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Abstract: Herbicide usage in rice fields over time may have a direct and indirect influence on the
biodiversity of the fields. The impacts of herbicide usage on non-target organisms were assessed by
examining the species richness and zooplankton density of two rice fields. One was 2.08 hectares in
size and had been treated with pesticides during the sampling year (RF-PA). The second field, measur-
ing 1.76 hectares, had received no pesticide treatment (RF-NPA). Every two weeks, zooplankton was
quantitatively collected from ten sampling sites in each field. At each station, 20 L of measured water
was filtered through a plankton net with a mesh size of 20 µm and preserved in 1% Lugol’s solution.
The results revealed that RF-NPA and RF-PA had 112 and 88 species of zooplankton, respectively,
with an abundance-based Jaccard index (Jabd) of 0.438. The total zooplankton density in RF-NPA
was 24.4 ind./L, significantly higher than the 16.6 ind./L in RF-PA (p < 0.001). The Shannon-Wiener
diversity index (H’) and evenness (J) were highest in RF-NPA at the second sampling (3.45 and 0.75,
respectively). These results indicate that glyphosate application affects the diversity of species and
density of zooplankton in rice fields.

Keywords: diversity; herbicide; temporary water; Thailand

1. Introduction

Insect infestation, weed competition, and fungal and bacterial pathogens are serious
problems that lead to reduced rice production [1]. These problems are often solved by
applying a wide range of pesticides to protect rice crops [2]. The quantity of pesticides used
conforms to the number of pesticides imported into Thailand. Herbicides, insecticides, and
fungicides are the main three pesticide imports [3]. In addition, it is a common practice
to drain rice-field water into irrigation canals. From there, the water eventually flows
into freshwater systems, causing rice fields and any surrounding water bodies to become
severely contaminated with numerous types of pesticides [4]. In general, many pesticides
are not only designed and developed to eradicate specific target pests, but also produce
side effects on non-target organisms [5]. Thus, the contaminated water from rice fields can
directly and indirectly affect small organisms as well as zooplankton [6].

Zooplankton play a critical role as a primary consumer in the food webs of an aquatic
ecosystem [7]. Based on their community structures, rotifers, cladocerans, and some
copepods are essential components of temporary habitats, and have a high diversity in
temporary waters [8,9]. In the field of chemical monitoring, species richness and the density
of zooplankton can be used as biological parameters that indicate the extent of substance
contamination in aquatic environments [10,11]. The sensitivity of each zooplankton to
chemicals appears to vary. For instance, some rotifers have been found to be more sensi-
tive to pharmaceuticals than cladocerans [12]. Likewise, several cladoceran species have
exhibited a significant increase in their populations after herbicide exposure (e.g., glifosato
atanor and butachlor), whereas rotifers have demonstrated a reduction in only a small
number of individuals [13,14]. The sensitivities of the developmental stages of copepods
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are also distinct: copepod nauplii have been found to be more sensitive to glyphosate
herbicide than copepodites and the adult stages [15].

Previous investigations of the effects of herbicide application on zooplankton com-
munities have been conducted in small areas of artificial microcosms. Rotifers appear to
be more sensitive to pesticides than microcrustacean zooplankton, such as cladocerans
or copepods [13,14,16]. Thus, we hypothesized that pesticide application might affect the
community structure of zooplankton on the larger scale of a rice field. To evaluate this
hypothesis, we compared the effects of pesticide application on the zooplankton assem-
blages of two rice fields. One had pesticides applied during the sampling year (RF-PA),
while the other field had not received any pesticides during the year preceding the study
(RF-NPA). We also compared environmental factors between the fields. The findings were
used to assess the effects of pesticide application on the primary consumers in the rice field
ecosystem.

