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Abstract: Treefrogs represent 22% of amphibian species in Costa Rica, but gaps in the knowledge
about this group of amphibians can impede conservation efforts. In this study, we first updated
the status of Costa Rican treefrogs and found that a total of 38% of treefrog species are threatened
according to the most recent IUCN assessment in 2019. Additionally, 21% of Costa Rican treefrog
species have a high vulnerability to extinction according to environmental vulnerability scores.
Then, we predicted the historical climatic suitability of eight target species that we expected to have
exhibited changes in their ranges in the last 20 years. We assessed the location of new occurrence
records since 2000 to identify recovery, range expansion, or previously underestimated ranges due
to methodological limitations. We also estimated the area of each species’ suitable habitat with
two metrics: extent of suitable habitat (ESH) and area of minimum convex polygon (AMCP). Six
declined species exhibited recovery (i.e., new occurrences across historical range after 2000), with
the widest recovery found in Agalychnis annae. We also found that Isthmohyla pseudopuma appears
to have spread after the decline of sympatric species and that the range of I. sukia was originally
underestimated due to inadequate detection. We found that the ESH was 32–49% smaller than the
AMCP for species that are slowly recovering; however, the ESH is similar or greater than the AMCP

for species that are recovering in most of their ranges, as well as rare species with widespread ranges.
Results of this work can be used to evaluate the risk of environmental threats and prioritize regions
for conservation purposes.

Keywords: amphibians; Batrachochytrium dendrobatidis; diversity; remnant populations; threats;
species distribution models

1. Introduction

Globally, amphibians are one of the most diverse groups of vertebrates, with nearly
8400 known species [1]; the tropics are where they have diversified more than many other
region [2]. Given their nearly pan-global distribution, amphibians can provide relevant
insights into the biology of communities and populations in a wide variety of environ-
ments, and in some scenarios, may act as useful indicators of ecosystem health [3]. In
particular, treefrogs (i.e., all species contained within the families Hemiphractidae, Hylidae,
and Phyllomedusidae) represent important functionaries in tropical streams and forest
food webs across the globe [4]. Tadpoles and frogs move nutrients between aquatic and
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terrestrial systems and are important mediators of nitrogen cycling [5]. Treefrogs also
occupy a multitude of habitats across their global range [6]. While many require or uti-
lize arboreal habitats, almost all need some aquatic habitat for reproduction [7]. Treefrog
species reproduce in streams, ponds, or even phytotelma in the canopy [8]. While most
treefrogs have aquatic tadpoles, some—like those in the family Hemiphractidae—may
reproduce without standing water by raising tadpoles in modified pouches on the female’s
back [9]. Treefrogs differ highly in terms of habitat preferences and breeding behavior, from
species with protracted breeding, occurring throughout the year, to explosive breeders with
punctuated reproductive events [9]. The biphasic lifestyle of most amphibians, but in par-
ticular, treefrogs, makes them especially susceptible to pressures from both the aquatic and
terrestrial environments [10]. Like many amphibians, treefrogs are susceptible to several
threats, such as habitat destruction, invasive species, climate change, and disease [11].

The surge in global amphibian declines, including many species of treefrogs, has been
attributed to several causes, including disease [11]. Since the late 1970s, the spread of the
amphibian chytrid fungus (Batrachochytrium dendrobatidis, hereafter ‘Bd’) [12], the causal
agent of chytridiomycosis [13], has been implicated in a growing number of extinctions and
mass die-offs [14], especially stream-dwelling species from tropical highlands over 1000 m
in elevation [15,16]. Recent estimates suggest that worldwide, more than 500 amphibian
species have declined due to Bd, with the majority of declines occurring in Central and
South America [17], although this number is controversial [18]. In Mesoamerica, a wave of
declines associated with epizootic outbreaks began in the late 1980s in southern Mexico and
progressed throughout the early 2000s in eastern Panama [19,20]. Declines were first widely
reported in Costa Rica in 1987, and the most well-known examples are represented by the
still-enigmatic disappearance of the Monteverde golden toad (Incilius periglenes) [21,22] and
the collapse of the entire amphibian community in Las Tablas [23] (Figure 1). In Costa Rica
and throughout Central America, declines were most severe at mid and high elevations
(800–2500 m) and along stream corridors [24,25]. This mountain habitat, well-suited for
the growth and proliferation of Bd [15], was home to many treefrog species, particularly
those in the genera Isthmohyla, Duellmanohyla, and Agalychnis [26]. Although Bd is now
endemic across Mesoamerica [27–31] and numerous species have shown resilience [32],
many areas and amphibian species have failed to recover after the introduction of Bd [26].
Other amphibian species appear to have spread during epizootics and enzootics phases of
Bd, potentially serving as a reservoir for the pathogen [33]. Due to their varying biology and
histories with Bd, treefrogs are a particularly informative group to evaluate the persistence
and resilience of populations.

