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Abstract: The ongoing climate change and the unprecedented rate of biodiversity loss render the 

need to accurately project future species distributional patterns more critical than ever. Mounting 

evidence suggests that not only abiotic factors, but also biotic interactions drive broad-scale dis-

tributional patterns. Here, we explored the effect of predator-prey interaction on the predator dis-

tribution, using as target species the widespread and generalist grass snake (Natrix natrix). We used 

ensemble Species Distribution Modeling (SDM) to build a model only with abiotic variables (abi-

otic model) and a biotic one including prey species richness. Then we projected the future grass 

snake distribution using a modest emission scenario assuming an unhindered and no dispersal 

scenario. The two models performed equally well, with temperature and prey species richness 

emerging as the top drivers of species distribution in the abiotic and biotic models, respectively. In 

the future, a severe range contraction is anticipated in the case of no dispersal, a likely possibility as 

reptiles are poor dispersers. If the species can disperse freely, an improbable scenario due to habitat 

loss and fragmentation, it will lose part of its contemporary distribution, but it will expand 

northwards. 
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1. Introduction 

Extended human-induced changes have given rise to a more “fragile” world which 

is getting hotter, with changing precipitation and more frequent extreme weather events 

[1], e.g., there was an increase of 0.7 °C in average temperature in the last 100 years [2], 

and a further increase of at least 1.5 °C is anticipated by 2052 [3]. Humans feel the climate 

change effect through everyday weather [4] and its socio-economic impacts [5,6], while 

climate change is related to global migration [7,8]. The rate of biodiversity loss is alarm-

ing and species have or will be summoned to cope with new climatic conditions by 

formed new communities. In this context, species shift their behavior [9], phenology [10–

12], or their range [13], and these changes might allow them to persist and evade extinc-

tion. Range shifts include changes in species distributions in different geographic di-

mensions [14–16], with some species suffering range contraction and others exhibiting 

range expansion [17–19]. As the biosphere changes rapidly and in various directions [20], 

ecologists and biogeographers strive to project the future of species and communities 

under climate change in order to ensure effective biodiversity conservation and human 

well-being [21]. 

Species Distribution Modeling (SDM) [22] is a useful tool to predict climate-change 

impacts on species distributions (among others [17,23]). SDMs correlate spatially explicit 

species occurrences with sets of predictors to estimate current distributions and can be 

projected to other scenarios over time and space [24]. The majority of studies use envi-

ronmental variables as a set of predictors. This is based on the assumption that the 
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strength of biotic interactions fades at large spatial scales and climate is the preponderant 

driver of species distributions [24,25]. However, a growing number of studies show that 

the inclusion of biotic interactions such as competition, facilitation, mutualism and pre-

dation into SDMs increase predictive accuracy of the models [26–34], suggesting that bi-

otic interactions should be brought into SDMs for more accurate predictions of cli-

mate-change impacts [35,36], though caution is required in the interpretation of the ob-

served patterns [37]. 

Predation is a key biotic interaction shaping structure, dynamics and functioning of 

ecosystems [38–42], while it contributes to the maintenance of biodiversity [43]. Past 

global climate change events resulted in species extinctions, shifted species distributions 

and altered predator-prey interactions, favoring the prevalence of generalists [41]. On-

going climate change can affect the distribution, population density, behavior, mor-

phology or physiology of both the predator and its prey [42,44,45], inducing shifts in 

predator-prey dynamics [46], such as disrupted or novel interactions [47] and changes in 

their strength and frequency [41,48]. However, the first prerequisite for predators and 

their prey to interact is to overlap in space and in time. Thus, climate change-induced 

shifts in species distributions might result in spatial or temporal mismatch [49] or overlap 

into new regions affecting the predator-prey interaction. Given that predator-prey inter-

actions affect the distribution of both the predator and the prey across spatial scales [36], 

and the strong relationship between a predator and its prey diversity [43], it is critical to 

take into consideration predator-prey interactions to accurately predict their future dis-

tributions under climate change. For instance, Aragón and Sánchez-Fernández [29] found 

that reptile distribution and richness had a significant effect on the distribution of bird 

predator in Spain, while Gherghel et al. [31] found that the SDMs predicting sea kraits’ 

distributional patterns with biotic variables at broad spatial scales were better than the 

ones including only abiotic variables. 

In this study, we explored the role of prey species richness in estimating contem-

porary distribution and projecting the future distribution of the grass snake Natrix natrix. 