2. Materials and Methods
2.1. Study Sites

The two rice fields are situated in Ban Non Lukki, Than Lalot Subdistrict, Phimai
District, Nakhon Ratchasima Province, in Northeastern Thailand. One was 1.76 ha in
size, had no pesticides applied for at least one year before the sampling of this study
(RF-NPA: “Rice Field Non-Pesticide Application”), and was located at 15◦10′55.1′′ N and
102◦23′46.7′′ E. The other field, located was at 15◦10′45.0′′ N and 102◦23′46.1′′ E, was 2.08 ha
in size, and had pesticides applied during the sampling year (RF-PA: Rice Field Pesticide
Application). These two rice fields are situated at an elevation of 146 m. RF-NPA is only
about 55 m at its closest point to RF-PA (Figure 1). Both fields had historical pesticide and
herbicide applications (viz., chlorpyrifos and glyphosate) for at least ten years. Rice (Oryza
sativa L. cv. KDML 105) that had been planted prior to the field samplings developed
into the reproductive phase at days 99 and 106 in RF-NPA and RF-PA, respectively. In the
case of RF-PA, chlorpyrifos (an insecticide, 40% w/v) with a 0.48 L/ha application rate had
been used at the seedling stage, and glyphosate (a herbicide, 48% w/v) with a 1.7 L/ha
application rate, had been applied at the reproductive stage.
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2.2. Zooplankton Sampling and Identification

Zooplankton were quantitatively collected every two weeks from 10 sampling stations
in each field. The first sampling (14 October 2018) was conducted one week after the
application of glyphosate. After the second sampling period, the water in both rice fields
dried out. At each sampling station, 20 L of sampled water were filtered through a plankton
net (20 µm mesh size) before being preserved in 1% Lugol’s solution. All the zooplankton
in the 40 samples were sorted, identified, and counted under a compound light microscope.
Copepod specimens were dissected under a stereomicroscope using diluted glycerol as the
mounting medium. Identification keys [17–21], as well as research papers (e.g., [22,23]),
were used to identify the species.

2.3. Water Quality Measurement

Eight environmental variables were measured before collecting the water samples
from the two fields. The water temperature (◦C), electrical conductivity (EC; µS/cm), and
total dissolved solids (TDS; mg/L) were measured with a multi-parameter meter, Hanna
HI 98129, Hanna Instruments Inc., Woonsocket, RI, USA. The pH was measured with a
pH meter, Index ID 1000, USA. Dissolved oxygen (DO; mg/L) and biochemical oxygen
demand (BOD; mg/L) were determined by using the Winkler titration method [24]. Nitrate
(mg/L) was analyzed colorimetrically with a spectrophotometer, Hach DR/2400, Hach
Company, Loveland, CO, USA following the cadmium reduction method. Chlorophyll a
content (µg/L) was determined by using an extracted-methanol method [25]. Pesticide
residue in water (mg/L) was detected by using the gas chromatography-flame photometric
detector (GC-FPD) method.

2.4. Data Analysis

The paired sample t-test and the independent-samples t-test were utilized to compare
the differences in species richness, zooplankton density, and environmental variables of
RF-NPA and RF-PA. The Spearman’s rank correlation analysis was used to determine the
linear direction of the association between nitrate and chlorophyll a content. The data
analyses were performed using IBM SPSS Statistics for Windows (version 26.0; IBM Corp.,
Armonk, NY, USA). In addition, the abundance-based Jaccard similarity index (Jabd) [26]
was used to measure the similarity in the species compositions of the zooplankton of
RF-NPA and RF-PA. The Shannon-Wiener diversity index (H′) [27] and Pielou’s evenness
index (J) [28] were used to express species diversity and species-abundance distributions of
zooplankton in the rice fields. In addition, the Sørensen−Dice index (Cs) [29] was applied
to express the similarity in the species composition of the first and second samplings
from each rice field. Additionally, the Dominance Candidate Index (DCi) [30] was used to
ascertain the dominant species in each community. Furthermore, species accumulation [31]
and the estimators of Chao, Chao2, Jacknife1, Jacknife2, and Bootstrap [32] were used to
determine the number of species of zooplankton that could be found in each rice field. The
calculations were performed with RStudio (version 3.6.1, RStudio, Boston, MA, USA).

3. Results
3.1. Environmental Factors of Rice Fields

The independent samples t-test indicated that there were no significant differences
between RF-NPA and RF-PA in terms of water environmental factors (p > 0.05) in both the
first and second samplings. The results of the paired sample t-test showed that the first
sampling of RF-PA revealed a significantly higher value of EC than the second sampling
(t(2) = 4.671, p = 0.041) with 667.67 µS/cm and 519.67 µS/cm, respectively. In RF-NPA, the
first sampling revealed a higher value of water temperature, EC, and TDS than the second
sampling; on the other hand, DO, nitrate content, and chlorophyll a content had signifi-
cantly lower values in the first sampling than in the second sampling (p < 0.05) (Figure 2).
The dissolved oxygen of both RF-NPA and RF-PA did not exceed 3.0 mg/L in the first and
second samples. Nitrate content had a positive relationship with chlorophyll a (r = 0.665;
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p = 0.018). The water depth in RF-PA was around 20 cm during the first measurement, and
dropped during the second sampling (15 cm). The water in RF-NPA, on the other hand,
was around 30 cm deeper than in RF-PA, and the water level remained rather consistent
for both the first and second sampling periods. The presence of organophosphate pesticide
was not detected in the water samples from either RF-NPA or RF-PA.
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3.2. Zooplankton Community Structure in RF-NPA and RF-PA
3.2.1. Species Composition

