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Abstract: The bone microstructure of extinct animals provides a host of information about their
biology. Although the giant flightless dromornithid, Genyornis newtoni, is reasonably well known
from the Pleistocene of Australia (until its extinction about 50-40 Ka), aside from various aspects of
its skeletal anatomy and taxonomy, not much is known about its biology. The current study inves-
tigated the histology of fifteen long bones of Genyornis (tibiotarsi, tarsometatarsi and femora) to
deduce information about its growth dynamics and life history. Thin sections of the bones were
prepared using standard methods, and the histology of the bones was studied under normal and
polarised light microscopy. Our histological analyses showed that Genyornis took more than a single
year to reach sexual maturity, and that it continued to deposit bone within the OCL for several years
thereafter until skeletal maturity was attained. Thus, sexual maturity and skeletal maturity were
asynchronous, with the former preceding the latter. Our results further indicated that Genyornis
responded to prevailing environmental conditions, which suggests that it retained a plesiomorphic,
flexible growth strategy. Additionally, our analyses of the three long bones showed that the tibio-
tarsus preserved the best record of growth for Genyornis.

Keywords: Australia; Pleistocene fossil bird; dromornithid; Genyornis; bone histology;
osteohistology

1. Introduction

It is well recognised that, during life, the bones of vertebrates are living tissues that
record various aspects of their life history and biology, e.g., [1-3]. A host of studies have
shown that even after millions of years of fossilisation, the bone microstructure is often
well preserved, e.g., [1,2,4-6]. Thus, by studying the bone histology of extinct vertebrates,
various inferences into their biology can be made.

Genyornis newtoni was a giant flightless galloansere bird that belonged to the Drom-
ornithidae [7,8]. The dromornithids first appeared in the fossil record in the Eocene and
reached the height of their diversity in the middle Miocene. By the late Oligocene, the
dromornithids had already attained a large size and were flightless with reduced wings,
a morphology they retained for the next 25 ma [7]. However, by the Pleistocene, Genyornis
newtoni [9,10] was the only surviving member of the family.

Genyornis newtoni was widespread, though usually rare, in south eastern Australia in
the mid-to-late Pleistocene and remains the only species of dromornithid for which indi-
vidual skeletal assemblages are known. Genyornis went extinct in the late Pleistocene
along with many other megafaunal animals about 50-40 Ka [7,11]. Aside from some gen-
eral reconstructions of Genyornis as a medium-sized dromornithid (180-250 kg) that stood
about 2-2.5 m tall, little is known about its biology. However, the well-defined bimodality
in skeletal measurements is attributed to marked sexual dimorphism [12], where the
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males are assumed to be the larger sex, as was demonstrated for its larger relative Drom-
ornis stirtoni for which medullary tissue was found in examples of the smaller morph [13].
Here, we investigated its bone histology to deduce various aspects of its biology, particu-
larly to infer how their growth dynamics allowed them to reach their large body size.

Modern birds generally, grow to adult body size within a single year [14,15]. Even
large modern birds such as Sagittarius serpentarius, the secretary bird [16,17], and the larg-
est modern bird, Struthio camelus, the ostrich [16,17], reach adult body size within a single
year. Thus, the bones of modern birds generally have uninterrupted growth until an adult
body size is reached, which is usually coincident with the attainment of sexual maturity
[4]. However, once their growth rate slows down (usually upon or close to sexual ma-
turity), their rate of bone deposition (osteogenesis) slows down, and a different type of
bone tissue develops in their compacta. This outer band of tissue, called the outer circum-
ferential layer (OCL) [18], often shows lines of arrested growth (LAGs) therein, indicating
that these birds experience periodic arrests in growth as they slowly accrete bone for a
few more years until skeletal maturity is reached. Although most modern birds grow like
this, there are exceptions to such rapid growth rates among birds. This is particularly the
case among insular birds such as the Apterygiformes (kiwi) [19], the Dinornithiformes
(moa) [20] and the Aepyornithidae (elephant birds) from Madagascar [5]. Among the ae-
pyornithids, Vorombe titan is largest, and like the large moa (Emeidae and Dinornithidae)
[20], it takes several years to reach adult body size. It has been suggested that these birds
grow much slower than other birds, because they are island birds without the pressure of
mammalian predators [15]. Long-lived birds possibly also experience slower growth
rates, but this needs to be verified —a single bone of a parrot (Amazona amazonica) had a
growth mark therein [21], but there are no details of the approximate age of the individual.

The aim of our study was to assess the histology of Genyornis to decipher information
pertaining to their growth dynamics and life history. As different bones would be studied,
we also assessed the histovariability of the long bones studied, and we ascertained which
elements were more reliable for growth assessment.

2. Materials

The Genyornis bones we studied were recovered from late Pleistocene lacustrine de-
posits at Lake Callabonna (48-45,000 years ago) and from mid-to-late Pleistocene fluvial
deposits along Cooper Creek and Billeroo Creek [22] Figure 1. These deposits are assumed
to have sampled palaeoenvironments of arid grassland/shrubland with some trees along
watercourses, although current palaeoenvironmental studies are underway and should
shed more light on the palaeoecology of these sites.