Reptiles as ectotherms depend on the local temperature to regulate their body tempera-

ture and thus, are considered more susceptible to climate change and especially to cli-

mate warming [50–52]. The grass snake is a trophic generalist and a widespread species 

ranging from north Africa across Europe up to Scandinavia and east to Lake Baikal, 

Russia [53]. It benefits from anthropogenic habitats [54] and utilizes anthropogenic heat 

sources for nesting [55]. Here, using grass snakes we explore the effects of prey species 

richness and dispersal on the current and future species distribution, as estimated by 

Species Distribution Modeling of the widespread grass snake. 

2. Materials and Methods 

2.1. Species Data 

We compiled species occurrence data from the Global Biodiversity Information Fa-

cility (GBIF) [56] and Sillero et al. [57] as centroids of the atlas grid cells for the grass 

snake (Natrix natrix) which is widespread in Europe. Natrix natrix taxonomy was recently 

revised and the species was divided in N. astreptophora found in Spain, Portugal and 

North Africa, N. helvetica in France, Italy and Great Britain and N. natrix which is dis-

tributed east of the Rhine and in the rest of Europe [58–60]. Here, we used data of the 

distribution of Natrix natrix as was newly defined in Europe and thus, occurrences ob-

tained from Sillero et al. [57] were filtered to include species occurrences east of the Rhine 

and Italy. The grass snake is considered a generalist species. It feeds on amphibians, 

mostly anurans [61–63], but its diet varies with geographical location, habitat or compet-

itor’s presence and may include also small mammals, other reptiles and fish [62,64]. 

Among its most common prey species are Bufo bufo, Rana temporaria and Lissotriton vul-

garis [61–63]. Based on this literature, we compiled occurrence data from GBIF [56] for 

these three species and six more species that were referenced in at least one study and 
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represent various classes (amphibians, other reptiles, small mammals) in Europe. Oc-

currence data for reptiles-amphibians and mammals were supplemented with occur-

rences from Sillero et al. [57] and Mitchell-Jones et al. [65] respectively as centroids of the 

atlas grid cells to ensure a more accurate depiction of the species’ actual distributions. We 

included in our analysis only georeferenced observations (machine or human) from GBIF 

and we further tested for invalid records (e.g., countries’ centroids, museums and GBIF 

headquarters) in the occurrence data with the CoordinateCleaner package [66]. Fur-

thermore, we excluded occurrences with uncertainty higher than the radius of the study’s 

grid pixels (GBIF field “uncertainty in meters” ≥ 25 km) or outside the species’ range 

polygons as obtained by the International Union for Conservation of Nature (IUCN) [67] 

to limit the inclusion of environmental conditions irrelevant to the species’ niche. The 

comparison with the IUCN range maps was not performed for Natrix natrix as IUCN 

does not provide spatial data for that species. We accounted for sampling bias by select-

ing only one random occurrence per pixel [68]. The number of occurrences used in the 

SDMs, hereafter presences, varied highly per species (see Figure S1).  

2.2. Abiotic Variables 

We selected as environmental predictors variables related to climate, elevation and 

water availability to describe current and future environmental conditions (Table S1). All 

predictors covered the study area which was set between 34° 55'–81° 45' N and 12° 0' W–

68° 57' E and were upscaled to a 50 × 50 km grid cell resolution. Specifically, we obtained 

19 bioclimatic variables, averaged over the period 1970–2000, provided by the World-

Clim 2.1 database [69]. Elevation data were retrieved from the European Digital Eleva-

tion Model (EU-DEM) [70]. Furthermore, we estimated the percentage coverage by lakes 

and the river length included per pixel using data from the CCM River and Catchment 

Database [71]. Multicollinearity among bioclimatic variables was initially explored by 

estimating Spearman’s rho correlation coefficient (Table S2). We excluded from the SDM 

climate predictors that exhibited collinearity, since we examined species with very dif-

ferent physiologies (e.g., endotherms, ectotherms) and we preferred a uniform modeling 

approach across species [72]. Variance Inflation Factor analysis performed by the usdm 

package [73] showed strong collinearity between variables, and we included only bio-

climatic variables scoring VIF < 5 [74–76] in any subsequent analysis (Table S1). 