The species richness of the zooplankton of RF-NPA was higher than that of RF-PA
(112 and 88 species, respectively) (Table 1). Both fields demonstrated a rather low similarity
of species composition, achieving 0.434 with the abundance-based Jaccard similarity index
(Jabd). Figure 3 depicts some of the zooplankton species found in the rice fields. A total
of 112 species were found in RF-NPA, comprised of rotifers (79 species), cladocerans
(21 species), and copepods (12 species). By comparison, 88 species, including 61 rotifers,
17 cladocerans, and 10 copepods, were found in RF-PA (Table 2). The total number of
species in RF-NPA and RF-PA demonstrated a significant difference in the second sampling
(p = 0.005). Based on relative richness, rotifers were the major component of zooplankton
in both rice fields, with 70.5% in RF-NPA and 69.3% in RF-PA.

Table 1. The list of zooplankton species in RF-NPA and RF-PA. The numbers 1, 2, 3, and 4 represent the first sampling
RF-NPA, the second sampling RF-NPA, the first sampling RF-PA, and the second sampling RF-PA, respectively.

Scientific Name

Rotifers L. pyriformis (Daday, 1905) 2 Tripleuchlanis plicata (Levander, 1894) 1,2

Anuraeopsis fissa Gosse, 1851 2 L. quadridentata (Ehrenberg, 1830) 1,2,3,4 Cladocerans

Asplanchnopus multiceps (Schrank,
1793) 1,2,3,4 L. signifera (Jennings, 1896) 2,3 Anthalona harti van Damme, Sinev &

Dumont 2011 1,2,3,4
Beauchampiella eudactylota (Gosse,

1886) 1,2,3,4 L. stenroosi (Meissner, 1908) 3

Brachionus angularis Gosse, 1851 2 L. tenuiseta Harring, 1914 1,2,3,4 Chydorus eurynotus Sars, 1901 2,3,4

B. quadridentatus Hermann, 1783 1,2,3,4 L. thienemanni (Hauer, 1938) 1,2 Coronatella acuticostata (Sars, 1903) 1,2,3,4

B. quadridentatus mirabilis Daday, 1897 1,2,3 L. unguitata (Fadeev, 1926) 1,2,3,4 C. rectangular (Sars, 1861) 3

Cephalodella forficula (Ehrenberg,
1830) 1,2,4 Lepadella akrobeles Myers, 1934 1 Dadaya macrops (Daday, 1898) 3

C. gibba (Ehrenberg, 1830) 1,2,3,4 L. apsicora Myers, 1834 1 Diaphanosoma excisum Sars, 1885 1

Colurella obtusa (Gosse, 1886) 1,2,3 L. apsida Harring, 1916 1 D. senegal Gauthier, 1951 4

C. sanoamuangae Chittapun, Pholpunthin
& Segers, 1999 1,2

L. costatoides Segers, 1992 1,2,3 Dunhevedia crassa King, 1853 1

L. discoidea Segers, 1993 1,2,3,4 Ephemeroporus barroisi (Richard,
1894) 1,2,3,4

C. uncinata (Müller, 1773) 1,2,3,4 L. ovalis (Müller, 1786) 1,2,4 Euryalona orientalis (Daday, 1898) 2

Dipleuchlanis propatula (Gosse, 1886) 1,2,3,4 L. patella (Müller, 1773) 1,2,3,4 Grimaldina brazzai Richard, 1892 1,2

Euchlanis incisa Carlin, 1939 2,3,4 L. rhomboides (Gosse, 1886) 1,2,3,4 Ilyocryptus spinifer Herrick, 1882 1,2,3,4

Hexarthra mira (Hudson, 1871) 2 L. triba Myers, 1934 1 Karualona karua (King, 1853) 1,2,3,4