History of Amphibian Monitoring in Costa Rica

The knowledge of amphibian species compiled at the beginning of the twentieth
century by Costa Rican enthusiasts (e.g., Anastasio Alfaro and Clodomiro Picado) and
indigenous communities inspired taxonomists to study the amphibian diversity of Costa
Rica [9]. First, Edward H. Taylor and colleagues studied amphibians across the Caribbean
side, the Central Mountain range, and part of the Talamanca Mountain range [34]. Be-
tween the 1960s and the 1990s, Jay Savage and Douglas Robinson, with the assistance
of their students, established two of the best biological collections of the Costa Rican
herpetofauna [9,35]. Furthermore, William E. Duellman and Linda Trueb studied the
diversity of treefrogs [7], and David Wake and his students described the diversity and
abundance of salamanders across mountain ranges [36]. Additionally, Allan Pounds and
Martha Crump documented the disappearance of the Monteverde golden toad and other
amphibian species in the Tilarán Mountain range [21,22].
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Figure 1. Map of Costa Rica showing ten historical localities (all caps) and main mountain ranges
where long-term monitoring has been conducted even before amphibian declines occurred during
the 1980s and 1990s.

During the 1990s, Gerardo Chaves (GC) and Federico Bolaños from the Museo de
Zoología, Universidad de Costa Rica (MZUCR), led monthly and annual surveys of de-
clined amphibian species in Tapantí, Reserva de San Ramón, Cerro de la Muerte, Rincón
de Osa, Golfito, Las Cruces, La Selva, and Palmar Norte (Figure 1). Furthermore, Karen
Lips reported chytridiomycosis-driven declines across mountain areas of southern Costa
Rica [23,37]. From 2000 to present times, GC and researchers associated with the MZUCR
(including all the authors of this study and numerous colleagues) have rediscovered extant
populations of declined amphibians across the country [38–41]. From 2006 to 2008, GC and
Eduardo Boza participated in several surveys of the highlands of the Talamanca Mountain
range with the UK’s Darwin Initiative and Instituto Nacional de Biodiversidad of Costa
Rica [42]. Similarly, GC and Mason Ryan carried out an intensive long-term monitoring
program from 2000 to 2012 in 47 streams and tributaries across southern Costa Rica [39].
Most of the information collected since the 2000s has been used to quantify changes in
amphibian diversity [43–46] and update the species’ status in the most recent International
Union of Conservation of Nature (IUCN) Red List Assessment [47].

Treefrogs, with 48 known species, represent 22% of amphibian species in Costa
Rica [43]. In this study, we updated the conservation status of these 48 species using
two metrics: the most recent IUCN Red List Assessment in Costa Rica and environmental
vulnerability scores (EVS) [48]. We also generated predictions of the suitable habitat of eight
target species of treefrogs to investigate three different patterns of increased detectability
since 2000: (a) declined species that are now recovering in abundance, (b) common species
that are increasing in range, and (c) data-deficient or uncommon species that have new
information on occurrence and ecology. We compiled a robust dataset of occurrence points
for our analyses using records from long-term field surveys conducted by the authors,
peer-reviewed publications, biological collections, and citizen-science sources. Results
from this work will help address information gaps in the current ranges and conservation
status of Costa Rican treefrog species and may allow policymakers to better evaluate the
risk of environmental threats and prioritize regions for conservation purposes.
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2. Materials and Methods
2.1. Species Assessment

We assessed all 48 known species of treefrogs included in the most recent official
list of amphibian species in Costa Rica [43]. For every species, we found their up-
dated status in Costa Rica [49] according to the most recent IUCN Red List Assessment
conducted in 2019 [50] as follows: NA = “Not Applicable”; DD = “Data Deficient”;
LC = “Least Concerned”; NT = “Near Threatened”; VU = “Vulnerable”; EN = “Endan-
gered”; CR = “Critically Endangered”; EX = “Extinct in the wild” (for additional details
see http://www.iucnredlist.org/ accessed on 1 September 2021). We also updated their
EVS, a regional vulnerability index that classifies amphibians and reptiles into four levels of
risk: “low vulnerability” (EVS of 3–9), “medium vulnerability” (EVS of 10–13), and “high
vulnerability” (EVS of 14–17). High values of EVS often occur in range-restricted species,
species that occur in a single-life zone, and species with a highly derived reproductive
mode [48,51].

2.2. Study Species

Based on the information provided by the historical monitoring in Costa Rica and the
most recent IUCN Red List Assessment [47], we selected eight treefrog target species and
estimated each species’ climatic suitability based on new knowledge about their ecology,
threats, and distribution (new observations in historical or current localities) [47].

Agalychnis annae (blue-sided treefrog; Figure 2a): This is a pond-breeding species
that needs plants around small pools of water to reproduce [52]. It is endemic to Costa
Rica and Panama [53]. The historic range in Costa Rica [5,7] includes the Central Valley
and nearby areas, especially across the premontane region of the Central Mountain range
and the premontane forest of the Pacific slope of the Talamanca Mountain range [9,54]. In
Panama, it is only known in the Cerro Colorado region [55]. Because this species declined
across the entire range during the 1980s and 1990s [52,56], including protected areas and
other well-conserved lands, chytridiomycosis has been suggested as an important threat.
However, remnant populations appear to tolerate infection by Bd [57]. The increase in
vehicle traffic around coffee plantations where this species shelters is a major threat to
this species.
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Figure 2. Study species: (a) blue-sided treefrog, Agalychnis annae (picture, Alex Shepack ); (b) lemur leaf frog, Agalychnis
lemur (picture, Stanley Salazar); (c) Costa Rica brook frog, Duellmanohyla uranochroa (picture, Stanley Salazar); (d) Shaman
fringe-limbed treefrog, Ecnomiohyla sukia (picture, Stanley Salazar); (e) narrow-lined treefrog, Isthmohyla angustilineata
(picture, Fabio Hidalgo); (f) Pico Blanco treefrog, Isthmohyla pictipes (picture, Andrey Solís); (g) Gunther’s Costa Rican
treefrog, Isthmohyla pseudopuma (picture, Víctor Acosta-Chaves); (h) American cinchona plantation treefrog, Isthmohyla
rivularis (picture, Víctor Acosta-Chaves). Reproduced with permission from Fabio Hidalgo and Andrey Solís.