The future bioclimatic variables used in the SDMs were produced by WorldClim 2.1 

[69] using downscaled climate projections. These projections were based on the global 

climate model developed by the Institute Pierre-Simon Laplace (IPSL-CM6A-LR) [77] as a 

contribution to the Coupled Model Intercomparison Project Phase 6 (CMIP6) [78]. We 

selected the data for the Shared Socio-Economic Pathway (SSP) 2–4.5 [79] as it represents 

a modest scenario (“the Middle of the Road” [80]). This scenario predicts a CO2 emissions 

pick at approximately 44 Gt/year by 2040, followed by a gradual reduction to almost 27 

Gt/year by 2080. SSP 2–4.5 estimates an upward trajectory of increase in mean global 

temperature that will reach 2.5 °C by 2080. We focused on two datasets of bioclimatic 

variables spanning over two time periods: (i) 2040–2060, hereafter 2060 and (ii) 2060–

2080, hereafter 2080.  

2.3. Biotic Variables 

As a proxy for the trophic interactions of Natrix natrix with its prey we used the prey 

species richness in the biotic model following Gherghel et al. [31]. Specifically, the po-

tential distribution of each prey species was modeled in the same way as for Natrix natrix 

for current and future conditions using only abiotic variables (see 2.4. Ensemble species 

distribution modeling for the methodology followed). Future prey species richness was 

estimated separately under the unhindered dispersal and no dispersal scenarios; that is, 

potential future prey distributions were used intact in the first case and limited within 

their current potential distributions in the latter. We estimated current and future prey 
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species richness as the sum of the prey species’ potential distributions per pixel, which 

was then used as a predictor in the biotic model of the grass snake. 

2.4. Ensemble Species Distribution Modeling 

The potential distribution of each species under current and future conditions was 

estimated with Ensemble Species Distribution modeling using the biomod2 package 

(version 3.4.6) [81]. Ensemble SDM, by combining predictions from different modeling 

approaches, can handle prediction variability and results in increased performance [82–

86]. We built two models following the same approach: an abiotic model including only 

abiotic variables, and a biotic model in which the prey species richness was also used as a 

predictor variable. Prior to model fitting, we selected 1,000 pseudo-absences (PAs) from 

the background data following the surface range envelope strategy (SRE) [87]. The SRE 

defines the most common environmental conditions where the species occurs and the 

PAs are drawn randomly outside this envelope. We fitted four algorithms generally 

classified either as regression-based or machine learning approaches, namely General-

ized Linear Models (GLM), Generalized Additive Models (GAM), Flexible Discriminant 

Analysis (FDA) and Generalized Boosted Models or Boosted Regression Trees (GBM) 

with the settings shown in Table S3. Each algorithm was run ten times with 70% of the 

presence-absence data randomly selected, while the other 30% was set aside for 

cross-validation. The produced models were assessed using the True Skill Statistic (TSS) 

criterion that ranges between −1 and 1 (perfect score) and reflects the ability of a model to 

predict correct presences, i.e., sensitivity, and absences, i.e., specificity [88]. We also es-

timated the Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) 

plot which is a threshold-independent metric that ranges between 0 and 1 with 0.5 indi-

cating that the model discriminates presences randomly and 1 perfectly [89]. 

The ensemble model for each species was built as a total consensus model using all 

models and cross-validation runs that satisfy a predetermined evaluation threshold of 

TSS ≥ 0.7 or, in case of all having TSS < 0.7, with 10% of model runs with the highest TSS 

[88]. The ensemble model predicted the probability of the presence of each species as the 

weighted mean of probabilities for the current and future environmental conditions. 

Specifically, the probability of the presence of each model run complying with the 

aforementioned criterion contributed to the ensemble probability of presence according 

to its TSS score. The continuous probability of the presence of the ensemble model was 

finally transformed to binary using a cut-off value that maximized TSS in order to esti-

mate species vulnerability [90,91]. An overview of the estimation method of grass snake 

distribution is presented in Figure 1. We estimated the coefficient of variation of the en-

semble models and the Multivariate Environmental Suitability Surface (MESS) from 

dismo package (version 1.3–3) [92] to examine the uncertainty related to the extrapolation 

outside the range of current environmental conditions used to fit the models. Finally, we 

evaluated the performance of the SDMs for N. natrix with null models as proposed by 

Raes and ter Steege [93] to explore whether they differed significantly from random ex-

pectations. Specifically, we created 99 null model repetitions for each model type (abiotic 

and biotic) by randomly selecting points from the study area equal to the number of 

presences and pseudo-absences used in the real models. We created a frequency histo-

gram with the AUC scores of the null models and assessed the 95% C.I. upper limit of 

these values, i.e., selected the 95th AUC value of the ranked scores. All null models ran 

with the same settings as the real models. The real models were considered significantly 

better than random if their evaluation scores were above the corresponding 95% C.I. 