Keratella cochlearis (Gosse, 1851) 2,3 L. triptera (Ehrenberg, 1832) 1,2 Kurzia brevilabris (Rajapaksa & Fernando
1986) 1,2,3

K. lenzi Hauer, 1953 2,3,4 L. voigti Hauer, 1931 1,2,4 Latonopsis australis Sars, 1888 3

K. tecta (Gosse, 1851) 2 Lophocharis salpina (Ehrenberg, 1834) 1,2,3,4 Leberis diaphanus (King, 1853) 1,2

K. tropica (Apstein, 1907) 2,3 Macrochaetus danneelae Koste & Shiel,
1983 3,4 Leydigia acanthocercoides (Fischer, 1854) 1

Lecane arcula Harring, 1914 1,2 Monommata grandis Tessin, 1890 1,2 Macrothrix spinosa King, 1853 1,2

L. baimaii Sanoamuang &
Savatenalinton, 1999 1,2

M. longiseta (Müller, 1786) 1,2,3,4 M. triserialis Brady, 1886 1,2,3,4

Mytilina bisulcata (Lucks, 1912) 1,2 Moina micrura Kurz, 1874 1

L. bulla (Gosse, 1851) 1,2,3,4 M. trigona (Gosse, 1851) 1,2,4 Moinodaphnia macleayi (King, 1853) 1,2,3,4

L. closterocerca (Schmarda, 1859) 1,2,3,4 M. unguipes (Lucks, 1912) 1,2 Ovalona cambouei (Guerne & Richard,
1983) 1,2,3,4

L. crepida Harring, 1914 1,2,3,4 M. ventralis (Ehrenberg, 1830) 1,2,3,4 Pseudosida szalayi Daday, 1898 1,2,3,4

L. curvicornis (Murray, 1913) 1,2,3,4 Plationus patulus (Müller, 1786) 1,2,3,4 Scapholeberis kingi Sars, 1903 1,2,3,4

L. elegans Harring, 1914 1,2 Platyias leloupi Gillard, 1957 1,2,3 Simocephalus serrulatus (Koch, 1841) 1,2,3,4

L. haliclysta Harring & Myers, 1926 3 P. quadricornis (Ehrenberg, 1832) 1,2,3,4 Copepods

L. hamata (Stokes, 1896) 1,2,3,4 Polyarthra vulgaris Carlin, 1943 1,2,3,4 Ectocyclops rubescens (Brady, 1904) 1,2,3,4
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Table 1. Cont.

Scientific Name

L. hastata (Murray, 1913) 1,2,3 Scaridium longicaudum (Müller,
1786) 1,2,3,4

Elaphoidella intermedia Chappuis,
1931 1,2,3,4

L. hornemanni (Ehrenberg, 1834) 1,3 Sinantherina spinosa (Thorpe, 1893) 1,2,3,4 Eodiaptomus draconisignivomi Brehm,
1952 1,2,3

L. inopinata Harring & Myers, 1926 1,2,3,4 Squatinella lamellaris (Müller, 1786) 2 Heliodiaptomus elegans Kiefer, 1935 1,2,3

L. lateralis Sharma, 1978 1,2,3,4 Testudinella ahlstromi Hauer, 1956 1,3 Mesocyclops affinis Van de Velde,
1987 1,2,3,4

L. leontina (Turner, 1892) 1,2,3,4 T. greeni Koste, 1981 1,2,3,4 Microcyclops varicans (Sars, 1863) 1,2,3,4

L. ludwigii (Eckstein, 1883) 1,2 T. patina (Hermann, 1783) 1,2,3,4 Mongolodiaptomus botulifer (Kiefer,
1974) 1,2

L. luna (Müller, 1776) 1,2,3,4 Trichocerca bicristata (Gosse, 1887) 1,2,3,4 M. malaindosinensis (Lai & Fernando,
1978) 1,2,3,4

L. lunaris (Ehrenberg, 1832) 1,2,4 T. capucina (Wierzejski & Zacharias,
1893) 1

Neodiaptomus yangtsekiangensis Mashiko,
1951 1,2

L. monostyla (Daday, 1897) 3 T. pusilla (Jennings, 1903) 2 Phyllodiaptomus praedictus Dumont &
Ranga Reddy, 1994) 1,2,3,4L. nitida (Murray, 1913) 3 T. similis (Wierzejski, 1893) 1,4

