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Abstract: Due to their assumed costs, simultaneous antipredator strategies are expected to face
trade-offs, which, however, could be milder in individuals subjected to a more intense predator
pressure. In this work, I studied the relationship between locomotion and parotoid glands in the
natterjack toad, Epidalea calamita. Specifically, I predicted that individuals with reduced sprint
speed would rely more on their chemical defences, having larger and more aposematically coloured
parotoid glands. In addition, I expected this trade-off to be more evident in females and toads from
pine grove habitats, because, according to previous work, males and toads from agrosystems are
under greater predator pressure. However, sprint speed showed no relationship with coloration,
but toads with proportionally greater parotoid glands were also proportionally faster. Thus, the
costs of these antipredator traits might not be high enough to make them interfere, or the benefits
of simultaneous optimisation of sprint speed and parotoid gland size might outweigh the costs of
it in some individuals. In any case, habitat and sex did not affect these relationships, so the trends
detected are valid across sexes and the habitats studied.
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1. Introduction

Predators are major agents of selection on their prey [1,2]. First and foremost, the
future fitness of an individual that is preyed on is reduced to zero [3,4]. Moreover, failed
predator attacks may damage fitness in diverse ways [5,6]: they might result in wounds and
injuries of varying degrees of seriousness, which may lead to reduced mobility and thus
greater susceptibility to future predator attacks [7], or to infections that may compromise
health and survival [8]. Last but not least, predator threats can promote the expression of
inducible antipredator defences that, be they behavioural [9], physical [10], or chemical [11],
usually come with costs, primarily in terms of time [12] or energy consumption [13]

Other antipredator defences are also not devoid of costs. Perhaps along with con-
cealment, the most widespread antipredator strategy in the animal kingdom is flight:
when faced with an imminent enemy, most animals actively flee towards the safety of
a refuge [14,15]. Accordingly, the available evidence supports a positive relationship
between locomotor performance and fitness in multiple animal taxa, in which not only
predator avoidance, but also prey capture, dispersal, or intraspecific interactions might be
involved [16–18]. However, the muscular exertion linked to locomotion also implies some
costs. Energy consumption is probably the most obvious of these [19,20]. Besides, the pro-
duction of reactive oxygen species as a consequence of the physiological processes involved
may unbalance the oxidative metabolism, resulting in oxidative stress [21,22], which may
ultimately have noxious effects on physiological homeostasis and animal health [23]. More-
over, particularly in cryptic species, individuals that are in motion have greater chances to

Diversity 2021, 13, 614. https://doi.org/10.3390/d13120614 https://www.mdpi.com/journal/diversity

https://www.mdpi.com/journal/diversity
https://www.mdpi.com
https://orcid.org/0000-0001-5485-347X
https://doi.org/10.3390/d13120614
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/d13120614
https://www.mdpi.com/journal/diversity
https://www.mdpi.com/article/10.3390/d13120614?type=check_update&version=1


Diversity 2021, 13, 614 2 of 9

be detected by predators, and thus attacked, than those that remain immobile, so they tend
not to flee until detected [24,25].

Other kinds of antipredator defences are no exception to this interplay between bene-
fits and costs. Such is the case of chemical defences, which are poisonous or unpalatable
substances that act as deterrents against predators [26–28]. Their benefits notwithstanding,
these substances are costly to synthetize, as the metabolic routes involved require both en-
ergy and metabolites that may be limiting [29,30]. These chemical defences are oftentimes
accompanied by aposematic colorations, which resort to salient colours and patterns that
warn potential predators [11,31,32] and discourage them from attacking and/or remind
them of past unpleasant experiences, thus avoiding the damage associated with such
an attack [33,34]. However, the synthesis of the pigments needed for salient colorations,
especially carotenoids and melanin, also incurs well-documented metabolic costs [35,36].

Although simultaneously bearing several antipredator defences could a priori appear
as mostly beneficial, their additive costs could be difficult to satisfy. Therefore, animals
with various antipredator defences could trade them off. Nonetheless, these trade-offs
could be milder when the benefits of these defences outweigh their costs, which could
happen under intense predation pressure.