AUC value of the null models. 
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Figure 1. Summary plot of the workflow followed to estimate potential distribution of Natrix natrix by Species Distribu-

tion Modeling. The future distribution of the species was projected using future environmental data in the abiotic model, 

and environmental data and projected prey species richness in the biotic model, assuming unhindered and no dispersal 

of Natrix natrix and its prey species. 

2.5. Species’ Vulnerability 

We adopted commonly used indices to quantify species’ vulnerability to future en-

vironmental conditions (among others [94,95]). Specifically, we estimated the relative 

change in area of potential distribution (change in suitable area, CSA) between current 

and future time periods as: 

������ ���������� ��

������� ��
, (1)

and the relative loss of area (loss of suitable area, LSA) as: 

1 − 
������ �� � ������� ��

������� ��
, (2)

where current SA is the number of pixels with currently suitable habitat, future SA is the 

number of pixels with suitable habitat in the future, and future SA U current SA is the 

number of pixels with suitable habitat in the present that persists in the future. 

All data preparation and analysis were performed in R version 4.0.3 [96]. 

3. Results 

3.1. Performance of the Grass Snake and Prey Species Models and Variable Contribution 

The abiotic and the biotic model for the estimation of the grass snake’s current po-

tential distribution were similar in terms of quality as measured by the TSS, AUC and 

specificity (Table 1). However, the biotic model outperformed slightly the abiotic in sen-

sitivity (Table 1). The ensemble models and the individual models predicting the distri-

bution of prey species performed adequately according to TSS and AUC scores (Table S4, 

Figure S2). Model uncertainties fluctuated among species (the coefficient of variation 

ranged between 2.15 and 66.47, Tables 1, S4) and in most cases, except for Bufo bufo, un-

certainty increased in the Iberian Peninsula and northern Europe (Figure S3). The biotic 

model for the grass snake exhibited lower uncertainty than the abiotic both as a mean 
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value and across the study areas (Table 1, Figure S3). The MESS maps for Natrix natrix 

occurrences showed that the extrapolation of model predictions was within the range 

used to calibrate the model, suggesting reliable predictions in most of the study area 

(Figure S4). Only in a few areas, mainly at areas of high elevation like the Alps mountains 

and areas with high aridity like the Iberian Peninsula, extrapolation exceeded this range 

(Figure S4). Environmental differences between model training and extrapolation were 

smaller for the abiotic model than the biotic in central and southern Europe (Figure S4). 

The AUC value of both ensemble models for Natrix natrix was higher than the 95% C.I. 

upper limit of the AUC values of the null models suggesting that both models differed 

significantly from random expectations compared to null models (Table 1). 

The annual mean temperature was the main predictor of grass snake distribution in 

the abiotic model (~53%) according to variable importance scores, with the species 

probability of presence showing a hump-shaped relationship with temperature (Table 1, 

Figure S5). On the other hand, in the biotic model, prey species richness had the greatest 

effect on the estimated grass snake distribution (~45%) with the probability of species 

presence increasing with increasing prey species richness (Table 1, Figure S5). In both 

models, isothermality contribution on predicting the potential distribution of grass snake 

was relatively high (~32% and ~26% in the abiotic and biotic model, respectively, ap-

proximately hump-shaped relationship) (Table 1, Figure S5). The cumulative contribu-

tion of temperature, prey species richness and isothermality was ~85%. In both models, 

the contribution of any of the remaining variables was smaller than 10% (Table 1). Species 

response to all variables was similar across model algorithms (FDA, GAM, GBM, GLM) 

and in both models (Figure S5). Regarding prey species, temperature and isothermality 

were the strongest predictors of their distribution in the majority of the species (Table S5). 

Table 1. Scores of evaluation metrics (True-Skill Statistic [TSS], Area Under the Curve (AUC), Sen-

sitivity [%], Specificity [%]) for the specified cut-off value, the coefficient of variation of the en-

semble model prediction averaged over the area of prediction, the 95% C.I. upper limit of AUC 

values by the null models, range size (number of pixels), the number of occurrences separately for 

GBIF and the European atlas [4] originally in the datasets, the number of presences kept in the 

modeling procedure and the variables’ importance (%) for the abiotic and biotic ensemble model 

for N. natrix rescaled to sum up to 100. The three most important variables are highlighted in bold. 