L. obtusa (Murray, 1913) 2,3 T. tenuior (Gosse, 1886) 1,2,3,4 P. roietensis Sanoamuang & Watiroyram,
2020 1,2,3,4

L. papuana (Murray, 1913) 1,2,3,4 T. weberi (Jennings, 1903) 1,3 Tropodiaptomus vicinus (Kiefer, 1930) 1,2,3,4

L. pusilla Harring, 1914 1,4 Trichotria tetractis (Ehrenberg, 1830) 1,2,3,4
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Chittapun, Pholpunthin & Segers, 1999; (b) Lecane baimaii Sanoamuang & Savatenalinton, 1999;
(c) Lecane hamata (Stokes, 1896); (d) Lepadella ovalis (Müller, 1786); (e) Plationus patulus (Müller, 1786);
(f) Mesocyclops affinis Van de Velde, 1987; (g) Grimaldina brazzai Richard, 1892; and (h) Ovalona cambouei
(Guerne & Richard, 1983).
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Table 2. Species richness, abundance (individuals), and diversity indices in the zooplankton commu-
nity in RF-NPA and RF-PA on two occasions.

Zooplankton RF Species Richness Total Abundance H′ J

Rotifers

1st NPA 66 3874 2.87 0.68
2nd NPA 68 3481 3.01 0.72

1st PA 55 1996 2.74 0.68
2nd PA 45 1952 2.72 0.71

Cladocerans

1st NPA 19 675 2.18 0.74
2nd NPA 17 930 2.07 0.73

1st PA 16 1277 2.12 0.76
2nd PA 13 859 1.88 0.73

Copepods

1st NPA 12 457 1.62 0.65
2nd NPA 12 352 1.38 0.55

1st PA 10 314 1.39 0.60
2nd PA 8 251 1.56 0.75

Total taxa

1st NPA 97 5006 3.35 0.73
2nd NPA 97 4763 3.45 0.75

1st PA 81 3587 3.15 0.71
2nd PA 66 3062 3.09 0.70

The total species richness of zooplankton in RF-PA showed a significant difference
between the sampling times (p = 0.047). The overall species richness of the first and second
samplings of RF-PA totaled 81 and 66 species, respectively. The similarity was 0.802. The
total number of species in RF-NPA (97) was the same in the first and second samplings.
The similarity index between the two samplings was 0.845.

The highest diversity index (H′ = 3.45) and evenness index (J = 0.75) were reported for
RF-NPA in the second sampling. Conversely, the lowest diversity and evenness indices
were recorded in the second sampling of RF-PA (3.09 and 0.70, respectively). Rotifers were
the most diverse group in both rice fields, showing a diversity index of over 2.70. There
was a high evenness index related to cladocerans, ranging from 0.73–0.76 (Table 2).

3.2.2. Species Accumulation and Estimate

A species accumulation curve of zooplankton species richness in RF-NPA and RF-PA
revealed a rise in the number of species in RF-NPA, but only a minor increase in RF-PA
(Figure 4a). The results of five estimators (Chao, Chao2, Jacknife1, Jacknife2, and Bootstrap)
were all greater than the number of observed species (112 species), particularly the Jacknife2
result, which gave the greatest maximum value of 133.9 species. In contrast, the estimation
of the number of zooplankton species in RF-PA revealed that all five estimators gave values
that were close to the number of observed species (88). The Chao2 method gave the closest
estimate (89.9 species, Figure 4b,c). This finding suggests that many species have yet to be
discovered in RF-NPA. In RF-PA, on the other hand, few unknown species are expected to
be discovered.

3.2.3. Abundance, Density, and Dominant Species

The total abundance of all zooplankton in RF-NPA was greater than in RF-PA, with
9769 and 6649 individuals, respectively. The difference between RF-NPA and RP-PA in the
total number of individuals of zooplankton was mainly due to rotifers (7355 individuals in
RF-NPA versus 3952 individuals in RF-PA) and cladocerans (1605 individuals in RF-NPA
versus 2136 individuals in RF-PA) (Table 2).
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The mean zooplankton density in RF-NPA was significantly higher than that in RF-
PA (p < 0.001) (24.4 and 16.6 ind./L, respectively). The total densities of the RF-NPA
zooplankton at the first and second samplings were 250.3 and 238.1 ind./L, respectively.
By comparison, the corresponding figures for RF-PA were lower (179.4 and 153.1 ind./L,
respectively). The first sampling in RF-PA showed significantly higher average cladoceran
and nauplii densities than the second sampling (Table 3).