1)

A

Figure 1. Sites in South Australia (inset) where the sampled bones of Genyornis were collected. (A)
Lake Frome area (L.F.) and (B) Lake Eyre area (L.E.). 1, Lake Callabonna; 2, Billeroo Creek sites; 3,
Cooper Creek sites (Malkuni Waterhole and Site 73).
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Fifteen specimens of Genyornis were studied: eight tibiotarsi, three tarsometatarsi and
four femora. As far as possible, standard measurements were taken of the limb bones
studied, and the least shaft circumference of the tibiotarsus was measured in all specimens
where it was preserved. The latter ranged from 134 to 146 mm (Table 1). For specimen
SAM P.53833, we were able to sample different bones of the skeleton: a femur and tibio-
tarsus. All the other successfully sampled bones were from different individuals. In some
specimens, parts of the shaft were opportunistically sampled (through natural breakages,
etc.), but the majority of the specimens were core-sampled in the midshaft region to obtain
the best possible track record of growth (see details in Table 1) [1].

Table 1. Details of the Genyornis specimens sampled. All sites are in South Australia. Unsampled elements of individuals
are listed for their ability to reveal the size of the individual. Shading is used to show associated bones of individuals.

Catalogue No.  Locality Field ID Element Histology Comment Sex
Sample
SAM P25017 Cooper Creek ].letal left v distal width, 85 mfn; minimum shaft c1rcumfer<?nce, 140 Female?
tibiotarsus mm; sampled section of shaft 1/3 length from distal end.
Distal right distal width haft infl. 1 tion; -
SAMP.53826 Callabonna  Geny 1A .1s. al rig y istal width, 88. mm, shaft inflated by salt degradation; sam Female?
tibiotarsus pled caudal facies.
SAM P.53826 Callabonna Ceny 1A Right max Pr0x1mal width, 105 mm; min shaft width, 45 mm; dis-
tarsometatarsus tal width, 99 mm
Right Length trochlea III-cotyla lateralis, 358 mm; min shaft diam-
SAM P.53831 Callabonna Geny 9A & y eter, 50 mm; distal width, 110 mm; sampled medioplantar Male
tarsometatarsus .
facies.
SAMP.53832 Callabonna Geny 9B Left y min .shaft d1amet4er, 44 mm; distal width, 95 mm; sampled Female
tarsometatarsus medioplantar facies.
SAM P53833 Callabonna Geny 10 s e . mldsha.ft diameter, 76 mm; max distal width, 154 mm, sam-
pled mid-caudal facies
- - - h -
SAM P.53833 Callabonna Geny 10  Left tibiotarsus y d.IStal VG, G v (il e 61.0 iy .mlmn?um el Female?
circumference, 144 mm; sampled mid-medial facies
Right length, 347 mm; TL2, 355 mm, distal width medial-lateral,
SeLEREEED) (Al e Gy i tarsometatarsus 102; min shaft width, 39 mm; max distal width, 92 mm
SAM P.54333 Cooper Creek  Geny C Dls tal left y distal width, 91 mm; sampled anterolateral facies Female?
tibiotarsus
k  Distal left distal width, 92 ; mini haft ci f +14
SAM P.54334 Cooper Cl_eekCooper Cree! . 1§ al le 7 istal width, 9. an, m1.r11mum shaft circumference, +140 Female?
73-B tibiotarsus mm; sampled section midshaft
FU2750 Callabonna CB2018-98 part left y min shaft diameter, 38 mm; sampled medial facies Female?
tarsometatarsus
CB2018-75 . . . . .
FU2755 Callabonna Ind 1 Right femur y shaft width, 87 mm; small indiv; sampled mid-caudal facies
FU2755 Callabonna CB2018-75 Right tibiotar- 7 distal w1dt}.1, 8? mm; mlmmux'n shaft grcun.\ference, 144 Female?
Ind 1 sus mm; small indiv; 2 samples distomedial facies.
FU2755 Callabonna CB2018-75 Left dl.stal width, 90 mm; rr.un 'Shaft width, 40 mm; max proximal
Ind 1 tarsometatarsus width, 102 mm; small indiv.
Crushed left
B2018-7
FU2756 Callabonna CB2018-75 and right fem-
Ind 2
ora
FU2756 Callabonna CB2018-75 Right tibiotar- y d.1stf:11 ledth, 96 mm; Tmmmum sbaft Clr.cumference 146 mm; boundary-
Ind 2 sus big indiv; sampled midshaft medial facies male/female?
FU2756 Callabonna CB2018-75 Left min sl'Taft dlalmeter, 46 mm; max proximal width, 109 mm;
Ind 2 tarsometatarsus max distal width, £105 mm
CB2018-75 . . . . .
FU2760 Callabonna Ind 3 Right femur y midshaft width, ~66 mm; sampled mid-caudal facies Male
Billeroo midshaft width, 70 mm; surface texture is porous; crista tro- Lo
5
Fu2758 Creek NA Left femur Y chanteris is not fully formed; sampled mid-caudal facies. young indiv?
Bill Distal lef
FU2759 1ieroo NA R I,S tal left y Sampled medial facies Small-female?
Creek tibiotarsus

The sampled bones were embedded in resin and were thin-sectioned according to
standard petrographic methods [23]. They were then sectioned along the midline, result-
ing in two blocks labelled as A and B (which permitted the investigation of the histology
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closest to the neutral region, i.e., the area least affected by remodelling changes [1]). Four
thin sections were prepared from these blocks (Al, All; BI, BII). The sections were studied
under petrographic microscopes (Nikon Eclipse E200 with a Nikon DS-Fil camera or a
Zeiss Ax10 Lab.A1 with an Axiocam camera). All thin section preparations and photomi-
croscopies were performed at the University of Cape Town, South Africa.