 Abiotic Biotic 

Statistics of Model Performance   

TSS 0.71 0.71 

AUC 0.94 0.94 

Cut-off 0.52 0.37 

Sensitivity 85.90 88.18 

Specificity 84.65 82.79 

Mean coefficient of variation 34.02 ± 30.01 24.41 ± 11.36 

95% C.I. upper limit AUC of null models 0.61 0.56 

Range size 2140.00 2201.00 

Presences 1228.00 1228.00 

GBIF occurrences 26064.00 26064.00 

Atlas occurrences 833.00 833.00 

Variable Contribution   

Mean annual temperature 52.76 14.91 

Mean diurnal range 2.79 0.01 

Isothermality 31.64 25.60 

Mean temperature of the wettest quarter 3.58 5.31 

Precipitation seasonality 2.26 3.36 

Precipitation of the warmest quarter 0.11 3.25 

Precipitation of the coldest quarter 5.02 2.71 

Elevation 1.12 0.15 

Coverage (%) of lakes 0.39 0.01 

Length of rivers 0.33 0.07 

Prey species richness - 44.61 
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3.2. Potential Distribution of Grass Snake and its Prey Under Current and Future Conditions 

The abiotic and biotic models predicted similar potential distribution of grass snakes 

under current conditions, with the spatial overlap of their estimations being approxi-

mately 91% (Table 2). The current potential distribution of the species according to the 

two models is presented in Figure 2a, and its future projected distribution under different 

dispersal scenarios in Figures 2b–e. The abiotic model predicted approximately 3% of 

additional pixels suitable for grass snake and the biotic 6% (Table 2). The inclusion of 

prey species richness resulted in a slight increase in the potential distribution of the grass 

snake (Table 1), with its potential distribution spanning a bit further in the south and east 

of Europe compared to the abiotic model estimation (Figure 2a). Both models predicted 

presence of the species in Italy and France as predictor variables did not include genetic 

information based on which N. natrix was divided in N. natrix and N. helvetica [60,97]. 

Furthermore, the discontinuities of the species distribution in the Balkan Peninsula are 

possibly impelled by the higher elevation in these areas and the associated decrease of 

mean annual temperature. The two models exhibited similar patterns of spatial overlap 

with prey species richness (Figure 3a). The highest overlap was observed in central Eu-

rope, the northern Balkans, and Sweden, but at least one prey species is present in almost 

all of Europe (Figure S6a and Figure S7 for the predicted distribution of each species in-

dividually). The spatial overlap of the grass snake’s potential distribution with its prey 

under future environmental conditions is presented in Figures 3b–e. 

In the no dispersal scenario, the two models predict similar future potential distri-

bution of the grass snake (Table 2). The species distribution in central Europe becomes 

more discontinuous with time according to both models (Figure 2d,e). However, the 

grass snake is anticipated to lose parts of its current distribution in the east, according to 

the biotic model, and in the south, according to the abiotic model (Figures 4d,e). Fur-

thermore, the biotic model estimates larger losses than the abiotic, i.e., almost 26% and 

42.5% of its current distribution by 2060 (Figure 2d, Figure 4c) and 2080 (Figure 2e, Figure 

4d) respectively. In this case, prey species were also subjected to the no dispersal limita-

tion and are expected to suffer range contraction. In the future, the grass snake overlap 

with its prey differs between models (Figures 3d,e). The abiotic model predicts losses of 

grass snake distribution in the south, where prey species richness is anticipated to be 

higher compared to eastern Europe (Figures 2d,e and Figures S6c,e), and thus, lower 

co-occurrence of predator with high prey species richness is expected (Figures 3d,e). On 

the other hand, the biotic model predicts losses of both predator and prey species in the 

same areas, i.e., in the east (Figures 2d,e and Figures S6c,e), resulting in an increased 

overlap of the predator with at least four prey species (Figures 3d,e). 

