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Abstract: The Mediterranean Sea harbors more than 17,000 eukaryotic marine species, with several
ecosystems recognized as biodiversity hotspots, such as Posidonia oceanica meadows. Recent research
indicates that benthic mats formed by the fleshy red alga Phyllophora crispa are also associated
with high species richness. Among key groups found in these mats are sessile polychaetes, which
live as epiphytes on the red algae thalli. Knowledge of abundance, species richness, and spatial
variation of polychaetes associated with these habitats is still scarce. We carried out a comparative
assessment focusing on serpulid polychaetes within samples from P. crispa mats and neighboring
P. oceanica meadows at six different sampling sites around Giglio Island (Tyrrhenian Sea, Italy). A
total of 17 serpulid taxa were identified. The abundance of serpulids (5665 individuals m−2 of
P. crispa mat) were similar to neighboring P. oceanica meadows (2304 individuals m−2 leaves and
5890 individuals m−2 shoots). The number of serpulid taxa was significantly higher in P. crispa
mats (average 6.63 ± 1.32 taxa) compared to P. oceanica beds (average 1.56 ± 0.63 and 1.84 ± 1.04
taxa in leaves and shoots, respectively). Within habitat type, there were no significant differences in
species richness between sites. The most abundant species found was Josephella marenzelleri (61% of
individuals), while Vermiliopsis spp. and Bathyvermilia sp. were exclusively found in P. crispa samples.
Our results highlight that P. crispa mats host an exceptional diversity and that these habitats should
be included in conservation strategies. Further research should focus on the significance of other
important taxonomic groups within these mats and evaluate the distribution of P. crispa in different
regions of the Mediterranean Sea.

Keywords: Phyllophora crispa; phytal habitat; hard-bottom communities; ecosystem engineer; Serpul-
idae; Mediterranean Sea; sessile epifauna

1. Introduction

With almost 17,000 described eukaryotic species [1], the Mediterranean Sea harbors
high levels of biological diversity accompanied by a high rate of endemism (estimated 20%)
accounting for the term “biodiversity hotspot” [1–3]. Its relatively small size compared to
the world’s oceans (less than 1%), in combination with this prevalent endemism, under-
lines the Mediterranean Sea’s ecological relevance [4]. In particular, many Mediterranean
biogenic habitats’ structural complexity (e.g., Posidonia oceanica seagrass meadows) facili-
tates their role as biodiversity hotspots by providing spawning grounds, nurseries, and
permanent settling space for many species [5–9]. Furthermore, this structural complexity
results in a wide range of ecological niches formed by temporal and spatial gradients (e.g.,
light and temperature). These gradients are often created by engineering or foundation
species [10] that modify their environment through their growth (e.g., macroalgae), while
others alter local conditions collectively (e.g., tropical corals). This habitat modification
often results in a shift of ecological zonation (e.g., seaweeds providing wet layers in tidal
zones) by mitigating stressors for inhabiting species [11]. Finally, associated mobile species
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often enhance the engineer’s growth by driving out competitors or protecting against
grazers [12,13].

Some of the most studied biodiversity hotspots in the Mediterranean basin include
Posidonia oceanica (L.) Delile, 1813 meadows (Figure 1C–E) and coralligenous habitats. The
marine angiosperm P. oceanica promotes high biodiversity and provides nursery grounds
for commercially important vertebrate species [14]. Furthermore, the structural complexity
of the meadow serves as a secondary substrate for diverse communities [15] of sessile
invertebrates (e.g., Serpulidae) [5]. Coralligenous habitats are bioconstructions primarily
built by encrusting red algae and secondarily by calcifying invertebrate species, which also
build a structurally complex habitat and provide biogenic substrate for a wide range of
epibiota [7].
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Figure 1. Top: P. crispa mat in full view (A) and close up including sessile polychaetes and other 
epifauna (B). Bottom: P. oceanica mat as seen from the water column (C) and close-ups of the leaves 
(D) and shoots (E), showing different sessile epifauna. Pictures: F. I. Rossbach. 
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environmental conditions [25–27]. Polychaete abundance and diversity are often used to 
assess benthic communities’ states and dynamics [28]. 

