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1. Introduction

Since the dawn of the discipline, biogeographers have wondered at the widespread dis-
tribution of galaxiid fishes throughout temperate regions of the Southern Hemisphere [1,2].
Much of the endemic flora and fauna was at first shoe-horned into familiar groups by
colonists. Galaxiids were variously classified as trouts, gudgeons, minnows and pikes,
compounding the problem of how they became so widely dispersed, before their discrete
taxonomic identity and diadromous life history became clear [3,4]. Further important
clarification of taxonomy and natural history became the life’s work of the late Bob Mc-
Dowall [5–9]. Application of molecular techniques has helped to clarify galaxiid species
boundaries and provided evidence for many new species, particularly stream-resident
species whose ancestors lost diadromy [10–16]. More recently, DNA sequence data have
formed the basis for time-calibrated phylogenies that answer some biogeographical ques-
tions and resolve the evolution of diadromy and its loss [17–20]. These give a better baseline
for further investigating the evolutionary biology of this fascinating group of fishes and
some of the interesting features that they show [21–24].

2. Palaeontology

Next to taxonomy and current distribution, fossils form a foundation to all evolution-
ary and biogeographic study. Given the widespread distribution of galaxiids across the
Gondwanan continent, it is perhaps surprising that all undisputed galaxiid fossils found so
far [25–28] herald from present-day New Zealand, a small remnant of the continent Zealan-
dia [29–31]. This may in part reflect the importance of the region as a centre of origin, given
that the group is predominantly cool-temperate in current distribution, and climates have
been warmer over most of the last 50 million years since the Eocene. Apart from a New
Caledonian species, galaxiids are limited to southern parts of South America, Africa and
Australasia [8], and genetic diversity within the diverse G. vulgaris [32] and G. olidus [12,13]
complexes show strikingly higher genetic diversity to the south. Additionally, the extensive
system of Miocene freshwater lakes with marine links, making up part of what is today
Otago (South Island, New Zealand), offered wonderful conditions for preservation, with
fine sediments in a low-energy environment.

In this Special Issue, Kaulfuss et al. [33] review the history of these fossil discoveries,
describing the location, stratigraphy, sedimentology and age of the sites. They list the
galaxiid species found, and the number and type of fossils and their preservation type
(body fossils, otoliths, coprolites). In addition to eight named species known from fossils
alone, the authors give preliminary descriptions of four or five likely new species. These
fossils provide an important record of the paleodiversity and paleoecology of the region,
as well as the biogeographic history of galaxiids in New Zealand.

3. Biogeography

Molecular analyses of extant galaxiid species suggest a mix of vicariant and dispersive
origins at a global level [15,17,20,29,31]. Within New Zealand, the dynamic nature of the
geology, especially rapid fault movement, uplift and erosion, has driven major changes
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in hydrology. Waters, Burridge et al. [34] review 20 years of research focused on the
effects of the changing topography on the galaxiid fauna. On a broad scale, two species of
pencil galaxiid (G. paucispondylus, G. divergens) and two mudfish (N. burrowsius, N. apoda)
either side of the Southern Alps probably arose in allopatry with uplift along the Alpine
Fault over the last 5+ myrs [35]. In particular, several likely incidences of river capture
have been inferred from combining geological and molecular analyses through ‘reciprocal
illumination’. These changes of course have led to isolation and subsequent divergence of
some lineages, such as the Teviot and Nevis Valley galaxiids [36], which are of conservation
significance and possibly merit species status. Even in Australia, where such geological
processes are slower and more subtle, there is evidence of hydrological evolution leading
to biological evolution. For example, G. oliros, sister to the G. olidus complex, likely
formed as an inland remnant in the Douglas Basin once the Murray-Darling cut its new
and current path to the sea through the Murray Gorge to the west. The fast-evolving
mtDNA genome has been key to dating such events, even those as recent as the last
glaciation. For example, populations of both G. divergens and G. vulgaris ‘northern’ show
parallel divergence between the upper Clarence and Wairau rivers (Marlborough, New
Zealand), following glacial retreat and severing of links between the two systems. Vera-
Escalona, Delgado et al. [15] review population genetic structure of South American
galaxiids, including how de-glaciation has led to river reversals from Atlantic to Pacific
sides of South America. G. maculatus shows a strong signal of reduced diversity in areas
that were glaciated despite its diadromous life history enabling rapid re-colonisation. G.
platei shows an east–west split across the Andes of about 1.5 myrs, and similar evidence
of retreat to glacial refugia, but its post-glacial re-colonisation has been rapid for a strictly
freshwater species.