In the unhindered dispersal scenario, there was a slightly lower disagreement in the 

predictions of the future potential distribution of grass snake provided by the abiotic and 

biotic model than the no dispersal scenario (Table 2). In this case, the grass snake still 

counts losses south and east depending on the model but expands further to the north 

according to both models (~3% increase and 3% decrease in range size by 2080 for the 

abiotic and biotic model respectively; Figure 2c and Figure 4b). In the biotic model, the 

species exhibits patchy distribution in the east, while discontinuities are predicted by the 

abiotic model in the south, analogous to the no dispersal scenario (Figures 2b,c). Apart 

from the northward expansion expected for the predator and its prey in the unhindered 

dispersal scenario (Figures 2b,c, Figures S6b,d), prey species richness distribution within 

the predator distribution was similar in both dispersal scenarios (Figures 3b–e). 
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Table 2. Spatial overlap (%) of Natrix natrix potential distribution for current conditions and future 

projections as predicted by both models and dispersal scenarios and the respective mismatch for 

each model. 

 Abiotic Model Biotic Model Spatial Overlap 

Current 3.13 5.81 91.07 

Dispersal Scenario    

2060 13.31 11.98 74.71 

2080 17.50 15.19 67.31 

No Dispersal Scenario    

2060 16.84 12.78 70.39 

2080 23.35 18.15 58.50 

 

Figure 2. The potential distribution of grass snake as predicted by the abiotic and biotic Species Distribution Model for 

different time periods: (a) current time period; and by 2060 and 2080 respectively assuming: (b,c) unhindered dispersal; 

and (d,e) no dispersal of the species. Scale: 1:110,000,000. 
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Figure 3. Spatial overlap (%) of N. natrix predicted potential distribution with prey species richness: (a) under current 

conditions; and by 2060 and 2080 respectively assuming: (b,c) the unhindered dispersal scenario; (d,e) the no dispersal 

scenario. 

 

Figure 4. Grass snake’s vulnerability to climate warming according to the abiotic and biotic model assuming unhindered 

and no dispersal of the species. Vulnerability is measured as follows: (a,b) relative change (CSA); and (c,d) relative loss 

(LSA) of its potential distribution by: (a,c) 2060; and (b,d) 2080. 

4. Discussion 

Species distributions at broad scales are considered to be driven by abiotic factors, 

where biotic interactions, that manifest at local scales and diminish at broad scales, add 

only noise to SDMs [25]. However, a series of studies have demonstrated that biotic in-

teractions affect species distributions across spatial scales [26,27,31–33]. Our results 

showed that the Species Distribution Model of Natrix natrix, including prey species 

richness, had similar performance with the one including only abiotic variables. Both 

models performed well, i.e., differentiated strongly species presences and absences. 
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The similar performance of biotic and abiotic SDM might be due to the type of in-

teraction explored here, i.e., predator-prey, and the feeding ecology of the grass snake, 

i.e., a generalist snake. The effect of biotic interactions across scales depends on the type 

of interaction, and a positive interaction is more probable to scale up than a negative in-

teraction [98,99]. Predator-prey is a consumer-resource interaction, meaning that is posi-

tive for the predator and negative for the prey, and if it scales up it depends on the net 

effect of the interaction [98]. Furthermore, the role of biotic interactions on species dis-

tribution has been related to the degree of a species’ specialization [26,100,101]. The grass 

snake’s trophic generalization might explain why the inclusion of prey species richness 

did not improve the SDM. Studies that reported that predator-prey interaction is im-

printed on the species distribution at broader spatial scales focused primarily on trophic 

specialists, e.g. [29,31]. For instance, Gherghel et al. [31], who proposed the incorporation 

of prey species richness into SDMs, used as target species sea kraits, i.e., snakes that are 

trophic specialists, and found that the inclusion of prey species richness improved the 

model’s quality only slightly. 

Temperature was the top driver of the distributional pattern of grass snake in the 

abiotic model, while isothermality also played a role. Reptiles depend strongly on the 

local temperature to regulate their body temperature [102], with other aspects such as 

metabolic rate, sex determination, and nesting depending on temperature as well. Tem-

perature is a strong limiting factor in the northern part of their distribution (cold physi-

ological limit) [103,104] and other factors, e.g., biotic interactions drive the southern limit 

of their distribution [105,106]. It seems that the presence of the grass snake is favored up 

to a mean annual temperature ranging approximately 4–11 °C (this depends on the 

model used to estimate its distribution), and also from smaller levels of isothermality, 

perhaps in order to retain activity. Therefore, the grass snake can survive in a wide array 

of thermal conditions, as it is also reflected by its wide distribution, i.e., from warmer 

conditions, like those prevailing in the Mediterranean, to cold, e.g., Scandinavia. Alt-

hough the biotic SDM did not perform better than the abiotic, the prey species richness 

was the most important driver of grass snake distribution, contributing approximately 

45% to the SDM. The distribution of the majority of prey species and the predator (ac-

cording to the abiotic model) is driven by similar predictors (temperature and isother-

mality). These species seem to thrive in the same areas dictated by their thermal biology, 

and this perhaps can explain the similar performance of abiotic and biotic SDMs, i.e., 

although the species interact, the similar environmental niches might partially mask the 

imprint of biotic interaction on the broad-scale distribution of this generalist predator. 