Serpulid polychaetes are sessile organisms that colonize various marine habitats, 
from the shallow infralittoral to abyssal depths [29] and contain great taxonomic diversity 
[30]. Key drivers for the abundance and diversity of sessile polychaetes are environmental 
gradients (e.g., light and depth), as well as suitable space for larval settlement [19,31]. 
They contribute a considerable amount of carbonate bioconstructions from tropical to bo-
real latitudes, and shape the seafloor by acting as secondary builders [32,33]. Their ability 
to precipitate carbonate emphasizes their pivotal role as bioengineering species [34]. In 
the Mediterranean Sea, serpulids have been relatively well-studied [35–38], and several 
species have been recognized as lessepsian migrants (i.e., immigrated species from the 
Red Sea) [30,39–41]. Furthermore, the habitats’ structural heterogeneity provided by the 
algae influences serpulid assemblages (i.e., by offering settling ground and accumulating 
food particles), as demonstrated by Casoli et al. (2016) [19]. Therefore, the study of serpu-
lids distribution as proxy groups for the occurrence of spatial microhabitats [42,43] is piv-
otal to understanding the biological diversity hosted in poorly investigated habitats, such 
as P. crispa mats. However, the distribution and role of serpulid worms in Mediterranean 
P. crispa mats are still not well understood. With this work, we aim to answer the following 
research questions: 

Figure 1. Top: P. crispa mat in full view (A) and close up including sessile polychaetes and other
epifauna (B). Bottom: P. oceanica mat as seen from the water column (C) and close-ups of the leaves
(D) and shoots (E), showing different sessile epifauna. Pictures: F. I. Rossbach.

An additional potential and relatively unexplored biodiversity hotspot is the habi-
tat created by mat-forming, fleshy red alga Phyllophora crispa (Hudson) P.S.Dixon, 1964
(Figure 1A,B) [16,17]. In the Black Sea, P. crispa mats harbor a rich community of associated
fauna, including a diverse invertebrate epifauna [17]. The documented importance of these
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habitats led to the establishment of a marine reserve [18]. Marine polychaetes are one of
the main groups of associated invertebrate epifauna of these mats [19].

P. crispa mats colonize light-exposed rock surfaces all around Giglio Island. Together
with P. oceanica meadows and coralligenous reefs, it represents one of the most abundant
biogenic habitats in this area. Hemisciaphilic assemblages dominated by P. crispa were
reported in the Tyrrhenian Sea, both along Giglio Island [16,17] and the North-East coast
of Sardinia [20,21]. While differences in diversity and abundance of associated epifauna
between P. oceanica meadows and other sciaphilic (adapted to low light conditions) hard-
bottom communities have been reported [22,23], only a few studies describe the associated
biodiversity of P. crispa mats.

Polychaetes are among the most diverse metazoan groups, with an estimated number
of 2481 species in the Mediterranean Sea, accounting for 20.5% of the 12,088 species
reported globally [24]. They show a wide functional variety and adaptation to different
environmental conditions [25–27]. Polychaete abundance and diversity are often used to
assess benthic communities’ states and dynamics [28].