Table 3. The mean ± SD of the density and range of relative density of zooplankton in RF-NPA and RF-PA on two sample
occasions. The asterisks (*) indicate statistically significant differences.

Zooplankton
RF-NPA p

Value
RF-PA p

Value1st 2nd 1st 2nd

Rotifers
Average density (ind./L) 19.37 ± 4.17 17.40 ± 8.15 0.333 9.98 ± 2.28 9.76 ± 3.03 0.878

Relative density (%) 63.98−84.63 51.30−89.51 49.47−62.82 52.60−77.32

Cladocerans
Average density (ind./L) 3.38 ± 1.09 4.65 ± 1.03 0.053 6.39 ± 17 4.30 ± 1.36 0.001 *

Relative density (%) 10.00−17.93 8.05−31.61 32.79−37.22 15.46−38.06

Copepods
Adult

Average density (ind./L) 2.29 ± 1.62 1.76 ± 1.25 0.202 1.57 ± 0.58 1.26 ± 0.56 0.126
Relative density (%) 3.90−24.36 2.44−17.10 4.39−14.21 4.95−15.85

Copepodite
Average density (ind./L)

Nauplii
2.41 ± 1.09 2.48 ± 1.24 0.374 2.05 ± 0.71 1.73 ± 0.52 0.137

Average density (ind./L) 7.44 ± 1.85 6.52 ± 2.59 0.386 14.26 ± 4.18 10.74 ± 2.65 0.043 *
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The dominating zooplankton in RF-NPA and RF-PA were comparable. In the first
sample, Lecane bulla was the most common species in both rice fields (53.6 ind./L in RF-
NPA versus 17.2 ind./L in RF-PA), with a DCi of 0.71 and 0.60, respectively. In the second
sample, Polyarthra vulgaris had the greatest density in RF-NPA (44.7 ind./L) and RF-PA
(19.5 ind./L), whereas L. bulla had reduced in both fields. Mesocyclops affinis was the most
common copepod seen in each rice field on both occasions. Pseudosida szalayi had the
highest density in both the first (8.6 ind./L) and second (12.2 ind./L) RF-NPA samplings.
Ephemeroporus barroisi was the most common cladoceran in RF-PA in both the first and
second samplings, with a DCi of 0.60 and 0.61, respectively (Figure 5).
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4. Discussion
4.1. Environmental Factors

One week after glyphosate treatment, the EC of RF-PA revealed significantly ele-
vated values, while other parameters showed no significant differences. This implied
that glyphosate remains in the water. Conductivity and glyphosate concentrations had a
positive relationship [33]. After three weeks, the EC decreased, indicating that glyphosate
might have degraded due to its short half-life with a range of 7–14 days [34]. Similarly, con-
ductivity in rice fields had slightly higher values in herbicide treatments with imazethapyr,
imazapic, bispyribac-sodium, and penoxsulam [16]. In RF-NPA, EC, TDS, DO, nitrate, and
chlorophyll a content significantly differed between the first and second samples. This was
due to the use of 169 kg/ha of urea fertilizer before the first sampling. The application of
urea fertilizer resulted in high conductivity and low dissolved oxygen levels in RF-NPA [35].
The amount of chlorophyll a in the two rice fields exhibited a positive relationship with
nitrate. A strong positive relationship between total nitrogen and the total density of key
phytoplankton species was found in the rice fields, including Chlorophyta and Bacillario-
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phyta [36]. Organophosphate pesticides were not detected in the water samples of RF-APA
and RF-PA. Chlorpyrifos had been applied 90 days before the first sampling in RF-PA
and might have degraded. Chlorpyrifos residue in water is non-detectable 14 days after
application [37]. In addition, Fu et al. reported that the half-life of chlorpyrifos in a rice
field in Zhejiang, China, was 0.9–3.8 days, with the highest residue detected one day after
application [38].