Given that the dromornithid Dromornis stirtoni has a marked bimodality with females
shown to be the smaller morph through the presence of medullary bone [13], its size has
the potential to establish the sex of Genyornis bones. Genyornis newtoni shows a nonover-
lapping bimodal size distribution [12], where tibiotarsi with a least shaft circumference of
137-150 mm are presumed females and those with values greater than 150 mm are males
(assuming that dimorphism is the same in species of Dromornis and Genyornis, which is
reasonable as males are uniformly larger birds in all extant Galloanseres). However, we
used the totality of measurements from associated bones of an individual to infer sex, as
for several individuals, the minimum shaft circumference was not measurable, but values
for the tibiotarsal distal width or width for the femora and tarsometatarsi of the same
individual were available. These revealed two individuals that were much larger than
those biggest based on tibiotarsal shaft circumference and, thus, were inferred as males
(Table 1).

Here, we followed the traditional histological terminology sensu [1,18,24]. Although
we used the orientation of the canals in the bones as a proxy for the orientation of the
vascular canals, we are aware that this does not accurately reflect the orientation of the
blood vessels therein [15].

3. Results

The histology of several examples of hind limb elements are described and summa-
rized as follows: eight tibiotarsi, four femora and three tarsometatarsi.

3.1. Tibiotarsi
3.1.1. FU2759, Billeroo Creek, F

Thin sections of this specimen showed that the bone tissue had experienced some
taphonomic damage by infiltration of the surrounding minerals and sediment into the
bone, concordant with its fluvial deposition. Thus, most of the specimen showed more
extensive damage to the peripheral parts of the compacta, whereas the internal bone tis-
sues were better preserved. Figure 2 shows the alteration in the bone microstructure
caused by this infiltration damage. Nevertheless, it is evident that the bone has vascular
canals right up to the margin, and there appears to be no distinctive slowing down in the
rate of bone deposition (Figures 2A). Deeper in the compacta, the tissue continues to be
primary periosteal bone with abundant vascular canals in a woven bone matrix. The vas-
cular canals tend to be a mixture of longitudinal and short circumferentially oriented ca-
nals in a laminar arrangement (Figure 2B). In the innermost region of the compacta, closest
to the medullary cavity, the bone tissue has a different appearance; here, the bone is still
fibrolamellar tissue, but the vascular canals have a much more disarrayed arrangement
with a predominantly longitudinal-to-radial arrangement in the woven bone matrix (Fig-
ure 2C. Throughout the compacta, secondary osteons are rare, sparse erosion cavities oc-
cur and no growth marks (i.e.,, LAGs or annuli) are apparent in the compacta (Figure 2).
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Figure 2. Specimen FU2759; tibiotarsus. (A) Outermost region of the compacta showing some dia-
genetic features but no change in the rate of bone formation, and vascular canals right up to the
edge of the bone wall. (B) Mid-cortical region showing the circumferential organisation of the vas-
cular canals. (C) Deep cortex of the compacta showing the more haphazard arrangement of the
vascular canals within a woven bone matrix.

3.1.2. Specimen SAM P.54333, Cooper Creek (Geny C), ?F

The histology of this specimen is reasonably well preserved with the entire compacta
from the periphery to the endosteal region preserved (Figure 3). Localised differences in
the orientation of the vascular canals, and the nature of the bone tissue are evident; the
outermost bone tissue, which is the most recently formed bone, comprises a narrow (~250
pum) band of avascular lamellar tissue, the OCL (Figures 3A,B). Preceding the OCL, there
is a band of reticular bone tissue (Figures 3A,B), whereas deeper into the compacta, the
tissue changes to a mix of plexiform to circumferential laminar bone tissue (Figures 3A,B).
In the perimedullary region, several enlarged cavities are evident, and there are several
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secondary osteons that occur right up to the margin of the medullary cavity (Figure 3A),
and in some areas, cancellous tissue extends into the medullary cavity. A narrow layer of
lamellar bone, the inner circumferential layer (ICL), lines the medullary cavity in localised
areas (Figure 3C). Except for this region, the rest of the cortex comprises mostly primary
bone tissue, although there are a few scattered secondary osteons. In the thickest part of
the bone wall, the innermost bone tissue comprises FBL with more longitudinal and cir-
cumferentially arranged primary osteons (Figure 3C). It is likely that this tissue is bone
formed during the early stages of ontogeny.

3.1.3. Specimen SAM P.54334, Cooper Creek site 73B, F

The bone wall is incompletely preserved but there is enough of the compacta visible
to make a histological description. The outermost part of the bone wall has a layer of la-
mellar bone, the OCL, that varies in thickness around the bone wall. Several lines of ar-
rested growth (LAGs or rest lines) are visible in the OCL (Figure 4A). Below the OCL is a
layer of richly vascularised bone tissue that varies from a reticular to a plexiform type of
bone tissue with several growth marks in the form of annuli (Figures 4A,B). Note that the
innermost and outermost annuli appear to be quite wide (Figure 4A). In the perimedullary
region, there occurs a region of well-vascularised bone tissue that appears to be bone
formed during the early stages of ontogeny (Figures 4A,C). Closer to the medullary cavity,
there is a large amount of secondary reconstruction (Figure 4A) where numerous second-
ary osteons are visible, but these do not reach a high density. In the endosteal region,
extensive remodelling of the compacta is evident, and there are large excavations into the
compacta (Figure 4A). Small patches of ICL are visible in localised areas (Figure 4A).