Serpulid polychaetes are sessile organisms that colonize various marine habitats, from
the shallow infralittoral to abyssal depths [29] and contain great taxonomic diversity [30].
Key drivers for the abundance and diversity of sessile polychaetes are environmental
gradients (e.g., light and depth), as well as suitable space for larval settlement [19,31]. They
contribute a considerable amount of carbonate bioconstructions from tropical to boreal
latitudes, and shape the seafloor by acting as secondary builders [32,33]. Their ability
to precipitate carbonate emphasizes their pivotal role as bioengineering species [34]. In
the Mediterranean Sea, serpulids have been relatively well-studied [35–38], and several
species have been recognized as lessepsian migrants (i.e., immigrated species from the Red
Sea) [30,39–41]. Furthermore, the habitats’ structural heterogeneity provided by the algae
influences serpulid assemblages (i.e., by offering settling ground and accumulating food
particles), as demonstrated by Casoli et al. (2016) [19]. Therefore, the study of serpulids
distribution as proxy groups for the occurrence of spatial microhabitats [42,43] is pivotal
to understanding the biological diversity hosted in poorly investigated habitats, such as
P. crispa mats. However, the distribution and role of serpulid worms in Mediterranean P.
crispa mats are still not well understood. With this work, we aim to answer the following
research questions:

(1) What are the abundance and species richness of serpulid polychaetes in P. crispa mats
compared to P. oceanica meadows?

(2) Which species are found in both habitats and which species are unique to P. crispa mats?
(3) What is the spatial variability of serpulid polychaetes associated with red algae mats?

2. Materials and Methods
2.1. Study Area and Sampling Activities

The study was carried out at five sites distributed along the North-eastern and North-
western coasts of Giglio Island, in the Tuscan Archipelago National Park (42◦21′19.4′′ N
10◦54′06.1′′ E, Tyrrhenian Sea) (Figure 2). The islands’ underwater seabeds are characterized
by granite slopes, alternating with sand bottoms, where P. oceanica meadows, P. crispa mats
and coralligenous habitats colonize infralittoral seabeds. All samples were collected by
SCUBA divers at a water depth of 30 m. Samplings were carried out at three sites with P.
crispa mats (Site PC1, PC2 and PC3), one with only P. oceanica meadows (Site PO), and one
site (Site mix) with both habitats being present (Figure 2).

Temporally randomized sampling took place during late spring, between May and
July 2019. For sampling P. crispa mats, a standardized maximum mat thickness of 5 cm
was defined. After randomly defining a sampling spot in the target area, a metal frame
(size 30 × 30 cm) was placed in the mat and all algal thalli within, including the holdfasts,
were carefully removed using a spatula. Sampled material was then placed into 1 L Kautex
jars (each holding approx. 1/3 algae, 2/3 seawater). Every site was sampled four times,
resulting in a total of 16 replicate samples for this habitat.
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Figure 2. Location of Giglio Island in the northern part of the Tyrrhenian Sea and sampling sites, for P. crispa mats (red), P.
oceanica meadows (green) and sites where both habitats were sampled (yellow).

In total, 19 P. oceanica shoots and 17 leaves (site PO: 10 shoots and 9 leaves; site mix:
9 shoots and 8 leaves) were sampled separately into 1 L Kautex jars. The leaves were
cut at the sheath of the shoot and shoots were cut at the rhizome node. Samples were
immediately transferred into seawater holding tanks at the Institute for Marine Biology
(IfMB, Campese, Italy) and kept at a constant temperature of 18 ◦C. Shoots and leaves
were treated as separate subhabitats taking into account their different ecological traits,
particularly regarding their longevity as a fundamental trait for serpulid settlement [44,45].
With this approach, we followed recent studies on P. oceanica epifauna [46–48]. The number
of samples at each of the sites represents the whole epiphytic community, as demonstrated
by previous studies on epiphytic communities associated with P. oceanica meadows that
used 15 shoots as a significative sampling effort [49,50]. We used this number as a minimum
goal for our sampling efforts. Sample completeness was confirmed using the approach of
Chao et al. (2016) (Appendix A Figure A1).

In addition, we counted the number of P. oceanica shoots per m2 (total n = 74 quadrats;
using a plastic tube frame of 40 × 40 cm) and leaves per shoot (total n = 32 shoots) in the
sampling area.