Both models predicted shifts of the grass snake’s distribution under the climate 

change scenario assuming unlimited dispersal, and losses assuming no dispersal. Under 

the no dispersal scenario, the species is projected to suffer range contraction by 2080, 

while under the unhindered dispersal scenario, the losses of current distribution will be 

compensated by expansion to the north. According to the abiotic model with no disper-

sal, range contraction is inevitable in the face of climate change with the species losing a 

large part of its current distribution in the Balkan Peninsula by 2060 and approximately 

37% of its current distribution by 2080. However, if the species can disperse freely, it is 

expected to expand into new areas northwards and eastwards; in the latter case, losing 

simultaneously to the south until 2080. Note that the unhindered dispersal scenario used 

here is in congruence with the limited dispersal assumed for amphibians by Thuiller et al. 

[107], i.e., 20 km/year, and a suggestion made by Smith and Green [108], i.e., 10 km/year 

for amphibian dispersal ability, although reptiles are considered poor dispersers [17,109] 

with reported maximum dispersal of 3 km to our knowledge [110]. In the case of a biotic 

model, grass snake is anticipated to retain the southern parts of its distribution, but to 

become extinct in the east. Assuming no dispersal, the species will suffer a range of con-

traction (similar to the abiotic model), but it will expand northwards if it can disperse. 

The two models exhibited differences regarding the distribution in the south which were 

sharpened by 2080. Specifically, the biotic model predicted a distribution with a further 
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southern edge than that of the abiotic model. Perhaps, although future climatic condi-

tions exceed the physiological limits of the species there, the presence of some prey mit-

igates them. This is in congruence with the finding that the southern range limits of 

amphibians and reptiles are determined by species interactions (see Cunningham et al. 

[105] and references therein). 

Snakes and reptiles, in general, are considered to globally decline [51,109] due to 

climate change and induced changes (e.g., habitat loss, prey availability), while regional 

declines in grass snakes have been reported [111]. Even assuming that the species can 

disperse unhindered based on their dispersal ability, habitat loss and fragmentation and 

land-use changes, which are among the main drivers of the global decline of amphibians 

and reptiles [112], might render the expanded suitable space inaccessible [113]. Therefore, 

the dispersal ability of species and connectivity will crucially affect the future distribu-

tion of the species [17,114]. It seems that climate warming along with the ongoing habitat 

fragmentation [115] minimizes the reptiles’ chance to move to areas with suitable envi-

ronmental conditions [17,110]. This is vividly depicted by the range contraction projected 

by the SDMs assuming no dispersal. Furthermore, global warming might favor reptiles 

by increasing the available suitable area for them but can negatively impact phenolo-

gy-related aspects resulting in higher metabolic rates and skewed sex ratio due to their 

temperature-dependent sex determination [50,115,116]. Although adaptations to these 

changes have “rescued” reptile species from historic climate warming events, a timely 

adaptation is not the most probable scenario [50,117–119]. 

5. Conclusions 

We found a similarly good performance of the biotic and the abiotic Species Distri-

bution Model predicting the distribution of the generalist Natrix natrix. However, the 

prey species richness was the top driver of grass snake distribution, highlighting the role 

of the prey availability in shaping species distribution. Temperature and isothermality 

played a significant role in shaping the grass snake distribution in all cases. The abiotic 

and the biotic model predicted a northward shift of the species distribution under climate 

change assuming unlimited dispersal, but severe range contractions in the case of no 

dispersal. Our results highlighted that biotic interactions and dispersal ability are 

game-changers in future projections of species distributions and should be included in 

SDMs. However, they differ widely among taxonomic groups and regions and cannot be 

collectively modeled for different taxonomic groups. Thus, more taxon and re-

gion-specific studies are needed if we want to predict a species’ response to climate 

warming and develop effective conservation strategies. 
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