beginning earlier in the northern regions than in the southern regions and, hence,
larger specimens were recorded in the northern regions, resulting in higher biomass mea-
surements in these areas. In the Antarctic Zone area, many individuals were recorded, but
these individuals were at an early stage of development. In the Southern Ocean region,
F. borealis is a very common species and was previously noted by Aguirre et al. [19]. This
species occurred in all zones of the Drake Passage, from the Continental Antarctic Zone to
the South American Zone.

Based on our results, we were able to identify species with very narrow ranges of
occurrence. During our study, Fritillaria fraudax was noted only in the area between
the Polar Front and the Subantarctic Front zones, as was Oikopleura gaussica. However,
F. fraudax appeared to be a slightly “cooler” species compared to O. gaussica because the
former was recorded at its highest density and biomass slightly to the north of the Polar
Front zone, while the latter species was abundant near the Subantarctic Front zone. In the
case of F. fraudax, it was very difficult to compare our results with previously collected
data because this species has not been registered in this region in the past. According to
Esnal [1,4], this larvacean is a thermophilic and cosmopolite species; however, Aravena
and Palma [2], based on results obtained from the northern waters of Chile, suggested
that F. fraudax is a nearshore species with a preference for neritic waters, although they
pointed out that this species can also occur in oceanic waters. Through analysis of our
results, we can say that the presence of this species is rather limited to specific types of
water masses (with specific thermal conditions). O. gaussica is the name used for a group
of species: O. gaussica, O. valdiviae, O. drygalski, and O. weddelli [54]. This species was, for
example, recorded by Lindsay and Williams [55] in the southwest Indian Ocean sector of
East Antarctica, and the highest abundances obtained in their study were found north of
the Antarctic Circumpolar Current. During our study, the distribution of this species was
limited by the Polar Front and Subantarctic Front zones, and the area between these zones
was the main area of occurrence of this larvacean.

4.2. Environmental Factors Influencing the Zonal Distribution of Appendicullaria

Primary production is mainly driven by temperature and nutrient availability, and
these factors also impact appendicularian population dynamics [34,56]. During our study,
the main statistically significant environmental factor responsible for variabilities in Ap-
pendicularia was the water temperature, which was consistent with the observations of
Gorsky et al. [57], who recognized that temperature was the factor that most determined
the structure of these animals. Consistent with previous observations by other authors
e.g. [34,56], high abundances of Appendicularia should be observed in areas with very
high phytoplankton biomasses and chlorophyll a contents; however, during our study, it
was clear that the stations with the highest chlorophyll a concentrations did not correspond
with the highest larvacean abundances or biomasses. The frontal zones, the SF, PF, and SAF,
in the Drake Passage were the areas with the highest chlorophyll a concentrations, and very
high densities of other zooplanktonic organisms have also often been observed in these
regions by other authors e.g., [58–61]. One explanation for this phenomenon was provided
by López Urrutia et al. [62], who recorded that predation by copepods on appendicularian
eggs and juveniles can significantly limit their population growth rates. Hopcroft et al. [10]
pointed out that both the potential size spectrum of food and its efficiency of utilization
are influenced by the body size of appendicularians, and small species can obtain even
very small particles so they may avoid problems with resource limitations. Importantly,
we recorded that, in the case of appendicularians, all tested environmental factors were
significant when all larvaceans were analyzed as a group. The results of the analyses
that were performed separately for each species showed differences in the “sensitivity” of
individual species to the studied factor.

According to the opinion of Atkinson et al. [12], “appendicularians are inconsistently
reported in the Antarctic literature”, and this is probably the result of net selectivity (usually
krill or salps are the main subject of research), but the delicate body structure of these
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animals also makes them extremely difficult to study. The Southern Ocean and Antarctica
are warming [63], and the physicochemical characteristics of their waters make this region
particularly susceptible to ocean acidification [64]. According to Troedsson et al. [34], a
lower pH would favor appendicularian fitness, and lead to an increase in their ecological
importance. However, the increased ecological importance of these animals, along with
progressive climate changes, would be in line with the general trend of the increasing impor-
tance of jellyfish organisms (e.g., tunicates and cnidarians) in all marine environments [32],
including polar regions [65–69].

5. Conclusions

1. Fritillaria borealis was a widespread species in the Drake Passage; high abundances
were noted across all investigated areas, and we did not find any significant correlation
between its abundance and the tested environmental factors.

2. F. fraudax and Oikopleura gaussica were typical species in the area between the
Polar Front and Subantarctic Front zones, and their distributions and abundances were
significantly correlated with temperature and salinity.

3. F. fusiformis is a warm water species and its distribution was strictly related to South
American waters.

4. Temperature was the strongest environmental factor (not the concentration of
chlorophyll a) which influences the larvaceans community structure in the Drake Passage.

5. Testing environmental factors on larvaceans as a whole group cannot provide
entirely reliable results; by taking into account only this approach during the research
conducted in this study, all environmental factors were found to be significant.
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