http://www.iucnredlist.org/
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Agalychnis lemur (lemur leaf frog, Figure 2b): This is a small treefrog with a slim
body and lacking finger and toe webs [9]. It is found from the Tilarán Mountain range
in Costa Rica to the Colombian Chocó. The species declined across its entire range, par-
ticularly in Panama and the premontane and montane areas in Costa Rica [56]. Current
known remnant populations in Costa Rica occur across the Caribbean slopes of the Tala-
manca Mountain range [58,59]. The major threats faced by this conspicuous frog include
inbreeding, poaching, and chytridiomycosis [59].

Duellmanohyla uranochroa (Costa Rica brook frog; Figure 2c): It is a red-eye tree
frog that lives in forests close to mountain streams [60]. Although males are easy to
detect during the breeding season, the reproductive ecology of this species is poorly
understood [9]. It is endemic to Costa Rica and Panama [61]. The species was known across
the Tilarán, Central, and Talamanca mountain ranges, as well as Bocas del Toro in Panamá
but declined across its range [9]. Chytridiomycosis has been suggested as a major threat;
however, Bd has not yet been detected in this species [57].

Ecnomiohyla sukia (Shaman fringe-limbed treefrog; Figure 2d): It is a large, uncom-
mon treefrog that inhabits water-filled cavities in the canopy of the mature, wet forest [62].
The females nest in water-filled cavities [62] and most likely exhibit parental care, similar
to other species within the genus [7]. It is a Costa Rican endemic known to occur on
the midlands of the Caribbean slopes in the foothills of the Tilarán, Central, and Tala-
manca mountain ranges [11]. It is also found in the northern Caribbean lowlands [45].
Major threats are unknown, but its dependence on old-growth forests suggests sensitivity
to deforestation.

Isthmohyla angustilineata (narrow-lined treefrog; Figure 2e): This is a yellowish-
brown and green nocturnal treefrog that lacks finger webs [7]. It usually breeds in small
pools within the forest [9]. It is endemic to Costa Rica and Panama [63]. This species
inhabits the Tilarán, Central, and Talamanca mountain ranges but rapidly declined across
its range [51]. Major threats appear to be associated with chytridiomycosis and human
development around remnant populations [47].

Isthmohyla pictipes (Pico Blanco treefrog; Figure 2f): It is a small montane treefrog
that emits bright yellow fluorescence [64]. It is endemic to Costa Rica but possibly also
found in Panama [65]. The species breeds in small streams in montane forests, where
the males call from rocks or low vegetation [9]. This species occurs in the Central and
Talamanca mountain ranges but declined across the entire range [7]. Chytridiomycosis has
been suggested as a major threat [47].

Isthmohyla pseudopuma (Gunther’s Costa Rican treefrog; Figure 2g): It is a yellowish-
brown, middle-sized frog that lives in bromeliads and reproduces explosively in temporary
ponds during the rainy season [7]. It is endemic to middle elevations in Costa Rica and
Western Panama [66]. It is distributed along all cordilleras in the country [51], mainly in
the Central Mountain range [9]. No major threats are known. This species appears to have
become more common after the decline of sympatric species (G. Chaves, unpublished),
and currently, it is one of the most common treefrog species in Costa Rica.

Isthmohyla rivularis (American cinchona plantation treefrog; Figure 2h): This is a
tan treefrog that reproduces in small mountain streams, where the males call from the low
vegetation year-round [7]. It is endemic to Costa Rica and Panama [67] and is found mainly
in the Tilarán and Central mountain ranges but also occurs at the edges of the Talamanca
Mountain range [9,51]. The major threats are habitat loss and disease [47].

2.3. Datasets and Abiotic Data

We compiled presence-only datasets for all eight focal species (Table S1) from five
sources: (1) the herpetological database of the MZUCR (http://museo.biologia.ucr.ac.cr/
accessed on 1 September 2021), (2) the Global Biodiversity Information Facility (GBIF;
https://www.gbif.org/ accessed on 1 September 2021) [68], (3) INaturalist (https://www.
inaturalist.org/ accessed on 1 September 2021), (4) field observations provided by the au-
thors of this study and other researchers, and (5) peer-reviewed literature [58,64,69–73]. We

http://museo.biologia.ucr.ac.cr/
https://www.gbif.org/
https://www.gbif.org/
https://www.inaturalist.org/
https://www.inaturalist.org/


Diversity 2021, 13, 577 6 of 18

cleaned data by checking for typos, cross-checking geographic coordinates, and removing
unreferenced records, coordinates with a geographic inaccuracy > 1000 m, and duplicates
using the R packages ‘scrubr’ (https://docs.ropensci.org/scrubr/ accessed on 1 September
2021) and ‘CoordinateCleaner’ [74]. To reduce the effect of spatial autocorrelation, we used
the R package ‘humboldt’ [75] and excluded the occurrence points that were separated by
distances < 2 km.