In this work, I tested these predictions on the natterjack toad, Epidalea calamita (Lau-
renti, 1768). This is a cursorial toad that escapes predators by means of quick runs [37].
Moreover, it has prominent parotoid glands. These are a pair of swollen dorsal structures
that lay behind the heads of numerous amphibian species, and whose size is directly
proportional to the amounts of chemical defences they release [38,39]. The production
of chemical defences in the parotoid glands is energetically costly, and trades off with
several traits, such as growth rate and dispersal, in other closely related species [40]. In the
case of E. calamita, these glands are aposematic: the chances of predator attacks decrease
with the increasing degree of divergence between parotoid gland and dorsum colour in
plasticine models [41]. Moreover, plasticine models exposed in agrosystems receive more
predator attacks than those placed in pine grove, supporting the idea that agrosystem
toads are under greater predation pressure [41]. Therefore, I predict that both parotoid
gland size and colour saliency will be negatively correlated with sprint speed due to energy
trade-offs among these. In other words, I expect slower individuals to be more reliant on
their chemical defences, thus having greater and/or more salient parotoid glands. How-
ever, because predation pressure is greater in agrosystems, I expect these trade-offs to be
stronger or only apparent in pine grove toads in comparison, as the former could benefit
from greater investment in antipredator defences. Additionally, males in this species have
larger parotoid glands than females [41], and are faster [37], which could be responses to
greater predation pressure. Indeed, males appear under greater predation pressure in the
closely related toad Bufo bufo [42]. Therefore, greater exposure to predators may reduce
this trade-off in males as compared to females.

2. Materials and Methods
2.1. Study Species

The natterjack toad (E. calamita) is a medium-size bufonid (48–82 mm snout-vent
length, hereafter, SVL, in the sample studied here) that occurs in vast regions of central and
western Europe [43]. Within its distribution area, this species occupies a wide variety of
habitats, including natural as well as human-altered landscapes [43]. Given the notable
divergence in the climatic conditions among these regions, phenology is subjected to spatial
variation: toads hibernate in cold zones but aestivate instead in dry areas [43]. Activity
takes place in rainy or very humid, not too cold nights, and the reproductive period may
span from winter in warm regions to spring in colder environments [43]. Other than that,
toads remain inactive under logs or rocks, or in burrows they dig if the ground is loose
enough, where they are sheltered against predators [43]. Natterjack toads are common prey
to visual and olfactory predators: snakes such as Natrix maura and N. astreptophora, birds
such as Larus ridibundus or Pica pica and mammals such as Meles meles, among others, are
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known to feed on these toads [43]. Commonly, when confronting a predator, toads quickly
flee by means of intermittent runs [37]. In other cases, especially if cornered, they bend
their bodies and expose their conspicuous parotoid glands, capable of releasing toxins in
remarkable amounts [44].

2.2. Toad Capture and Management

Fieldwork took place in Pinares de Cartaya pine grove (SW Spain: 37◦20′ N, 7◦09′ W)
and surrounding agrosystems. The former consists of an 11,000 ha Pinus pinea grove whose
understory is dominated by Pistacea lentiscus, Cistus ladanifer and Rosmarinus officinalis.
Although the native or introduced origin of this vegetal formation is debatable, it has been
predominant in this area for at least the last 4000 years, being thus considered a natural
habitat [45]. This pine grove is surrounded by a 2800 ha crop area, some 5 km away, which,
during the past decades, has transitioned from extensive vegetable farms to intensive
strawberry, blueberry and orange tree (among others) agrosystems. In these agrosystems,
landowners add agrochemicals such as fungicides, herbicides, pesticides or fertilizers at
their discretion, and summer drought, which spans approximately from May/June to
September/October, is tempered by artificial irrigation.

In this area, E. calamita reproduces during the winter. Therefore, toad capture took
place from December 2018 to March 2019. In total, I captured 25 males and 21 females in the
pine grove, plus 20 males and 22 females in the agrosystem. I caught these toads by hand
while they were active on rainy nights, after which I transported them to the laboratory in
plastic buckets with a lid with holes and damp earth as a substrate. Once in the laboratory, I
sexed these toads based on colour sexual dimorphism (males are greener and have pinkish
or purplish vocal sacs, whereas females are browner and have greyish throats [46]) and on
the presence of dark and rough nuptial pads only in males [43]. Then, I housed the toads
in individual plastic containers (20 × 13 × 9 cm) with humid peat substrate and a piece of
opaque plastic as a refuge.

2.3. Coloration and Morphological Measurements

Within 24 h from capture, I measured their SVL with a ruler, to the nearest mm, and I
took an orthogonal photograph of each toad’s dorsum with a photo camera Canon EOS
550D at a maximum resolution of 18 megapixels, with a shutter-aperture of F10 and a fixed
focal length of 53 mm. Exposure time, by contrast, was automatically adjusted by the device
to optimise colour capture in each case. Perpendicularity and stability were assured with a
tripod which allowed a steady distance of 40 cm between the lens and the photographed
surface. This surface consisted of a horizontal square (30 cm side) of white paper. Three
vertical white polyester squares (30 cm side) sat respectively on both sides and the rear
of this surface, turning it into an incomplete cube where the front and the upper sides
were missing: the open front side allowed toad handling, and the open upper side allowed
photographs from above. Externally from each lateral polyester square, an 80 W white-light
bulb at a height of 20 cm provided the scene with bidirectional illumination that prevented
shades. Plus, the fact that those white-light bulbs filtered by white polyester were the
only light sources in the room (photos were taken at night, in a completely closed room)
eliminated any parasitic light that could have altered colour recording. After fixing the
camera to the aforementioned parameters, but before photos were taken, white balance was
calibrated to a clean piece of paper. Then, a piece of graph paper for biometric measures
and a standardised colour chart (IMAGE Photographic) for colour calibration were placed
on the photographed surface, close to the toad itself. Dust and humidity were removed
from toads’ skins with a disposable napkin prior to each photo.