3.1.4. Specimen SAM P.53826, Callabonna Geny 1A, F

Unfortunately, we were unable to retrieve a full core from this specimen, and only
the outer part of the bone wall was preserved. Microscopical examination revealed that
the bone is badly fractured, concordant with salt damage, but a distinct OCL is visible
with at least three (perhaps four) growth marks in the form of narrow annuli present.
Below the OCL, several circumferentially organised vascular canals are visible.

3.1.5. Specimen FU2756 Callabonna CB2018-75, Indiv 2, ?M/F

The outermost compacta consist of a wide layer of poorly vascularised lamellar bone
tissue that forms the OCL, which is interrupted by at least 10 growth marks (LAGs) (Fig-
ure 5A). Below this outer band of tissue, the cortex consists of a more richly vascularised,
more laminarly organised FLB tissue (Figure 5B). A narrow annulus with a LAG inter-
rupts the deposition of this tissue (Figure 5B). Deeper in the compacta, the bone formed
during the early stages of ontogeny is visible and appears to be FLB with mainly longitu-
dinally and reticular organised vascular canals (Figure 5C). Some of these vascular canals
have been enlarged by secondary reconstruction, and in some, there are secondary depos-
its of centripetally formed lamellar bone which form secondary osteons (Figure 5C).
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Figure 3. Specimen SAM P.54333; tibiotarsus. (A) Overview of the histology of the bone wall. (B) Higher magnification of
the framed region in (A), showing the OCL (double-headed arrow) below which is a band of reticular organised
FBL(RFLB), and the more laminar-plexiform (L-P) organised bone tissue deeper in the compacta. (C) A view of the perime-
dullary region showing a narrow ICL (arrow), and some remnants of the early formed reticular bone tissue, secondarily
enlarged vascular canals and a few secondary osteons (stars). m, medullary cavity.
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Figure 4. Specimen SAM P.54334; tibiotarsus. (A) Overview of the compacta showing an OCL in the peripheral region
(double-headed arrow), several growth marks (annuli) (arrows) and a resorptive medullary (m) margin. The black arrow
points to remnants of an ICL. (B) A different part of the compacta showing four growth marks (arrows) in the compacta.
(C) Higher magnification of the framed region in (A) showing the reticular FBL bone tissue formed during early ontoge-
netic stages. m, medullary cavity.

3.1.6. Specimen FU2755, Callabonna CB2018-75, Indiv 1, F

The bone tissue of this tibiotarsus was not well preserved. The outer cortex was not
sampled, so the most recently formed bone tissue cannot be described (and we cannot
assess whether or not an OCL is present). The part of the compacta that was preserved
shows a richly vascularised primary compacta with predominantly longitudinal and re-
ticular-oriented vascular canals.

3.1.7. Specimen SAM P.25017, Cooper Creek, Malkuni WH, F

The well-preserved compacta of this tibiotarsus shows that it is heavily vascularised
with a distinctly wide OCL comprised of lamellar bone tissue with at least five LAGs (Fig-
ures 5D,E). A few blood vessels occur in the OCL, but overall, it is much more sparsely
vascularised than the underlying bone tissue. Preceding the OCL is a region comprising
reticular primary bone tissue, whereas deeper parts of the compacta have a more plexi-
form arrangement. Overall, the bone wall appears to be primary in nature, but there are
some scattered secondary osteons visible. In parts of the compacta, at least three narrow
lamellar deposits interrupt the rapid deposition of bone. The perimedullary region of the
cortex is uneven due to extensive resorption which cuts into the original early formed
primary compacta of the bone wall (Figure 5E).
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compacta showing the laminar organised FBL bone tissue, and a single annulus with a LAG (arrow). (C) FBL bone tissue
with more longitudinal and reticular organised vascular canals. Arrows point to the lamellar bone tissue in the process of
being deposited around an enlarged cavity. (D-F) Specimen SAM P.25017, tibiotarsus. (D) A general view of the compacta.
The double-headed arrow indicates the OCL. RFBL indicates the band of reticular organised FBL bone tissue that precedes
the OCL. (E) Higher magnification of the framed region of (D). The OCL with 5 LAGs (arrows). (F) The innermost part of
the compacta being actively resorbed. m, medullary cavity.

3.1.8. Specimen SAM P.53833, Callabonna, Geny 10, F?

A striking feature of the compacta is the presence of two distinct bands of lamellar
bone towards the outer cortex (Figures 6A,B). These wide bands of more slowly deposited
tissue are separated by an almost equally thick region of fibrolamellar bone tissue. Note
that there are several incursions of blood vessels through both the lamellar layers, but
overall, these layers are not as well vascularised as the tissue below. The outer band of
lamellar tissue has about three LAGs, and this appears to be the OCL (Figures 6A,B). Be-
low the more inner wide band of lamellar tissue, a narrow annulus is visible, and perhaps
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another, but the latter cannot be followed around the compacta (Figure 6A). Deeper in the
cortex (the inner 40% of bone wall) is extensively reconstructed and, in places, reaches
dense Haversian bone levels where even interstitial bone is secondary (Figure 6A). Many
erosion cavities are visible, and there are many examples of these connecting with one
another to form even larger cavities (Figure 6C). No ICL is present.