We generated a raster stack with the 19 BIOCLIM variables [76] from WorldClim
v2.1 [77] and 14 environmental variables from ‘ENVIREM’ [78], both at a spatial resolu-
tion of 30 arc-s. Following Title and Bemmels [78], we excluded the ENVIREM layers
‘aridityIndexThornthwaite’ (which is redundant with the ‘climaticMoistureIndex’) and
‘monthCountByTemp10’ (which is categorical). For climatic data extraction, we cropped
the abiotic dataset with the R package ‘raster’ [79] using a bounding box encompassing the
ranges of our study species (6.5–11.5◦ N, 77–86.25◦ W). We used the function ‘vifcor’ in the
R package ‘usdm’ [80] to detect collinearity among predictors by quantifying the variance
inflation factor (VIF). We selected the predictors with pairwise correlations < 0.6 (Table S1).
Our maps and geographic analyses were created with ArcGIS 10.7.1 (ESRI®Redlands,
CA, USA) using the World Geodetic System datum (WGS84) and shapefiles from the Atlas
Digital Costa Rica 2014 [81].

2.4. Species-Range Predictions

We used updated IUCN range polygons (available for download at http://www.
iucnredlist.org/ accessed on 1 September 2021) to calibrate our predictions of suitable
habitats. The IUCN range polygons represent the area within the shortest continuous
imaginary boundary that can be drawn to surround all the current known localities and the
inferred occurrence and projected occurrence of a species [82,83]. For our focal species, we
only considered the polygons corresponding to the extant and extinct ranges and excluded
those that represent regions of uncertain presence. We adjusted our calibration areas by
adding a buffer of 20 km to each polygon range. This calibration method allowed us to
circle the occurrence points that were projected beyond range polygons and improve the
accuracy of our predictions by including peripheral areas without extending to areas that
are unlikely accessible for each species. For Agalychnis annae, Duellmanohyla uranochroa,
Isthmohyla pictipes, and I. pseudopuma, we generated a calibration polygon that included
the IUCN range polygons, the mountain areas of Costa Rica, associated foothills, and a
buffer of 20 km (‘Mountain_buffer’). Because of the scattered occurrence points of the
endemic I. sukia, we used the extent of Costa Rica and a buffer of 20 km as the calibration
area but cropped the North Pacific region of Costa Rica (‘I_sukia_buffer’). Both shapefiles
are available for download (see Data Availability Statement).

We generated predictions of the suitable habitat of the eight study species using the
MaxEnt algorithm [84]. MaxEnt is useful for our analyses because it uses presence-only
data combined with background data and because it performs well with the BIOCLIM vari-
ables. For each species, we generated 16 candidate models with the R package ‘ENMeval
2.0’ [85] using the following settings: partition method = ‘block’; random points = 10,000;
algorithm = maxent.jar; regularization of multiplier values = 1–4 with increments of 1;
feature classes = L, Q, H, LQH [86]. For Isthmohyla angustilineata and I. pictipes, we used
‘N-1 Jackknife’ as partition method, aiming to maximize the limited available informa-
tion on species occurrences < 25 [87]. For each set of candidate models, we selected the
model with the highest value of the average test of the area under the receiver charac-
teristic operator curve (AUC mean) and the lowest omission rate at minimum training
presence (orMTP) [88]. We used the selected settings (see Tables S1 and S2) to build climatic
suitability maps with the R package ‘dismo’ [89]. We generated predictive binary maps
(presence-absence) of the potentially suitable habitats of the treefrog species in Costa Rica
using the equal training sensitivity and specificity threshold [90].

To quantify the historical suitable habitats of our focal species, we estimated two non-
equivalent metrics. First, we calculated each species’ extent of suitable habitat (ESH) [83]

https://docs.ropensci.org/scrubr/
http://www.iucnredlist.org/
http://www.iucnredlist.org/
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by transforming our predictive binary maps into a shapefile and estimating the available
suitable area. Second, we calculated each species’ area of minimum convex polygon
(AMCP), which represents the area contained within the minimum convex polygon that
can be drawn to encompass all the current known localities, as well as the inferred and
projected occurrences of a species [83,91].

3. Results
3.1. Species Assessment

Our updated list of Costa Rican treefrogs still includes 48 species classified in 14 genera
and three families, as reported in the last assessment in 2019 [43]. Most treefrogs occur
in the family Hylidae, with 41 species in 12 genera (Table 1). Isthmohyla and Smilisca are
the richest genera, with 11 and 7 species, respectively. A total of four treefrog species is
endemic to Costa Rica (Duellmanohyla rufioculis, Ecnomiohyla sukia, Isthmohyla pictipes, and
I. xanthosticta), and one species is introduced (Osteopilus septentrionalis). According to the
most recent IUCN Red List Assessment in 2019 [47], 18 treefrog species are classified in
threatened categories, including one species that is possibly extinct (I. calypsa), and five are
categorized as critically endangered (Table 1). Similarly, updated EVS show that 21% of the
treefrog species are highly vulnerable to extinction (EVS of 14–17) (Table 1).

Table 1. List of the 48 known treefrog species in Costa Rica distributed by herpetological province and elevational range.
For every taxon, numbers in square brackets indicate the number of genera, and numbers displayed in parenthesis
indicate the number of species. The table also specifies the IUCN status reported after the global assessments in 2004 and
2019 and environmental vulnerability scores (EVS). Symbology for herpetological provinces: CL = Caribbean Lowlands;
CT = the Talamanca mountain range; MSCC = Mountain Slopes and Central Mountain range; PN = Pacific Northwest;
PS = Pacific Southwest. IUCN Red List categories: NA = Not Assessed; U = Unfinished; DD = Data Deficient; LC = Least
Concern; NT = Near Threatened; VU = Vulnerable; EN = Endangered; CR = Critically Endangered; EX = Extinct in the wild;
PE = Possibly Extinct. EVS categories: low vulnerability species (EVS of 3–9); medium vulnerability species (EVS of 10–13);
high vulnerability species (EVS of 14–17).