These photos were then analysed with the software Adobe Photoshop CS5, after
calibrating white balance again in each photo by applying the grey eyedropper in the
white balance calibration function on the colour chart. Moreover, I set the colour mode
to the L*a*b* three-dimensional colour space described by the Commision Internationale
d’Eclairage (CIE) [47]. In this colour space, L* is a measure of lightness, and spans from
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0 (pure black) to 100 (pure white), a* represents the green–red axis (negative values are
green and positive values are red) and b* represents the blue–yellow axis (negative values
are blue and positive values are yellow). Afterwards, I used the piece of graph paper
to calibrate length, and manually delimited both parotoid glands with the lasso tool so
as to calculate the sum of both parotoid glands’ area. Next, I averaged the colours of
each parotoid gland as previously selected and used the histogram tool to gather the
average L*, a* and b* values of both. Finally, following the same methods, I demarcated the
dorsum, leaving the parotoid glands out, averaged its colour and gathered its L*, a* and b*
values. With these values, I calculated parotoid gland colour saliency (∆E*) by applying
the formula ∆E* = (∆L*2 + ∆a*2 + ∆b*2)1/2 to L*, a* and b* parameters of parotoid glands
and dorsum, as the CIE proposes [48,49].

2.4. Sprint Speed Measurement

Sprint speed trials were conducted 48 h after these photos were taken. Toads spent this
time in the individual plastic containers previously described. One hour before the trials, I
gently but firmly pressed each toad’s lower abdomen to empty their bladders [50,51]. In this
way, I reduced to zero, and thus standardised, bladder water burden, which could affect
locomotion [50–52]. Then, toads were allowed to rest in their containers for one hour, after
which I recorded them (with a video camera Canon EOS 550D, set at 25 frames per second)
while individually running in a brown cardboard linear runway (200 × 15 × 15 cm). The
bottom of this runway was divided into 10 cm stretches with perpendicular white stripes
whose colour contrasted with the brown cardboard, so that both limits of each stretch could
be accurately discerned in the video. The cardboard surface was rough enough to favour
traction, which is relevant because the substrate may affect locomotion [53]. Moreover, a
black background at one end of the runway was intended to be mistaken for a shelter and
encourage toads to move forward. Toads were released at the other end of the runway, and
manually chased constantly but gently, in order to stimulate their moving forward, until
they reached the end of the runway. Since temperature may affect amphibian motility [54],
room temperature was roughly constant (19 ◦C) throughout the process. Trials were always
conducted at night, when toads are naturally active. Illumination was also standardised
with a 60 W bulb located 2.5 m above the centre of the runway. After the trials, I released
the toads at their capture sites as soon as possible. Toads suffered no visible damage as a
consequence of this study.

Then, I used the software Tracker v. 4.92 for frame-by-frame video analysis. Specifi-
cally, I recorded the time (precision: 0.01 s) toads used to cover every stretch, i.e., the time
toads spent between the perpendicular strips delimiting both ends of each stretch [37,55,56].
Since stretch length was known (10 cm), I could calculate the speed (in cm/s) of each toad
in each stretch by dividing 10 cm by the time (s) needed to cover it. Finally, I considered
the fastest value of each toad as its sprint speed.

2.5. Statistics

In order to control for the effect of body size on parotoid gland area and on sprint
speed, I calculated the residuals of the simple regressions of parotoid gland area and of
sprint speed on SVL, whereas parotoid colour saliency was analysed untransformed. After
checking the assumptions of homoscedasticity and residual normality, I applied parametric
statistics [57]. The residuals of sprint speed on SVL needed to be square-root-transformed
so as to be homoscedastic. Data were analysed with the software Statistica v8.0.

Firstly, I conducted an ANCOVA, where the residuals of sprint speed on SVL (square-
root-transformed) were the response variable, the residuals of parotoid gland area on SVL
were the covariates and habitat and sex were included as factors. The interactions among
all covariates and factors were included in the full model (presented as Supplementary
Material), to which stepwise backward selection was applied.

Then, I performed a similar ANCOVA where the residuals of sprint speed on SVL
(square-root-transformed) were the response variable, parotoid colour saliency was the
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covariate and habitat and sex were included as factors. The interactions among all covari-
ates and factors were included in the full model (presented as Supplementary Material), to
which stepwise backward selection was applied.