2.2. Species Identification

For the analysis of P. crispa associated serpulid polychaetes, a subsample of approx-
imately 10 g wet weight was taken from the main sample. All replicated samples were
processed within three days after collection. Algal thalli were transferred into small bowls
and cut into single phylloids for analysis under a stereomicroscope (maximum 40×mag-
nification). Following the analysis, the wet weights of the main and subsamples were
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measured after removing adherent water. The P. oceanica shoots were analyzed as a whole
under a stereo microscope, while leaves were cut into pieces of approximately 8 cm for
easier handling and to avoid double counting.

All specimens were identified using relevant literature (Appendix A Table A1) and
crosschecking with online resources (WORMS; marinespecies.org, accessed on 31 July
2019). The number of individuals per species were also recorded for quantitative analysis.
Counting and sample processing were standardized, and every observer was trained to a
high level of taxonomic proficiency prior to processing the samples.

The data were then correlated to the surface area, as individuals per m2 surface of
P. crispa and P. oceanica. Thalli of P. crispa were placed in a bowl of water on a laminated
graph paper sheet and flattened with a glass pane. Pictures were taken from a 90◦ angle
using a Canon G12 camera and a tripod stand to ensure a constant distance and angle to
the sample. The surface area was then calculated from the picture with ImageJ (version
1.52o, https://imagej.nih.gov/ij/, accessed on 23 April 2019) and multiplied by two to
account for both sides of the thalli. The measured surface area was then extrapolated to
the main sample, using the wet weight measured after the analysis. This relation allowed
for the extrapolation of the density of serpulids to the surface area of underlying rock
(Appendix A Formula (A1)). For P. oceanica shoots, we assumed a cylindrical shape and
calculated the surface area using diameter and length. For P. oceanica leaves, we assumed
a rectangular shape, calculating its surface area with length and width multiplied by
two to account for both sides of the leaf. The total surface area of P. oceanica substrate
was then extrapolated using the field observations of leaves per shoot and shoots per m2

(Appendix A Formulas (A2) and (A3)), to assess the number of serpulids per m2 of seafloor.

2.3. Diversity Descriptors

Diversity was assessed using four descriptors: total numbers of serpulid taxa per
site and habitat, total abundances of individuals per m2 of substrate, Shannon diversity
index [51] and Pielou evenness index [52]. The descriptors were calculated as means per
site and then reported with the respective standard error.

2.4. Statistical Analysis

Pairwise Wilcoxon–Mann–Whitney tests were carried out to assess differences in
diversity descriptors among sites and habitats (Appendix A, Table A2). Differences in the
composition of serpulid assemblages among sites and habitats were tested through multi-
variate permutational analysis of variance (PERMANOVA [53]). The northern sites’ data
were pooled to compare among habitats and further analyze differences among P. crispa
sites (Table 1). Pairwise comparisons were conducted using Tukey’s honestly significant
difference (HSD) test. Data was not transformed to stress the importance of the abundance
of taxa in determining the differences among habitats. The Serpulid assemblages were
hierarchically clustered with Spearman ranked correlation (average linkage) using the
software ’heatmapper’ [54] to reveal differences in the species composition among sites
and visually highlight variances in the serpulid assemblages among habitats. Analyses
and plots were made with R (version 3.5.3) [55].

https://imagej.nih.gov/ij/
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Table 1. Results of permutational multivariate analysis of variance (PERMANOVA) of Serpulid
assemblages among P. oceanica subhabitats (shoots and leaves), and pairwise comparison of all
habitats on the northern sites (site PC1, PC2, PO and mix). Significant results are indicated in bold.