Amphibian Species EVS
IUCN Status Distribution in Costa Rica Elevation

(m)2004 2019 CL CT MSCC PN PS

Hemiphractidae [1] (1)

Gastrotheca cornuta 15 EN U X X 300–1000

Hylidae [12] (40)

Boana rosenbergi 10 LC LC X X 0–900
Boana rufitela 10 LC LC X X 0–750

Dendropsophus ebraccatus 8 LC LC X X X X X 0–1600
Dendropsophus microcephalus 7 LC LC X X X X X 0–1200

Dendropsophus phlebodes 8 LC LC X X 0–750
Duellmanohyla legleri 13 EN LC X X 600–1500

Duellmanohyla lythrodes 14 EN EN X 150–450
Duellmanohyla rufioculis 12 LC LC X X X X X 650–1600

Duellmanohyla uranochroa 12 EN VU X X X 300–1750
Ecnomiohyla bailarina 15 NA NT X 300–750

Ecnomiohyla fimbrimembra 14 EN VU X 750–1900
Ecnomiohyla miliaria 12 VU VU X X X 0–1350

Ecnomiohyla sukia 14 NA LC X X 400–1000
Ecnomiohyla veraguensis 14 NA VU X NE

Hyloscirtus colymba 9 CR EN X 600–1200
Hyloscirtus palmeri 10 LC LC X X 400–1000

Isthmohyla angustilineata 10 CR CR X X X 1500–2350
Isthmohyla calypsa 13 CR CR (PE) X 1700–2300
Isthmohyla debilis 11 CR CR X X 900–1450

Isthmohyla lancasteri 10 LC LC X X 350–1400
Isthmohyla picadoi 14 LC LC X X 1700–2900
Isthmohyla pictipes 12 EN CR X X 1900–2800

Isthmohyla pseudopuma 8 LC LC X X 1100–2350
Isthmohyla rivularis 12 CR EN X X X 1200–2450

Isthmohyla tica 10 CR CR X X X 720–1750
Isthmohyla xanthosticta 14 DD DD X 2150

Isthmohyla zeteki 14 NT VU X X 1200–1800
Osteopilus septentrionalis 9 LC LC X 0–10

Scinax boulengeri 6 LC LC X X X 1–700
Scinax elaeochroa 8 LC LC X X X X X 0–1200
Scinax staufferi 9 LC LC X X 0–700
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Table 1. Cont.

Amphibian Species EVS
IUCN Status Distribution in Costa Rica Elevation

(m)2004 2019 CL CT MSCC PN PS

Smilisca baudinii 6 LC LC X X X 0–1600
Smilisca manisorum 8 NA LC X 0–750

Smilisca phaeota 6 LC LC X X X X 0–1100
Smilisca puma 9 LC LC X 0–550
Smilisca sila 10 LC LC X X X X 0–1000

Smilisca sordida 7 LC LC X X X X X 0–1550
Tlalocohyla loquax 9 LC LC X X 50–1100

Trachycephalus typhonius 7 LC LC X X X X 0–1100
Triprion spinosus 12 LC NT X X X 100–1400

Phyllomedusidae [2] (7)

Agalychnis annae 10 LC VU X X X 780–1650
Agalychnis callidryas 8 LC LC X X X X 0–1250

Agalychnis lemur 11 CR CR X X 450–1600
Agalychnis saltator 8 LC LC X X 0–1000
Agalychnis spurrelli 11 LC LC X X X 0–900
Cruziohyla calcarifer 14 LC LC X 0–800
Cruziohyla sylviae 12 NA LC X 0-800

3.2. Suitable Habitat

Agalychnis annae: Our results show that high environmental suitability for this
species occurs across mountain ranges, especially along the Central Mountain range and
certain mountain areas of southern Costa Rica in Coto Brus county. This species appears to
have recovered in most of its historical range and has been observed in regions where it
was unknown before, especially urban areas (Figure 3a). Our climatic suitability map also
predicts the occurrence of this species in western Panama.

Agalychnis lemur: Environmental suitability is high for this species across mountain
ranges, especially on the Caribbean slope. Currently, this species only occurs across the
Caribbean slopes of the Talamanca mountain range, especially at elevations from 400 to
600 m. It has been frequently observed in most of these regions, which suggests some
populations are large and stable. The species appears to have been completely extirpated
from the Central and Tilarán mountain ranges (Figure 3b).

Duellmanohyla uranochroa: We found high suitability across mountain ranges, espe-
cially on the Caribbean slope. This species appears to have been extirpated from most of
its historical range, especially on the Central and Guanacaste mountain ranges. Several
populations have been observed in mid-elevations across the Caribbean slope of the Tala-
manca mountain range, including observations along contaminated, fast-flowing streams.
This species also appears to exhibit a slow recovery in the Tilarán mountain range, and it
probably occurs on the Pacific side of the Talamanca mountain range (Figure 3c).

Ecnomiohyla sukia: We found that suitability for this species is high on the Caribbean
slope of the Central and Talamanca mountain ranges. Currently, the species appears to be
widespread on the Caribbean side of Costa Rica and northern lowlands, including tropical
and premontane primary and secondary forests (Figure 4a). Our predictions suggest
that this species might occur in Panama, on both the Caribbean and Pacific slopes of the
Panamanian side of the Talamanca mountain range.