3.1.9. Summary of the Tibiotarsus Histology

The eight tibiotarsi studied here provide information about the overall growth of this
skeletal element. There are obvious changes that are related to ontogenetic age, such as
the development of the OCL, which clearly indicates that specimen FU2759 is the young-
est of all the tibiotarsi, whereas specimen SAM P.54333 appears to be a slightly older in-
dividual that has already begun slowing down its overall rate of growth and only has a
narrow OCL present. Besides the onset of OCL formation, the latter specimen also shows
much more secondary remodelling as compared to specimen FU2759, but less than the
other tibiotarsi studied. This suggests that secondary remodelling increases with age. All
the other specimens have a relatively wide OCL with varying numbers of LAGs present—
specimen FU2756 has the widest OCL with at least 10 LAGs present (although it is uncer-
tain whether any of these are double or triple LAGs). Specimen SAM P.54334 clearly
shows at least four annuli that precede the deposition of the OCL, and interestingly, the
deepest annulus and the last one appear quite wide.

Figure 6. Specimen SAM P.53833, tibiotarsus. (A) Overview of the compacta. Subperiosteally,
there is a wide OCL present (double-headed arrow), and further in the compacta, another wide
band of lamellar tissue occurs (black arrow), below which is a narrow annulus (white arrow).
Deep parts of the compacta show secondary remodelling, and several large erosion cavities are
visible (small black arrow). (B) Higher magnification of the framed region of (A), showing the
OCL and the wide inner band of lamellar tissue. (C) Higher magnification of the framed region in
(A), showing the extensively secondary remodelled perimedullary region.
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3.2. Femora
3.2.1. Specimen FU2758 Left Femur, Billeroo Creek

Overall, the bone wall is not very well preserved, but histological details are discern-
ible. The compacta is richly vascularised, and there is a thin band of lamellar bone tissue
visible along the outermost peripheral part of the bone wall (Figure 7A). Below this, there
are mainly longitudinally arranged primary osteons. In the mid-cortex, a few secondarily
enlarged erosion cavities are evident, and a few completely formed secondary osteons can
be seen (Figure 7B). A narrow ICL is present in places, suggesting that medullary expan-
sion has been completed. No growth marks are visible anywhere in the compacta.

3.2.2. Specimen FU2760, Callabonna CB2018-75, Indiv 3, M

The compacta comprise predominantly short circumferentially organised vascular
canals in a laminar arrangement (Figure 7C). An OCL is present, and a distinct LAG is
visible therein (Figure 7C). In the perimedullary region, a well-developed ICL is visible,
which continues along a bony strut that projects into the medullary cavity (Figure 7D).

3.2.3. Specimen FU2755, Callabonna CB2018-75, Indiv 1, F

In this specimen, the core does not penetrate the bone wall completely and, as a re-
sult, only the outer part of the cortex is preserved. In this region, an OCL with at least ~6—
7 LAGs is preserved. Below this band of tissue, the cortex consists of laminar FBL bone
tissue with circumferentially organised vascular canals.

3.2.4. Specimen SAM P.53833, Callabonna Geny10, ?F

This specimen preserves a fairly thick layer of cortical bone tissue. A distinct OCL is
evident along the peripheral margin of the bone wall, and at least two LAGs are evident
therein (Figure 7E). Below the OCL, the bone is mainly primary tissue consisting of lami-
nar-plexiform organised FBL bone tissue (Figures 7E,F). In the outer part of the compacta,
the tissue appears to be more laminarly textured with a predominance of circumferen-
tially oriented canals (Figure 7E). Several scattered secondary osteons are present
throughout the compacta, but in localised parts of the cortex, a tract of secondary osteons
extends from the peripheral margin to the endosteal region (Figure 7F); this is likely re-
lated to the linea intermuscularis caudalis. In places, an ICL is present, but overall, the
endosteal margin is highly resorptive (Figure 7G). The entry of the nutrient foramen into
the bone cortex is evident in Section 10FB, and there are distinctive changes in the orien-
tation of the bone tissue around the foramen (Figure 7H).

3.2.5. Summary of the Femoral Histology

The four femora studied showed features related to ontogenetic status. Specimen
FU2758 appears to be from a young individual, which has just begun to deposit lamellar
bone tissue, but an OCL is not yet present in the compacta. In this bone, there are sparse
secondary osteons visible. Specimen FU2756 appears to be a slightly older individual —a
well-developed OCL is present, and a LAG occurs therein. Specimen SAM P.53833 has the
most mature compacta, with an OCL with multiple LAGs, and compacta with evidence
of much more secondary reconstruction. It should be noted, however, that this section
intersects the linea intermuscularis caudalis and the nutrient foramen, and therefore, it is
expected to show localised changes as a consequence. Specimen FU2755 appears to be the
most mature of the four femora—it has five or six LAGs in the OCL, but we cannot deci-
pher any more of the nature of the bone tissue, because of core failure.
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I N
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Figure 7. (A,B) Specimen FU2758; femur. (A) The white arrow points to the narrow deposit of lamellar bone tissue sub-
periosteally. (B) Some secondary osteons (arrow) are visible in the compacta. (C,D) Specimen FU2760; femur. (C) The well-
vascularised compacta, and an OCL (double-headed arrow) with one LAG (arrow). (D) The deposition of an ICL (black
arrow). (E-H) Specimen SAM P.53833; femur. (E) The OCL (double-headed arrow) and the laminar bone tissue that pre-
cedes it. (F) The tract of secondary osteons (arrow) that are coincident with the linea. (G) The uneven perimedullary mar-
gin, and the narrow ICL (arrow) in places. (H) The white arrow shows the entry of the nutrient foramen into the femur.
Notice the changes in the orientation of the bone tissue along the margins of the canal. m, medullary cavity.