3. Results
3.1. Parotoid Gland Area

The full model detected that the residuals of sprint speed on SVL were greater in
males than in females, and positively related to the residuals of parotoid gland area on SVL,
whereas the effects of habitat and all the interactions were non-significant
(Tables S1 and S2, Supplementary Material). The final model after stepwise backward
selection maintained the effects of sex (F1, 85 = 9.508; p = 0.003) and the residuals of parotoid
gland area on SVL (F1, 85 = 10.090; β = 0.310; p = 0.002; Figure 1).
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3.2. Parotoid Gland Colour Saliency

The full model detected no effect of either of the factors, the covariate, or their interac-
tions on the residuals of sprint speed on SVL (Tables S3 and S4, Supplementary Material).
In the final model after stepwise backward selection, only the effects of sex (F1, 85 = 14.214;
p < 0.001) and habitat (F1, 85 = 4.049; p = 0.047) were significant.

4. Discussion

These results challenge both the fundamental predictions on which this work was
based. To begin with, they provide no evidence of a trade-off between sprint speed and
parotoid gland colour saliency or size. Contrary to what was expected, slower toads do
not invest more in colour signalling of their parotoid glands. What is more, whereas
sprint speed appears unrelated to parotoid gland colour saliency, it is directly proportional
to parotoid gland size. Not only does such a result not match the expectations, but it
reverses them: individuals that are faster also have larger parotoid glands. Therefore, some
toads are allegedly better suited against their predators and simultaneously optimise both
these characteristics.

The absence of a trade-off between these antipredator strategies could imply that their
costs are not high enough to interfere with each other’s development. Remarkably, locomo-
tion also remains unaltered despite immune system activation in other amphibians, which
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might highlight its antipredator worthiness [58]. Indeed, evidence has been detected that
prey locomotion mode affects other antipredator strategies, such as the escape tactic [59].
An alternative, but non-mutually exclusive explanation, could be that individuals under
greater predation risk offset or even overcompensate the potential trade-offs among these
traits by increasing food consumption, as has been observed in birds [60]. Indeed, food
restriction exacerbates energy-based trade-offs in nematodes [61].

Additionally, the fitness benefits of maximizing sprint speed (assuming that its an-
tipredator role does not conflict with its other roles, for example, in food acquisition,
dispersal, or intraspecific relationships) and parotoid gland size at the same time could
outweigh the energy costs of it in individuals under greater predation risk. Previous
pieces of research have independently established that, in this system, E. calamita males are
faster [37] and possess larger parotoid glands [41] than females. Moreover, these glands are
larger in agrosystem than in pine grove individuals [41]. Extensive scientific literature on
this [37,41,62,63] and other species [64,65] suggests that male toads are more conspicuous
than females, probably as a consequence of male competition for females, and thus might
undergo greater predation pressure [42]. Moreover, plasticine models of toads receive more
predator attacks in agrosystems than in pine grove in this system [41]. Therefore, it could be
assumed that the positive correlation between sprint speed and parotoid gland size could
be a consequence of males being faster and possessing larger parotoid glands than females.
However, this effect was already present in the full ANOVA prior to stepwise backward
selection, where sex, habitat and their interactions with the residuals of parotoid gland
size were controlled for and proved non-significant. Therefore, the positive relationship
between sprint speed and parotoid gland size is valid across sexes and habitats rather
than a mere by-product of sexual dimorphism in speed and parotoid gland size and/or
habitat divergence in the latter. This result contrasts with findings on other taxa, such as
Centruroides vittatus scorpions, where slower individuals make more frequent use of their
venomous stings, which leads to sexual dimorphism in antipredator responses: females,
which are slower, tend to attack with their stings at greater rates than males, which are
faster and tend to flee more often than females [66].

Moreover, unlike the case herein, antipredator strategies and the relationships among
them are known to be subjected to spatial variation in numerous species, according to
predator pressure (reviewed in [67]). Specific antipredator strategies [68] and the rela-
tionships among them can vary according to the actual predation risk [69]. However,
constraints to such spatial adjustments may exist, either genetic- or trade-off-based [67].
Although the reasons remain obscure, in the case studied here, however, there is no ev-
idence of spatial variation in the relationships (or the lack thereof) of sprint speed with
parotoid gland size and coloration.

To conclude, no trade-off could be detected between sprint speed and parotoid gland
size or coloration. Instead, sprint speed showed no relationship with coloration, but a
positive one with the size of these glands, which reverses the expected trend. This finding
could imply that the costs of these antipredator strategies are not high enough to make
them interfere, or even that the benefits of the simultaneous optimisation of sprint speed
and parotoid gland size outweigh the costs of it in some individuals. In any case, habitat
and sex do not affect these relationships, which suggests that the trends detected are valid
across sexes and the habitats studied, with no evidence of separate evolution.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/d13120614/s1: Tables S1–S4: Dataset.
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