Serpulid Assemblages on P. oceanica Subhabitats

Source Df SS R2 F p

Habitat 1 6.1885 0.5350 50.946 0.001
Site 1 0.2829 0.0267 2.329 0.094

Habitat:Site 1 0.2474 0.2333 2.037 0.117
Residuals 32 3.8871 0.3665

Total 35 10.6059 1.0000
Pairwise Comparison (All Habitats, N Sites)

Pairs p p adj

P. crispa mat P. oceanica leaf 0.001 0.003
P. crispa mat P. oceanica shoot 0.001 0.003

P. oceanica leaf P. oceanica shoot 0.001 0.003

3. Results
3.1. Diversity Descriptors

A total of 2403 Serpulidae specimens belonging to 17 taxa were collected. Overall
abundances of individuals m−2 and numbers of taxa were significantly higher in P. crispa
mats than in P. oceanica shoot and leaf samples (Figure 3).

The density of individuals was highest in P. oceanica shoots at site mix (average
8197 ± 1549 individuals m−2) and lowest in P. oceanica leaves at site PO (average 1714 indi-
viduals m−2). The comparison with P. oceanica leaves showed significantly higher densities
for P. crispa mats (p < 0.001). The shoots of P. oceanica hosted a similar number of indi-
viduals (average 5890 ± 815 individuals m−2) compared to P. crispa samples (average
5664 ± 622 individuals m−2) (Figure 3A). The calculated numbers of serpulids per m2

seafloor showed a similar trend of highest values for P. crispa and P. oceanica shoots (av-
erage 1,239,728 ± 784,455 and 864,444 ± 1,081,419, respectively), and a lower density for
P. oceanica leaves (average 238,567 ± 179,055). The combined averages of both P. oceanica
subhabitats add up to 1,103,011 ± 1,096,142 individuals per m2 seafloor.

All of the 17 identified taxa were found in P. crispa samples and only 10 taxa were
found in P. oceanica samples. The highest number of P. crispa associated taxa were found in
the samples from Site PC2 (average 8 ± 1 taxa) and the lowest in samples from site mix
(average 6 ± 0 taxa) and site PC3 (average 6 ± 2 taxa). In comparison, P. oceanica samples
harbored 2 ± 1 different taxa on the leaves and shoots, respectively (Figure 3B).

Shannon diversity index was higher in P. crispa mats (average 1.1 ± 0.09) compared to
P. oceanica habitats (average leaves: 0.2 ± 0.06; average shoots: 0.2 ± 0.07; Figure 3C). Site
PC3 showed a significantly lower diversity compared to other P. crispa samples (p < 0.05).

Pielou evenness index was highest in P. crispa samples (average 0.6 ± 0.05) compared
to P. oceanica habitats (average leaves: 0.4± 0.09; average shoots: 0.4± 0.04; Figure 3D). Site
PC3 showed a significantly lower evenness compared to other P. crispa samples (p < 0.05).
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3.2. Analysis of Serpulid Assemblages

The multivariate analyses (PERMANOVA) showed significant differences among the
two P. oceanica habitats without an effect of the site (Table 1). The analysis of P. crispa sites
showed a significant difference among sites; however, the pairwise comparison did not
confirm this result (Table 2). We further analyzed differences among the habitats for the
northern sites only, avoiding potential effects of the location around the island. The cluster
analysis confirms these results and shows differences in the species composition of the
different habitats (Figure 4). The dendrogram of Spearman rank correlation across sites
and habitats shows clustering according to habitat, with a lower coefficient for P. crispa and
P. oceanica shoots (r < 0.6) than P. oceanica leaves compared to P. oceanica shoots and P. crispa
mat (r > 0.8).
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Table 2. Results of permutational multivariate analysis of variance (PERMANOVA) and pairwise
comparison of Serpulid assemblages among P. crispa sites. Significant results are indicated in bold.

Serpulid Assemblages on P. crispa Mats

Source Df SS R2 F p

Site 3 0.9182 0.4066 2.7407 0.012
Residual 12 1.3401 0.5934

Total 15 2.2583 1.0000
Pairwise Comparison (P. crispa Sites)

Pairs p p adj.