4.2. Zooplankton Community Structure in RF-NPA and RF-PA

The rotifer species richness in RF-NPA was 79, which was higher than the 71 species
found in Plangklang and Athibai [39]. As more samples were collected, more species were
found. Even though 19 species discovered by Plangklang and Athibai were not found,
there were 27 more taxa discovered. Twenty-one species of cladoceran were identified,
four of which were common species, including Diaphanosoma excisum, Ilyocryptus spinifer,
Moinodaphnia macleayi, and Scapholeberis kingi [40–42]. Six species of calanoid copepods,
namely Eodiaptomus draconisignivomi, Heliodiaptomus elegans, Mongolodiaptomus botulifer, M.
malaindosinensis, Neodiaptomus yangtsekiangensis, and Tropodiaptomus vicinus were found in
the Mun River Basin, which is in the same RF-NPA and RF-PA areas [43]. Phyllodiaptomus
praedictus has been discovered in rice fields that have been irrigated [44], and has been
found to be common in Northeast Thailand [45]. These findings confirm that the diversity
and occurrence of species in rice fields depend on the characteristics of the habitat, irrigation
sources, and native species [44,46].

The total species richness of zooplankton and the number of species of rotifers
were significantly higher in RF-NPA than in RF-PA. This concurred with the finding
of Romero et al. [47] that the species richness of zooplankton in an agroecological rice
field is greater than in a conventional rice field in Argentina. Pesticides have affected
zooplankton communities by reducing species richness and diversity [48]. In RF-PA, the
species richness of zooplankton dropped from the first sample to the second sample. The
toxicity of herbicides may be dependent on exposure duration and half-life. Baker et al. [49]
demonstrated that one day after applying glyphosate, zooplankton richness was signifi-
cantly reduced; moreover, the decrease in species richness persisted for two weeks. The
half-life of glyphosate in aquatic environments has been reported as ranging from 1−4.8
days in wetlands [49,50] to 3.5−11.2 days in forest ponds [51]. Moreover, the commercial
formulation of glyphosate is more toxic than the active ingredient [52].

The density of zooplankton was considerably higher in RF-NPA than in RF-PA. Rotifer
density of RF-NPA (18.38 ind./L) was comparable to that observed by Plangklang and
Athibai [39], which established an average of 16.20 ind./L in the same field where pesticides
had been applied. The density of rotifers in RF-NPA was higher than that in RF-PA for both
samplings. This result is consistent with a reduction in rotifer abundance in subtropical
rice fields after receiving the herbicides imazethapyr, imazapic, bispyribac-sodium, and
penoxsulam [16]. Similarly, glyphosate and 2,4-D have also been found to affect emerged
rotifers in hatching treatments by significantly decreasing their abundance relative to a
control group [53].

In the present work, the glyphosate application had apparent effects on cladocerans
and nauplii in RF-PA. The average density of cladocerans and nauplii in the second sam-
pling were significantly lower than in the first sampling. Pesticides are not directly toxic
to cladocerans immediately after spraying, but these chemicals could restrain cladoceran
populations by a sublethal effect that disturbs their reproductive ability, habitat selection,
and food habits, and creates changes in predator-prey relationships and interspecific com-
petition [54]. The population of nauplii in RF-PA, like that of cladocerans, seemed to suffer
from glyphosate application. It is likely that nauplii are more sensitive to glyphosate than
copepodites and the adult stages. This is consistent with the case of the nauplii of Pseudodi-
aptomus annandalei, which have exhibited more sensitivity to glyphosate than copepodites
and adult stages [15]. Also, glyphosate affects the development of Notodiaptomus carteri by
increasing the development time of the nauplii and interrupting copepod development
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during the transition from the larva stage to the adult stage [55]. However, applications of
glyphosate and other agrochemicals show marginal effects on the populations of nauplii
and copepodites in a conventional rice field [47].

Although pesticides could not be detected in the water samples of the rice field, the
zooplankton community structure in RF-NPA was different than it was in RF-PA. The
presence of several species that are only found in RF-NPA indicates that avoidance of
pesticide use in rice fields provides favorable conditions for the existence of some exclusive
species, when compared to the presence of species in RF-PA. This led to higher density, a
higher diversity index, and a higher evenness index in RF-NPA, in both samplings.

5. Conclusions

The findings provided a realistic picture of the effects of herbicide usage on zooplank-
ton assemblages and environmental variables under field conditions. Glyphosate treatment
had a greater effect on the species richness and the diversity of zooplankton in RF-PA,
when compared to RF-NPA. The application of glyphosate in RF-PA resulted in decreases
in the total species richness of zooplankton, in the diversity index, and in the density of
cladocerans and copepod nauplii in the second sampling. Furthermore, its application led
to an increase in the EC levels of rice field water. Thus, inappropriate use of pesticides
might cause a reduction in zooplankton diversity and density in rice fields.
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