3.3. Tarsometatarsi
3.3.1. Specimen FU2750, Callabonna CB2018-98

Opverall, the bone tissue appears richly vascularised, although it is apparent that the
deeper cortex is much more vascularised than the outer compacta (Figure 8). Towards the
outer part of the bone wall, there are two distinct growth marks in the compacta (Figure
8). Following the outer LAG, there is a distinct OCL, and near the margin of the bone,
there appears to be a LAG present (Figure 8).



Diversity 2021, 13, 219 13 of 19

Figure 8. Specimen FU2750; Tarsometatarsus. Overview of the well-vascularised, primary com-
pacta of the bone. In the peripheral region, a narrow OCL (double-headed arrow) and 2 narrow
annuli (arrows) that precede it are visible. Subperiosteally, a LAG is present (black arrow).

3.3.2. Specimen SAM P.53832, Callabonna, Geny 9B, M

This section of the TMT shows a distinct OCL in the outermost part of the cortex
(Figure 9A). Except for the OCL, the rest of the compacta appears to be intensely second-
arily remodelled (Figures 9A-C). Although there is a lot of secondary reconstruction,
dense Haversian bone proportions are not reached in the mid-cortical regions, as there is
still primary bone between neighbouring secondary osteons. However, towards the me-
dullary cavity, the secondary reconstruction is more extensively developed, and it appears
to reach dense Haversian levels, but there are also several large unfilled erosion cavities
visible in this area (Figure 9C). In places, a narrow layer of lamellar bone (ICL) is visible
(Figure 9C).
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Figure 9. (A—C) Specimen SAM P.53832 TMT. (A) Except for the OCL (double-headed arrow), the compacta have been
extensively reconstructed. (B) The dense development of secondary osteons (white arrow). (C) The perimedullary margin
lined by an ICL (black arrow).

3.3.3. Specimen SAM P.53831, Callabonna, Geny 9A, M

Overall, the bone tissue is as described for Specimen SAM P.53832, i.e., the compacta
is extensively remodelled right up to the OCL, and the perimedullary region consists of
dense Haversian bone.

3.3.4. Summary of Tarsometatarsi Histology

Similar to the femora and the tibiotarsi, the tarsometatarsi studied here show onto-
genetic changes in the nature of the bone tissue. In this sample, the tarsometatarsus from
the youngest individual (FU2750) has an OCL, but its compacta are still predominantly
primary in nature, whereas in the tarsometatarsi from more mature individuals, except
for the OCL, the compacta are intensively reconstructed and reaches dense Haversian
characteristics in the deep cortex.

4. Discussion
4.1. Growth Pattern

In the Genyornis bones sampled, it is evident that during the earliest stages of growth,
FLB was deposited. This tissue is typically formed in young fast-growing birds, e.g., Stru-
thio camelus [16], Sagittarius serpentarius [16], Aptenodytes patagonicus [25] and Calonectris
leucomelas [26]. This early bone has a number of longitudinally and reticular arranged pri-
mary osteons, and a large number of globular osteocytes in the woven bone matrix (see
Figure 2C) [1]. In some of the bones, none of this early bone remains, whereas in a few
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bones where remodelling changes have not been extensive, the bone formed during early
stages of ontogeny is preserved (e.g., tibiotarsus SAM P.54333), and we therefore have a
continuous record of all the bone tissues formed during development. Often, this early
bone is overlain by a laminar-plexiform bone, which tends to dominate the cortices of the
tibiotarsus and the femora. In the tarsometatarsus, the predominant bone tissue is Haver-
sian bone. Localised differences in the bone tissue were observed in response to the anat-
omy of the bones—for example, in the femur, in the region of muscle insertions, there is a
radial tract of secondary osteons present (Figure 7F), and in the area where the nutrient
foramen penetrates the bone, the bone tissue is organised so as to accommodate the fora-
men (Figure 7H).

In contrast to the bone rapidly forming during early ontogeny, in late stages of on-
togeny, a distinct layer of lamellar bone tissue forms subperiosteally. This band of tissue,
the OCL [1,18], marks the change to a slower rate of bone formation. Among many mod-
ern vertebrates, such a change is linked to the attainment of sexual maturity and the sub-
sequent slow-down in growth, e.g., [1,27]. Thus, the occurrence of the OCL directly sug-
gests that a slow-down in growth has been reached, which means that, thereafter, only
slow accretionary growth will occur from this stage onwards. This seems to be the case in
the extant kiwi [19], but in ducks, sexually immature ducks have been reported to show
an OCL [27], and Watanabe [26] found the same in three species of water birds (Calonectris
leucomelas, Ardea cinerea and Phalacrocorax capillatus). Whether the OCL in Genyornis is
linked to the attainment of sexual maturity is uncertain, but in the current study, it is ap-
parent that Genyornis bones that morphologically appear to be from juveniles do not have
an OCL (see later).