Mix PC1 0.444 1.000
Mix PC2 0.032 0.192
Mix PC3 0.033 0.198
PC1 PC2 0.351 1.000
PC1 PC3 0.104 0.624
PC2 PC3 0.062 0.372
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Figure 4. Hierarchical clustering (average linkage, Spearman ranked correlation) of taxa abundances among sites (individu-
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The most frequent species found in all samples of P. crispa mats was Josephella maren-
zelleri. This species was also largely present on P. oceanica shoots, however, it was not found
on P. oceanica leaves. In contrast, the most abundant species on the leaves was Janua sp.,
which also occurred in 13 P. crispa replicates and on 7 investigated P. oceanica shoots. In
addition, J. marenzelleri was also the most abundant species in terms of individuals found
m−2 of P. crispa and P. oceanica shoots, while Janua sp. showed the highest density on P.
oceanica leaves. Out of the 17 species, two were exclusively found on P. crispa samples:
Bathymermilia sp. and Vermiliopsis labiata (Figure 4). The species Pileolaria militaris showed
similar abundances in P. crispa and P. oceanica samples.
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4. Discussion

This study highlights the high diversity and density of serpulid polychaetes for all
investigated habitats. The total number of species found associated with P. crispa mats
(17 species) was consistent with previous studies from other areas in the Mediterranean
Sea [37,56], including the results of Casoli et al. (2016), which investigated P. crispa mats
along a water depth gradient and found 16 species (Table 3) [19]. Here, we focused
on the water depth range with the highest P. crispa mat development and identified
potential differences among sites. Species richness and abundance were high across all
sites; however, the southernmost site (Site PC3) showed a lower diversity and evenness
than the northern sites.

Table 3. Serpulidae species found in the samples compared to other habitats, x indicates presence; Data from (1) Casoli et al.
(2016) [19] and (2) this study (grey columns).

Species Shallow
Infralittoral (1) P. crispa Mat (1),(2) Coralligènous

Habitat (2)
P. oceanica
Meadow (2)

Bathyvermilia sp. x
Filograna implexa (Berkeley) x x
Hydroides spp. (Gunnerus) x x x x x

Janita fimbriata (Delle Chiaje) x
Janua sp. x x x x

Josephella marenzelleri (Caullery and Mesnil) x x x x x
Metavermilia multicristata (Philippi) x

Pileolaria spp. x x x x x
Protula sp. (Risso) x

Semivermilia crenata (O. G. Costa) x x
Semivermilia cribrata (O. G. Costa) x

Serpula spp. x x x x x
Serpula vermicularis (Linnaeus) x x

Spiraserpula massiliensis (Zibrowius) x
Spirobranchus spp. x x x x x

Spirorbis spp. x x x
Vermiliopsis spp. x x x

The extrapolated abundances per m2 seafloor were comparable between P. crispa
(average 1,239,728± 784,455) and P. oceanica, (1,103,011± 1,096,142) with the shoots mainly
contributing to these numbers. However, the calculations likely cause some bias due to the
extrapolation based on average values, as indicated by the large standard deviations.