4. Morphological Differentiation and Plasticity

As well as having a wide latitudinal range, galaxiids can be found in a wide range of
aquatic habitats, including soft-bottomed volcanic and rocky post-glacial lakes; riffles and
pools in river margins and small fast-flowing streams; intermittent and permanent water-
courses; tidal inlets, swamps, estuaries and streams. Fossils abound in the Otago volcanic
maar sites, and the type location for G. anomalus Stokell is a farm drain. G. brevipinnis shows
great climbing ability, traversing vertical faces of concrete dams and weirs, penetrating
far up-river systems and waterfalls to high altitudes. Other species, like G. prognathus,
may be able to survive drought conditions in the hyporheos; Neochanna mudfish and
Lepidogalaxias go one step further, aestivating in dried mud deposits. A review of the South
American galaxiids by Cussac, Barrantes et al. [37] exemplifies the breadth of habitats
occupied. These sorts of tolerances and behaviours have protected some threatened species
from competition and predation by brown trout in particular, which prefer cooler more
predictable conditions, and are excluded from sections above waterfalls in streams [38],
unless deliberately transferred there. Adaptability to different habitats can be found within
species, such as G. gollumoides McDowall and Chadderton, originally described from a
swamp on Stewart Island, New Zealand, but common in lowland and upland sections of
streams in Southland, New Zealand.

Dunn, O’Brien et al. [39] address phenotypic plasticity in G. gollumoides driven by wet-
land and stream habitats using reciprocal transfer experiments and detailed morphometric
analysis over 3+ years. In the wild, adult G. gollumoides in streams tend to have smaller
and flatter heads with smaller eye orbits than the stockier wetland fish. Using wetland and
stream larvae raised to adulthood in either flowing or still tanks, wetland larvae raised in
stream-like conditions converged toward the stream MDS centroid for 19 morphological
characters, consistent with adaptive plasticity. The stream larvae raised in still conditions,
however, diverged away from both centroids, though convergent on wetland in dimension
2 alone. Sample sizes and effects were small, so conclusions should be treated with caution,
but convergence in higher-flow regions likely reflects more constraint on morphology.
The limits to body form are likely narrow in more rapid flow, just as marine vertebrates
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show convergence of body form for streamlining. The paper also contrasts ontogenetic
trends for fin characters between the two forms, showing a variety of convergent, divergent
and parallel trajectories.

Counter-intuitively, phenotypic plasticity is of great potential evolutionary signifi-
cance: it increases the breadth of environments in which the organism can survive. As such,
it can be the starting point for morphological divergence, differentiation and ultimately
speciation. If body form is persistently pushed towards one end of the spectrum of plastic
response, then concomitant genetic change will occur that begins to lock that phenotype in
place, and indeed adapt it further by Darwinian selection. This scenario can be thought of
as genes being the “followers of evolution” [40]. Two other papers in this issue also draw
attention to plasticity of G. maculatus, in relation to its widespread distribution [15,37]

This mode of evolution has probably been important in the evolution of fishes in
general [41], given their remarkable morphological plasticity, including the G. vulgaris
group (sensu Allibone and Wallis [10]), which divide naturally into flathead and roundhead
groups [11,42–44]. A second paper by Dunn, O’Brien et al. [45] focuses on how lentic and
lotic habitats alternatively impact upon morphological differentiation in flathead G. vulgaris,
roundhead G. gollumoides and the ancestral diadromous G. brevipinnis form. Each species
showed some significant intraspecific morphological differentiation across several of a
subset of 25 out of 35 morphological characters. Nineteen characters showed convergence
across all species; only one character was significantly divergent (body width at vent).
Lentic Galaxias had longer bodies, stouter caudal peduncles, longer and narrower pectoral
fins, and longer, wider heads with larger mouths. These results likely reflect widespread
phenotypic plasticity, but could also include some longer-term genotypic adaptation to
local hydrological conditions, the fore-runner of speciation. The results parallel findings in
other Galaxias, Paragalaxias and Neochanna.