In several of the bones, narrow bands of lamellar bone tissue (annuli) were observed
to have been deposited prior to the deposition of the OCL. The deposition of these peri-
odic annuli interrupts the rapid phase of growth and reflect a slow-down in the overall
rate of bone deposition [1,24], and they are generally thought to be formed annually in
vertebrates, e.g., [17,27,28,29]. As most of our samples were cores, we cannot be certain
that these annuli extend around the complete bone wall. In one specimen (tibiotarsus SAM
P.54334), at least four such narrow annuli are observed, suggesting that this individual
took at least 4 years before an OCL formed. Interestingly, in specimen SAM P.54334, the
width of the annuli appears to be quite variable—even around the section (see Figures
4A,B). In parts of the compacta, some annuli appear as relatively wide bands of lamellar
tissue. In most of the other individuals, there appears to only be about 1-2 growth marks
evident in the compacta. Thus, it is evident that, unlike the largest of modern birds, os-
triches (Struthio camelus), which weigh in at about 150 kg, Genyornis (estimated to have
weighed about 250 kg) took more than a single year to reach skeletal maturity. Vorombe
titan, the largest aepyornithid (and possibly the largest of all birds) [30] also took several
years to reach skeletal maturity [5], and the extinct Dinornithiformes, such as the emeids,
Euryapteryx and Anomalopteryx, as well as Megalapteryx, all experienced extended periods
of cyclical growth to somatic maturity [20]. The extinct Mesozoic bird, Gargantuavis, was
also found to have taken at least a decade to reach skeletal maturity [31]. Thus, itis evident
that several large terrestrial birds experienced protracted growth to adult body size. It
appears that other island birds which are not as large, such as the kiwi, Apteryx species
[19], the dodo, Raphus cucullatus [28] and the solitaire, Pezophaps solitaria [32], also adopted
slow, extended growth rates in response to reduced predation on the islands.

We were unable to identify any sex differences between the Genyornis femora stud-
ied. In Dromornis stirtoni, medullary bone [1], a tissue formed in female birds during ovu-
lation was identified in several tibiotarsi [13], which verified their assignment as females.
However, in the case of our Genyornis sample, medullary bone was not observed in any
of the bones examined. It is likely that the birds were mired during a protracted drought,
which may explain the lack of evidence of breeding (both in the form of hatchlings, and
females with medullary bone), but it is also possible that our small sample size precluded
the observation of sex-specific tissues.
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4.2. Histological Variations Evident in Different Skeletal Elements
4.2.1. Histological Differences among Bones without OCL

The tibiotarsus, specimen FU2759, and the femur, FU2758, were recovered from dif-
ferent individuals and, as such, we cannot directly compare their growth dynamics. How-
ever, on the basis of the histology evident, they appear to be from young individuals as
they both do not have an OCL present. Furthermore, of these two bones, the tibiotarsus
appears to be younger than the femur as rapidly formed FLB occurs subperiosteally in the
tibiotarsus, whereas in the femur, a narrow band of lamellar bone tissue is present, indi-
cating that the rate of bone deposition had begun to slow down. Interestingly, the surface
texture of specimen FU2758 is clearly porous, and the crista trochanteris is also not fully
formed, which further indicate that this is a young individual. The overall small diameter
of the tibiotarsus specimen FU2759 also agrees with its young ontogenetic age assessment.

4.2.2. Histological Variations Evident among Bones with OCL

Except for the bones mentioned above, all the other bones have a distinctive OCL,
which means that the appositional growth had passed its most rapid phase of growth [16].
In some of the specimens, it is apparent that within the OCL, there are LAGs—assuming
that each LAG is formed annually, this indicates that some individuals are older than oth-
ers, e.g., [31] (Table 2). This is further supported by an external morphology typical of
fully adult birds; for example, as defined for dinornithiforms by Turvey and Holdaway
[33], where femora all have the adult form of the condyles, all tibiotarsi have a fully ossi-
fied pons supratendineus and fully developed condyles with no sign of the synostosis
between the tibia and proximal tarsal, and tarsometatarsi have no distinction of the fused
metatarsi or distal tarsal.

Table 2. Summary of histology data for specimens studied. Spec. no., specimen number; OCL, outer circumferential layer;
Lags, lines of arrested growth; ICL, inner circumferential layer; hav, Haversian; Resorpt. Perimedull., resorption cavities
in the perimedullary region; Ontog., ontogenetic. Y denotes presence, N denotes absence and ? denotes uncertain.

Specimen Element OCL Lags in OCL Annuli ICL Dense Hav Bone Early Bone Resorpt. Perimedull. Ontog. State
SAM P.54334  Tibiotarsus Y 4-5 34 Y Y Y Y adult
SAM P.54333 Tibiotarsus Y N 1? Y N Y Y young adult
SAM P.53833 Femur Y 2 Y Y Y N Y adult
SAM P.53833  Tibiotarsus Y 3 2? N Y N Y adult
SAM P.53832 Tarsometatarsus Y 2? N Y Y N Y adult
SAM P.53831 Tarsometatarsus Y 2? N ? Y N Y adult
SAM P.53826  Tibiotarsus Y 3-4 2? ? ? ? ? adult
SAM P.25017  Tibiotarsus Y 5 3 Y N Y Y adult

FU2760 Femur Y 1 ? Y N N Y adult
FU2759 Tibiotarsus N N N N N Y ? immature
FU2758 Femur Y N N Y N Y Y young adult
FU2756 Tibiotarsus Y ~10 1 N N Y Y mature
FU2750 Tarsometatarsus Y 1 2 ? N Y Y young adult
FU2755 Tibiotarsus ? ? ? ? N Y? ? ?
FU2755 Femur Y 6-7 ? ? N Y? ? mature

Our sample of Genyornis bones provides evidence for different growth dynamics be-
tween individuals; although most individuals showed a periodic slow-down in growth in
the form of narrow annuli, some individuals (e.g., tibiotarsus, SAM P.53833 from the Cal-
labonna locality) had a wide band of lamellar tissue, suggesting that it experienced a par-
ticularly stressful period that was lengthy in duration. One specimen, SAM P.54334 (from
Cooper Creek), showed four narrow annuli in the tibiotarsus, indicating that it had at least
four periods of slowed growth, and two of these were longer in duration. The facts that,
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in some specimens, we find no annuli interrupting growth, and up to four in one individ-
ual, as well as the widely varying thickness of the annuli, suggest that Genyornis experi-
enced variable growth dynamics, which may have been correlated with the particular en-
vironment during which the individuals were growing up. Such plasticity in growth ap-
pears to be a plesiomorphic trait inherited from their dinosaurian ancestors [1,34].