Comparing P. crispa mats and neighboring P. oceanica meadows revealed significant
differences in serpulid assemblage composition. By modifying the substratum through
the creation of spatial microhabitats and influencing feeding habits, seagrass beds and
algae mats appear to favor the establishment of different polychaete assemblages [43,57,58].
Habitat formation and the substantial improvement of food source accessibility are pivotal
ecological drivers that influence the epiphytic serpulid assemblages’ diversity and struc-
ture. Overall abundance, species richness, diversity and evenness were significantly lower
in most P. oceanica samples compared to P. crispa. Exceptions are P. oceanica shoots, where
similar densities of individuals were found compared to P. crispa mats. The species com-
position was also similar, with the same dominant species (J. marenzelleri), which resulted
in a shared cluster disparate from the P. oceanica leaf samples (Figure 4). This clustering
could be related to the two habitats’ semi-hemisciaphilious conditions, which leads to
reduced competition with algal epiphytes and influences rhizome communities [31]. Lower
light conditions inside P. crispa mats and P. oceanica shoots are also reflected by the lower
numbers of the photophilic Spirorbinae (e.g., Janua sp.) [59], mostly found on the leaves
of P. oceanica. The perennial P. crispa thalli provide an extension of colonizable surfaces
that are less flexible and long-lived compared to P. oceanica leaves. Constant motion and a
one-year life cycle favor species with well-developed strategies to cope with stresses on P.
oceanica leaves, such as Spirorbidae (Janua sp.). These are recognized as pioneer species,
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characterized by fast and cinsistent recruitment on smaller surfaces [60,61]. Thus, dense
red algae mats composed of both prostrate and erect thalli (heterotrichous species) [17]
constitute a sheltered and long-lived habitat rather than oscillating structures of shallow
algae or P. oceanica leaves.

In comparison to previous reports of neighboring (i.e., coralligenous reefs) habitats, we
see that J. marenzelleri is a ubiquitous species that is found from the shallow infralittoral to
deeper coralligenous habitats (Table 3). This species is known to be a pioneer species with
the ability to colonize available settling grounds quickly and efficiently [36]. Furthermore,
J. marenzelleri, with its articulate tube, is particularly adapted to colonize rigid algal thalli
as epiphytes, being found both on Cystoseira spp. canopy and encrusting red algae [59,62].
Other widely distributed taxa characterized the serpulid assemblage on P. crispa samples.
However, the presence of species with dark or deep-habitat affinity (Bathyvermilia sp. and
V. infundibulum) confirmed the hemisciaphilic conditions provided within the algal mat.

In contrast, serpulids with a larger and more erect growth form are only found in
coralligenous habitats (e.g., Protula sp., Table 3). These slow-growing species are sensitive
to water movement and prefer hard settling grounds over flexible algae and plants [59].
However, the overall high abundance of serpulids on P. crispa thalli supports their rigid
structure and long-term stability as key characteristics for the establishment of these species.
The laminal thalli of P. crispa represent a living substratum suitable for the colonization
of sessile solitary species, increasing the surface available for settlement. Sedimentation
processes on horizontal and gently sloped sea beds, where P. crispa is abundant, can help
understand the patterns described in this study [17]. Serpulidae comprise exclusively
filter-feeding species that can benefit from organic and inorganic particle sedimentation as
trophic sources.

Communities of the brown algae Cystoseira sp. in the Ionian Sea host a notably higher
diversity of serpulids (Shannon of 2.4) than we found in P. crispa mats (average Shannon
of 1.1) [59]. This shows dominance of a few species in the P. crispa mats, as also seen in
the abundance values. Interestingly, the abundances exhibit a trend of higher numbers
on the southern site (PC3) while diversity and evenness are significantly lower (Figure 3).
This variation could reflect the serpulid assemblage’s heterogeneity over a larger spatial
scale due to the physical exposure of different P. crispa mats. While the diversity was still
considerably high in both areas, it also points out that the western Peninsula (Figure 2)
separates the southern P. crispa mats from the northern patches. This effect could be
driven by the rather exposed situation of PC3 to the prevalent southern currents, while the
northern sites are situated on the leeward side of the island [63]. Thus, this situation could
also impact larval as well as food particle supply.

We conclude that P. crispa mats harbor a rich serpulid assemblage, comparable to
or even exceeding other neighboring biodiversity hotspots (i.e., P. oceanica meadows).
Furthermore, we found two species that were unique to this habitat in our study. This
high diversity underlines the vital function of P. crispa as a habitat-forming species and
host for exceptional biodiversity. Therefore, we recommend evaluating this habitat for
future conservation actions to prevent habitat and biodiversity loss. Future research should
also address the role of other taxonomic groups associated with the P. crispa mats and
assess differences in the composition of infauna communities on a regional scale to confirm
its role as an essential benthic habitat in the (western) Mediterranean Sea. Our results
revealed potential regional differences in the P. crispa associated fauna that need to be
further addressed by sampling other areas along the Mediterranean coast. This information
is crucial to explore how connected or isolated the different patches of P. crispa mats are in
terms of exchange of biodiversity and larval settlement. Potential drivers of connectivity
for serpulid communities are prevalent water currents [33] as indicated by the differences
between the northern sites and the rather exposed southern site [64].
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Table A1. Literature used for identification of species.