Isthmohyla angustilineata: We found high suitability for this species across mountain
ranges, especially on the Caribbean slope. The species appears to have been extirpated
from most of the east side of the Talamanca mountain range but persists in small parts
of its historical range, especially in undisturbed highland pools and swamps across the
Central and Tilarán mountain ranges (Figure 3d).

Isthmohyla pictipes: We found high suitability for this species across the Central and
Talamanca mountain ranges, especially on the Caribbean slope. The species appears to
have been extirpated across the Central mountain range. However, it has been reobserved
in small numbers in certain areas of its historical range, specifically in fast-flowing streams
in the Pacific versant of the Talamanca mountain range (Figure 3e).
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Figure 3. Species recovery. Climatic suitability maps for six treefrog species that are exhibiting recovery in Costa Rica.
The figure also shows a polygon representing the historic extent of suitable habitat (ESH), occurrences reported after
2000 (white dots), and locations where the species was found before 2000 but not after (yellow dots); (a) blue-sided treefrog
(Agalychnis annae); (b) lemur leaf frog (Agalychnis lemur); (c) Costa Rica brook frog (Duellmanohyla uranochroa); (d) narrow-
lined treefrog (Isthmohyla angustilineata); (e) Pico Blanco treefrog (Isthmohyla pictipes); (f) American cinchona plantation
treefrog (Isthmohyla rivularis).
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Figure 4. Widespread uncommon species and rapid-spread species. Climatic suitability maps for the uncommon and
widespread (a) Shaman fringe-limbed treefrog (Ecnomiohyla sukia) and (b) the potential Bd-reservoir Gunther’s Costa Rican
treefrog (Isthmohyla pseudopuma). The figure also shows a polygon representing the historic extent of suitable habitat
(ESH), occurrences reported after 2000 (white dots), and locations where the species was found before 2000 but not after
(yellow dots).

Isthmohyla pseudopuma: Our results show high suitability across mountain ranges,
especially on the Pacific slope. This species has expanded its range across the Talamanca
and Guanacaste mountain ranges (Figure 4b).

Isthmohyla rivularis: Environmental suitability for this species is high across the
Central and Talamanca mountain ranges. This species has been reobserved in a large
fraction of its historical range and appears to be slowly recovering across the Tilarán,
Central, and Talamanca mountain ranges. However, sightings are still sporadic compared
to pre-decline times (Figure 3f).

3.3. Suitable Habitat

We found that the ESH of species that have recovered only in small areas of their
historic ranges is approximately 32–49% smaller than the AMCP. However, this difference
showed an opposite trend for species that have recovered in most of their range or rare
species with a wide range (Table 2), which suggests that IUCN range polygons for these
species should be updated. For I. rivularis, the ESH was only 5% smaller than the AMCP.
For A. annae, which exhibits the widest recovery, the ESH was 129% greater than the AMCP.
Similarly, the ESH of the widespread I. sukia was 124% greater than the AMCP.

Table 2. Estimations of the extent of suitable habitat (ESH) and the area of minimum convex polygon
(AMCP). The table also shows the percent of the difference in area by comparing the ESH against
the AMCP.

Species ESH (km2) AMCP (km2) Difference (%)

Agalychnis annae 6373.9 2778.3 +129.4
Agalychnis lemur 4352.7 7489.4 −41.9

Duellmanohyla uranochroa 2853.6 5574.3 −48.9
Ecnomiohyla sukia 6515.2 2905.8 +124.2

Isthmohyla angustilineata 238.0 400.0 −40.5
Isthmohyla pictipes 1891.6 2797.0 −32.4

Isthmohyla pseudopuma 3212.5 4781.9 −32.8
Isthmohyla rivularis 2237.6 2359.0 −5.1
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4. Discussion
4.1. Species Assessment

The number of known treefrog species (48 species in three families) has not changed
since the most recent list of Costa Rican amphibians in 2019 [43]. However, the continuous
monitoring of declined amphibians in Costa Rica and the most recent IUCN Red List
Assessment [47] gave rise to changes in the status of amphibian species, including treefrogs
(Table 1). Five species of treefrogs (Duellmanohyla legleri, D. uranochroa, Ecnomiohyla fim-
brimembra, Hyloscirtus colymba, and Isthmohyla rivularis) now exhibit a less threatened status.
Four species were moved into more threatened categories (Agalychnis annae, Isthmohyla
calypsa, I. zeteki, and Triprion spinosus). Five species were assessed for the first time (Ec-
nomiohyla bailarina, E. sukia, E. veraguensis, Smilisca manisorum, and Cruziohyla sylviae), and
the species Gastrotheca cornuta is still being evaluated by the IUCN Species Survival Com-
mission, Amphibian Specialist Group. According to EVS, a total of ten species of treefrogs
(21%) is classified as highly vulnerable to extinction (Table 1). Of these, only I. calypsa is
classified as critically endangered (possibly extinct) by the IUCN.