Both of these papers [39,45] show the dangers of basing taxonomy of closely related
species on morphology alone: convergence of body form may result in under-splitting
whereas divergence due to intraspecific differentiation could lead to over-splitting. Full
resolution of the number of galaxiid species in the vulgaris group in New Zealand, olidus
group in Australia and zebratus group in South Africa will require detailed genetical data,
though even then, it is difficult to decide where to draw the line with allopatric replace-
ments. One criterion might be to demand evidence of additional morphological (or other
adaptive) differentiation despite parallel existence in similar environments [46]. Past hy-
bridization, particularly through river capture [34,36,47,48] or human modification [49]
might conflate these attempts, but a genomic biogeographic approach should allow this
history to be resolved.

5. Conservation

The papers in this Special Issue show how galaxiids are a distinctive evolutionary
element in global fish diversity, as well as playing important functional roles in the fresh-
water ecosystems of southern lands. From both viewpoints, we should cherish and protect
remaining populations. Introduced salmonids have been recognized as a threat for many
years [8], and these continue to increase with expanding aquaculture and damming fol-
lowed by stocking of reservoirs [15]. In addition, there is a growing list of more recently
introduced species threatening galaxiid populations worldwide, including carp, catfish,
characins, cyprinodontiforms and atherinopsids [37]. Volcanic lakes of North Island New
Zealand were once burgeoning with lake forms of G. brevipinnis, an important resource to
Maori, but now decimated by trout [50]. Intensification of farming, particularly dairying in
New Zealand, has further marginalized mudfish populations and increased run-off into
waterways. As a result, nitrification and pesticide residues threaten remaining galaxiid pop-
ulations. Recent years has seen the added threat of climate change, which has contributed
to the loss of northern population of G. maculatus in Chile and Argentina, exacerbated by
enabling the southern spread of invading species [37].
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6. Parasitology

Since nearly every non-parasitic metazoan has at least one species-specific metazoan
parasite, the global diversity of the latter group probably exceeds that of the former. In a
review of galaxiid parasites, Paterson, Viozzi et al. [51] show that at least half of all species
have parasites described from them. The number of parasites discovered in a species re-
flects the geographic range of that species and intensity of research, with 23 parasite species
described from G. maculatus across 14 studies. The wide range of parasites found in galaxi-
ids includes several macroparasites (e.g., acanthocephalans, cestodes, copepods, molluscs,
monogeneans, nematodes, trematodes, leeches) and microparasite groups (e.g., myxozoans,
ciliates). The authors support idea of an online database of species and their hosts, and
a broadening of attitudes to treat parasites as an important component of diversity in
themselves, rather than simply threats to the fish species that they infest.

7. Future Work

Reviews in this Special Issue show different degrees of knowledge for different aspects
of galaxiid biology. We have a much fuller picture of taxonomy, phylogeny and phylogeog-
raphy, thanks to application of molecular genetics [15,34,37]. There may well be isolated
populations of non-migratory forms yet to be discovered [52], and the African situation
needs more work [53]. Genomic data will clarify finer-scale relationships and structure
in more detail, and assess the importance of past hybridisation in the evolution of the
group [49,54]. More importantly, genomics will allow us to address the underlying genetic
basis of diadromy, more specifically its loss [55,56]. Genes involved in species becoming
stream-resident are excellent examples of speciation genes in the true sense of the word,
since long-term landlocking almost inevitably leads to allopatric speciation. Genomics
will also allow us to address the underlying basis of physiological adaptation, particularly
related to changing osmotic [57] and disease [55] challenges.

To a certain extent, genomics releases us from the tyranny of model species; this
freedom is important in allowing us to build a fuller understanding of diversity across
all forms of life. Galaxiids have much to offer the full range of biological research with
their fascinating life-history, biogeography and evolution. The biggest challenge of the next
few decades will be preserving their dwindling populations under the manifold threats to
freshwater ecosystems [58].
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