Author(s) Year Title

Riedl, R. 2011 Fauna und Flora des Mittelmeeres

Stresemann, E. 1992 Wirbellose

Hayward, P.J. and Ryland, J.S. 1999 Handbook of the Marine Fauna of North-West Europe

Bianchi et al. 1981 Guide per il riconoscimento delle specie animali delle acque lagunari
e costiere italiane

Ten Hove et al. 2009 Taxonomy of Serpulidae (Annelida, Polychaeta): the state of affairs

Zibrowius H. 1968 Etude morphologique, systématique et écologique des Serpulidae
(Annelida Polychaeta) de la région de Marseille

Zibrowius H. 1972
Mise au point sur les especes mediterraneennes de Serpulidae

(Annelida Polychaeta) déecrites par Stefano delle Chiaje (1822–1829,
1841–1844) et Oronzio Gabriele Costa (1861)

Table A2. Results of univariate tests (Wilcoxon–Mann–Whitney) among P. crispa sites (ns = p > 0.05;
* = 0.01 < p < 0.05).

Group 1 Group 2 p-Value p-Signif

Density

Site Mix Site PC1 0.34 ns
Site Mix Site PC2 0.34 ns
Site Mix Site PC3 0.69 ns
Site PC1 Site PC2 0.69 ns
Site PC1 Site PC3 0.34 ns
Site PC2 Site PC3 0.20 ns

No of taxa

Site Mix Site PC1 0.278 ns
Site Mix Site PC2 0.069 ns
Site Mix Site PC3 1.000 ns
Site PC1 Site PC2 0.766 ns
Site PC1 Site PC3 0.454 ns
Site PC2 Site PC3 0.306 ns

Shannon index

Site Mix Site PC1 0.486 ns
Site Mix Site PC2 0.686 ns
Site Mix Site PC3 0.029 *
Site PC1 Site PC2 0.200 ns
Site PC1 Site PC3 0.029 *
Site PC2 Site PC3 0.029 *

Pielou index

Site Mix Site PC1 0.057 ns
Site Mix Site PC2 0.886 ns
Site Mix Site PC3 0.029 *
Site PC1 Site PC2 0.200 ns
Site PC1 Site PC3 0.029 *
Site PC2 Site PC3 0.029 *

Formula (A1): Calculation of serpulid individuals on P. crispa per m2 seafloor (IndSF)
from individuals per m2 substrate (IndSS), using wet weights (WW) and surface area of the
sub sample (SASS) (0.09 m2 corresponds to the size of the sampling frame:

IndSF =

WWMS×SASS
WWSS

SASS
∗ IndSS ∗

1 m2

0.09 m2 (A1)

Formula (A2): Calculation of serpulid individuals on P. oceanica leaves per m2 seafloor
using the average leaf surface area (SAleafAVG), average number of leaves per m2 (162),
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surface area of investigated leaf sample (SA leafSS) and individual count per m2 sub-
strate (IndSS):

IndSF =
162× SAlea f AVG

SAlea f SS
∗ IndSS (A2)

Formula (A3): Calculation of serpulid individuals on P. oceanica shoots per m2 seafloor
using the shoot surface area (SAshootSS), average number of shoots per m2 (40.5) and
individual count per m2 substrate (IndSS):

IndSF =
40.5× SAshootSS

SAshootSS
∗ IndSS (A3)
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