4.2. Spread Patterns
4.2.1. Species Recovery

We found that six of our study species (Agalychnis annae, A. lemur, Duellmanohyla
uranochroa, Isthmohyla angustilineata, I. pictipes, and I. rivularis) have exhibited recovery
since the early 2000s, but apparently at different rates (i.e., time for a species to recover
across the historical range after the declines of the 1980s and 1990s). The fastest recovery
has been observed in A. annae (Figure 3a). It declined to its full extent during the 1980s and
1990s, and only one remnant population was known for a while [52,54,56]. However, it
recovered in most of its range and has become a common species in urban and disturbed
areas [9,70]. Due to this fast recovery after 2010, A. annae was originally classified as
least concern in a previous IUCN Red List workshop [49]; however, it was reclassified
to vulnerable in the most recent workshop [47] based on new criteria. Here, this species
has been observed successfully breeding/foraging in artificial water containers such as
fountains, ditches, sinks, and old tires (Figure 5a). It is very susceptible to mortality from
vehicles, especially in urban areas (Figure 5b). In addition to urban populations, A. annae
has been recently reported in riparian forests, springs, and pristine areas in the Central and
South Pacific mountains [70], which suggest the recovery has also occurred in undisturbed
ecosystems (V. Acosta-Chaves, unpublished). Our suitability map, as well as recent reports
from Panama [55], suggest that A. annae historically occurs in this country but had not been
detected previously.

We also found that Agalychnis lemur and Isthmohyla rivularis appear to be experiencing
a stable recovery across part of their historical ranges (Figure 3 b and f) [58,59,71]. However,
A. lemur appears to have gone locally extinct in a large part of its range outside Talamanca,
and I. rivularis remains undetectable in most of the Central mountain range. In this regard,
the current occurrence of several populations of A. lemur across the central Caribbean was
probably favored by reintroductions in the region around the 2000s. Conversely, Duell-
manohyla uranochroa, I. angustilineata, and I. pictipes (Figure 3c–e) appear to be experiencing
a slower recovery [47,61,64,92], and they have probably been extirpated from most of their
historical ranges. Although most of the known remnant populations of these species (and
other endangered species) are under both private and state protection [64], they are still
threatened by illegal activities that occur within these areas, such as logging, squatters,
illegal tourism, poaching, and a deficit of resources to provide continuous surveillance
(V. Acosta-Chaves, unpublished). Similar scenarios are probably faced by other declined
treefrog species with similar ecologies, such as Starret’s treefrog (Isthmohyla tica; Figure 6a)
(J. Santamaría, personal observation).
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as breeding/foraging sites (picture, Kathia Alfaro); (b) roadkill in an urban area of the province of
San Jose, Costa Rica (picture, Gustavo Murillo and Naomi Méndez). Reproduced with permission
from Kathia Alfaro, Gustavo Murillo and Naomi Méndez.
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Figure 6. Spread patterns. Species recovery: (a) the Starret’s treefrog, Isthmohyla tica; (picture, Jerson
Santamaría and Pablo Marín) seems to be slowly recovering in part of its range. Rapid spread: (b) the
harlequin treefrog, Dendropsophus ebraccatus (picture, Víctor Acosta-Chaves) and (c) the drab treefrog,
Smilisca sordida (picture, Héctor Zumbado-Ulate) seem to have increased their ranges since the 2000s
or earlier, perhaps taking advantage of the decline of other sympatric species. Widespread uncommon
species: (d) the Legler’s treefrog, Duellmanohyla legleri, (picture, Victor Acosta-Chaves), (e) the horned
treefrog, Gastrotheca cornuta (picture, Stanley Salazar), and (f) the spiny-headed treefrog, Triprion
spinosus (picture, Stanley Salazar) are uncommon species that have been more frequently sighted in
the last decade. Reproduced with permission from Jerson Santamaría and Pablo Marín.

Several mechanisms, acting alone or synergistically, may explain the persistence and
resilience of these species, especially those susceptible to Bd. For example, some remnant
populations may have (1) persisted in areas where environmental factors reduce pathogen
transmission [93–95], (2) rapidly evolved reduced susceptibility to Bd [96], or (3) recovered
after a decrease in the prevalence of disease due to low host abundance [97]. Furthermore,
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some of these species could have increased their detectability as a result of (1) relocations
and introductions, (2) construction of artificial breeding sites, or (3) management in public
and private protected areas.

4.2.2. Rapid Spread

We found evidence that Isthmohyla pseudopuma increased its range since the 2000s or
earlier, perhaps taking advantage of the decline of other sympatric, pond-breeding species
caused by epizootic outbreaks of Bd (i.e., pathogen-mediated competition) [98]. Therefore,
I. pseudopuma might be a Bd-reservoir species [99] that is affecting the recovery of species
such as I. angustilineata and the Holdridge’s toad, Incilius holdridgei. Similarly, other treefrog
species, such as the iconic red-eyed treefrog, Agalychnis callidryas, the harlequin treefrog,
Dendropsophus ebraccatus (Figure 6b), the drab treefrog, Smilisca sordida (Figure 6c), and
the masked treefrog, S. phaeota, appear to have increased their ranges after the historic
amphibian declines and might also be tolerant of Bd infection and therefore Bd-reservoir
species [100,101].