One of the main reasons for this discrepancy could be the fact that the specimens
studied come from different localities, which, although they are not greatly separated, i.e.,
Billeroo Creek is perhaps 100 km from Lake Callabonna, which is 500 km at most from
Cooper Creek (Figure 1), they may have had different local ecologies. It is also possible
that the specimens derive from slightly different time periods of the late Pleistocene,
which makes it likely that they experienced different environmental conditions during
their lives, i.e., they do not reflect a single contemporaneous population. The strikingly
wide annulus present in the tibiotarsus specimen SAM P.53833 indicates that this individ-
ual experienced a prolonged stressed period when osteogenesis slowed down (Figure 6)
[1,6]. However, once the conditions changed to a more favourable situation, osteogenesis
recovered to a rapid rate, resulting in FLB tissue being formed. This is directly contrasted
with the tarsometatarsus specimen FU2750, which had no annuli prior to the OCL for-
mation. In the tibiotarsus specimen SAM P.54334 from Cooper Creek, two distinct wider-
than-usual annuli are also observed (Figure 4A).

The Cooper Creek specimens (SAM P.25017, 54,333 and 54334) and Billeroo Creek
specimens (FU2758, 2759) were deposited in fluvial sediments in a riverine situation,
which does mean they had abundant water at their death. The Callabonna specimens were
all trapped in the dried-out bed of a lake during a protracted drought.

4.2.3. Histological Differences among Specimens Recovered from the Same Site

Specimen SAM P.53832 and SAM P.53831 were both recovered from Lake Cal-
labonna within 1 m of the other and facing the same direction, which suggests that they
may have been trapped together. Interestingly, both these TMT show that they are mature
adult individuals with a well-developed OCL and heavily reconstructed compacta. The
overall dimension of these bones suggests that SAM P.53832 was the larger bird and likely
to be a male, while SAM P.53831 was a probable female and was similar in size to SAM
P.53833.

The tibiotarsi specimens, FU2756 and FU2755, were sampled from individuals that
were recovered from Callabonna CB2018-75. The tibiotarsus from FU2756 has about 10
closely associated LAGs in the OCL, although we cannot be sure if any of them are part
of double or triple LAGs which are known to occur in some vertebrates when conditions
are recurrently unfavourable [1,27]. It must be noted that these lines do not interrupt the
rapid phase of growth but are located in the outermost part of the compacta and are bone
deposits that are responsible for the thickening or robustness of the bones (i.e., they do
not contribute to the lengthening of the bone) [6]. As this tibiotarsus occurs in the bound-
ary size range of male/female, these histology findings suggest that it is a mature female
(rather than a young male). Unfortunately, the outer compacta of the tibiotarsus of FU2755
is not as well preserved, and we cannot determine whether or not it had passed its most
rapid phase of growth. Its relatively small size suggests it is also a female individual.

4.3. Secondary Reconstruction

Secondary reconstruction was observed in all the skeletal elements, but compared to
the femur and the tibiotarsi studied, the tarsometatarsus was the most extensively recon-
structed element, with dense Haversian bone tissue present. This finding agrees with [35]
that there is a proximodistal gradient in terms of secondary reconstruction with more dis-
tal elements being more extensively remodelled. Note that in the aepyornithids, the fibula
was the most reconstructed element [5], but in the current study, fibulae were not sam-
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pled. It is possible that the high incidence of Haversian bone in the tarsometatarsus sug-
gests that this element bears more weight and is subjected to more biomechanical forces
than the tibiotarsi [36].

It is also apparent that the extent of secondary reconstruction in the compacta is age-
related —the tarsometatarsus specimen FU2750 has an OCL but shows hardly any second-
ary reconstruction, whereas the other two tarsometatarsus studied have compacta that are
completely remodelled right up to the OCL. These findings suggest that secondary recon-
struction increases with age.

As in the aepyornithids [5], the tibiotarsi in Genyornis appears to provide the best
record of growth and preserves most of the primary compacta. The tarsometatarsus is
useful in young adults, but older individuals show extensive secondary remodelling that
removes the primary bone tissues, and hence the growth record.

5. Conclusions

Genyornis took more than a single year to reach sexual maturity, whereupon an OCL
develops, indicating a change in the rate of osteogenesis.

Of the three skeletal elements studied, the tibiotarsus preserves the best record of
growth for Genyornis.

The occurrence of several LAGs in the OCL indicates that it continued to accrete bone
for several years to reach skeletal maturity. This further indicates that, in Genyornis, sexual
and skeletal maturity were asynchronous, with sexual maturity preceding skeletal ma-
turity.

Genyornis retained a plesiomorphic flexible growth strategy [1,15] and responded to
prevailing environmental conditions at the time.
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