4.2.3. Widespread Uncommon Species

Long-term amphibian monitoring in Costa Rica and the results of the most recent
IUCN Red List workshops [47] have allowed researchers to better understand the ranges
and natural history of uncommon and data-deficient species and, therefore, increase the
number of sightings of some species. In this paper, we have shown that the uncommon
Ecnomiohyla sukia is widespread and probably occurs on both the Caribbean and Pacific
slopes of Costa Rica and Panama. For example, the record of a new locality for E. miliaria on
the Pacific coast of Costa Rica [73] probably represents a record of E. sukia (S. Salazar and V.
Acosta-Chaves, unpublished). Our results provide a framework for a more detailed study
of the range, ecology, and reproductive behavior (e.g., call description, breeding sites) of un-
common species that have been more frequently sighted in the last decade, such as Palmer’s
treefrog (Hyloscirtus palmeri), Legler’s stream frog (Duellmanohyla legleri; Figure 6d), the
Volcan Barva treefrog (Isthmohyla picadoi), Zetek’s treefrog (I. zeteki), the horned marsu-
pial frog (Gastrotheca cornuta; Figure 6e), and the spiny-headed treefrog (Triprion spinosus;
Figure 6f) [7,51,58,69,102]. A better understanding of the use and occupancy of the habitat
is fundamental to providing a more accurate status of these elusive species.

4.3. Study Limitations

One of the greatest limitations of this type of study is gathering accurate data from
many different sources. Although we support the protection of the specific locations
of remnant populations, the reporting of ‘obscured coordinates’ (i.e., alteration of true
geographic coordinates to hide the real location of occurrence points (see https://www.
inaturalist.org/pages/help#geoprivacy accessed on 1 September 2021) can introduce a
significant geographic bias. Therefore, we excluded numerous ‘obscured‘ coordinates from
our analyses. We recommend that conservation agencies and federal agencies (e.g., the
Sistema Nacional de Áreas Protegidas, SINAC, and the Comisión Nacional para la Gestión
de la Diversidad, CONAGEBIO) develop data-delivery protocols through a confidential,
efficient, and ethical system to disclose the accurate coordinates to researchers that are
conducting conservation studies that rely on geographic analyses.

4.4. Implications for Conservation

Our methods can be used to predict the suitable habitat of amphibian species and
other taxa and will be useful in future IUCN Red List Assessments of Costa Rican species.
Similarly, our predictions can be used in follow-up studies to conduct validation surveys in
areas of high suitability where there have been rare or absent efforts to detect study species.

We used two metrics to assess our estimated ranges. The ESH is a more robust metric
because it quantifies suitable habitats [83]. However, this metric can be estimated only for
species with comprehensive, updated, and curated occurrence datasets. Unfortunately, this
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information is not available for many species, making other metrics (e.g., AMCP) useful
tools to assess the species’ status. Instead of adhering to a particular metric, we recommend
estimating at least two metrics (as we did in this study) to assess the ranges of species. For
example, we found that species that have only recovered in a small portion of their historical
ranges had an ESH significantly lower (32–49%) than the AMCP. However, species that have
widely recovered, as well as uncommon widespread species, had a similar or larger ESH
than AMCP (Table 2). Using at least two metrics can facilitate the analyses of conservative
and less conservative scenarios in the development of management strategies. It also
allows the identification of IUCN range polygons that need to be rebuilt to better reflect
species’ ranges. Finally, our results can also be used by policymakers (e.g., Costa Rican
Congress, local government boards), federal agencies (e.g., SINAC and CONAGEBIO),
and NGOs to evaluate the national regulations for biodiversity conservation and amend or
propose new laws to protect endangered species.

According to Costa Rican legislation, amphibians are mainly protected by the Wildlife
Conservation Law No. 7317 and Biodiversity Law No. 7788, as well as related decrees.
As a result of conservation efforts and IUCN Red List Assessments, the treefrog species
Agalychnis lemur, Duellmanohyla legleri, Hyloscirtus colymba (La Loma treefrog), Isthmohyla
angustilineata, I. pictipes, I. tica, I. rivularis, I. calypsa, and I. debilis (Isla Bonita treefrog) are
now included in the official list of species at risk of extinction (decree R- SINAC-CONAC-
092-2017), and we hope new species will be included. Additionally, the leaf frogs within
the genus Agalychnis are in the II Appendix of CITES (https://cites.org/eng accessed
on 1 September 2021). Thus, there is still a deficit of protection for many endangered
amphibian species in Costa Rica, including some assessed in our study. On the other hand,
multiple conservation organizations, federal agencies, and commercial services in Costa
Rica have frequently used the red-eyed treefrog, A. callidryas, as a flag species in all types of
advertisement, especially for ecotourism. As a valuable strategy to bring awareness from
Costa Rican people to the conservation of amphibians, we recommend the Government of
Costa Rica entitle an endangered amphibian species as a national symbol. This strategy
has been successfully applied to protect other species from different taxa, such as the
three-toed sloth (Bradypus variegatus) and the manatee (Trichechus manatus). Some treefrogs
could be candidates, for example, A. annae and A. callidryas. Other treefrog species can
be used as regional wildlife flag species, such as A. lemur, Cruziohyla calcarifer (splendid
treefrog), C. sylviae (Sylvia’s treefrog), D. uranochroa, Ecnomiohyla sukia, H. palmeri, I. pictipes,
I. rivularis, and Triprion spinosus. Outreach and conservation projects in communities
where declined amphibians have been reobserved can be fundamental to the destruction
of popular, negative myths about amphibians and educate the public on the ecosystem
services provided by amphibians [103].

Supplementary Materials: The following are available online https://www.mdpi.com/article/10.339
0/d13110577/s1: Table S1. Best-fitted candidate models selected to predict the range of eight species
of treefrogs in Costa Rica, Table S2. Permutation importance (%) of the environmental predictors
used to model the range of eight species of treefrogs in Costa Rica.
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