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Abstract: The identification of the genetic basis of domestication in fish species is of timely importance
for the aquaculture industry in order to increase productivity, quality, and the welfare of farmed
fish. The goal of this study is to investigate the largely unknown aquaculture-induced evolution
in gilthead seabream, which is one of the most important farmed fish in the Mediterranean region.
We used a panel of 1159 genome-wide SNPs, and genotyped 956 fish from 23 wild populations of
Mediterranean-wide distribution and 362 farmed fish from five Greek hatcheries. We assessed the
genetic diversity of the sampled populations and contrasted the results of four different approaches
of outlier detection methods. We recognized one very strong candidate and two good candidate
SNPs with evidence for aquaculture-induced evolution in gilthead seabream. The annotation of these
SNPs revealed neighboring genes with biological roles from stress tolerance and disease resistance
to sexual maturation that may explain our observations. In conclusion, we demonstrate that the
genome of gilthead seabream, despite the fact that the species is often suggested to be in the early
stages of the domestication process, shows evidence of aquaculture-induced evolution. We report on
a list of genes that may explain our observations and that may be investigated further. We anticipate
that our findings will stimulate additional research with the use of SNP panels of higher density that
can elucidate the genomic architecture of domestication in this species of high aquacultural interest.

Keywords: captive populations; fisheries adaptation; genome scans; single nucleotide polymorphisms;
genetic diversity; Sparidae; gilthead seabream

1. Introduction

Understanding the genetic basis of domestication is a fascinating and multifaceted
topic of relevance to both basic and applied research and is of timely significance to
the aquaculture industry. Studies of ancient DNA in animals and plants domesticated
thousands of years ago have helped to answer longstanding questions on when, where,
and how many times each of these species has been domesticated [1–4]. Domesticated
species also provide excellent evolutionary experiments for studying genotype-phenotype
maps [4,5] and for understanding the genetic basis of successful growth in captivity under
stressful environmental conditions, which most often involve high growth rates, high
population densities, and resistance to pathogens [6,7]. In aquaculture, such knowledge
may help with the application of genomic selection practices over traditional breeding
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programs [8]. Furthermore, assuming a degree of parallel and convergent evolution, for
example, as has been observed in plant domestications [9], the study of fish genomic
adaptations in captive environments holds the promise of assisting efforts towards the
domestication of new fish populations and species. Notably, the vast majority of newly
farmed organisms over the last few decades have been aquatic animals, encompassing
several different fish species and a variety of crustaceans and mollusks [10,11].

Aquaculture is a relatively young industry with comparably large gaps of knowledge
on the genetic basis of domestication for most farmed fish [12]. Unlike most terrestrial
animals and plants, fish farming and the breeding of aquatic organisms started relatively
recently; thus, most species used in aquaculture are considered to be in the early stages
of their domestication process [10,13], although evidence of domestication in fish has
been demonstrated as early as within a few generations [7,14,15]. Recently, significant
effort has been devoted to whole-genome sequencing of farmed aquatic species and to
the production of genetic tools that will allow researchers to recognize genetic variations
that are associated with key traits of interest to aquaculture, such as growth, stress, and
pathogen resistance [16–18]. Nevertheless, given the polygenic nature of most traits, the
typical small effective population size of cultured populations, and the early stage of
domestication for aquaculture species, the identification of single loci with large effects is
most often observed [19,20]. Growing attention is thus being paid to methods of detecting
polygenic selection and of identifying intermediate and smaller effect variants or rare
alleles in order to prioritize genomic regions for the next phase of breeding programs
and to identify the genetic architecture that shapes the desired phenotypes in important
aquaculture species [21–25].

The gilthead seabream (Sparus aurata) is amongst the most important farmed fish in
the Mediterranean region, with little knowledge on its genetic basis of domestication. The
production of farmed gilthead seabream has increased more than seven-fold over the past
two decades [26,27]. Its domestication started relatively recently, in the 1980s, and most
production is currently derived from intensive farming with Turkey and Greece as the
largest producers [28,29]. The first commercial breeding programs for gilthead seabream
have been reported almost 20 years ago [30,31]. As of 2015, eight companies had active
selective breeding programs of gilthead seabream, four of which were from Greece [32].
Detailed information on these programs is difficult to obtain due to restrictive company
policies. Janssen et al. reported that most of these companies had family-based selection
programs for one to five generations, and that selected traits involved growth performance,
morphology, disease resistance, and feed efficiency [32]. A 5–10% increase in the growth
rate per generation has been reported in gilthead seabream that were selected for three
generations [33]. Thus, the average selection response in bodyweight at harvest for gilthead
seabream is expected to be similar to that of other fish species [34].

The gilthead seabream represents an intriguing case of farmed fish in which domestica-
tion may be significant but masked by high levels of inbreeding. Inbreeding depression may
be particularly high in farmed gilthead seabream due to its protandric hermaphroditism,
which lowers the effective population size of cultured populations, and its mass spawning
behavior, which may quickly erode genetic variations due to highly unequal parental contri-
butions [28,35–37]. To date, little evidence exists on the genetic signatures of domestication,
if any, in gilthead seabream. Some early comparisons between six wild and five farmed
populations across the Mediterranean using 16 allozyme and six microsatellite markers, as
well as DNA sequences of a part of the mitochondrial control region, provided evidence
of genetic structure in the wild populations and of genetic divergence due to genetic drift
in the farmed populations [38]. Šegvić-Bubić et al. combined data from nine microsatel-
lite markers and 19 morphological characteristics to suggest some degree of genetic and
morphological differentiation between wild and farmed gilthead seabream populations in
the Adriatic Sea region [39]. More recently, the analysis of 1159 single-nucleotide polymor-
phism (SNP) markers dispersed genome-wide from 23 wild gilthead seabream populations
of Mediterranean-wide distribution, has helped to clarify the biogeographic structure of



Diversity 2021, 13, 563 3 of 18

the species [40]. Three distinct genetic clusters of distinct geographic origin were found,
namely the Atlantic (ATL), West Mediterranean (WMED) and East Mediterranean clusters,
with the latter cluster further subdivided into an Ionian/Adriatic (ION) and an Aegean
(AEG) genetic cluster [40]. Effectively using the same set of SNP markers on cultured
gilthead seabream from five Greek hatcheries, researchers in [41] identified three genetic
clusters with a high degree of differentiation between the cultured and wild populations.
The intriguing question thus arises as to whether the hatchery divergence is primarily
driven by domestication selection or genetic drift. A scenario of selection should reveal
the parallel divergence of the same SNPs between wild and hatchery populations, as seen
in Atlantic salmon [42], whereas the divergence should be randomly distributed among
SNP loci in the genetic drift scenario. In this study, we aimed to investigate this question
by performing a series of genetic outlier tests between the four wild and three cultured
previously identified genetic clusters using the same samples as in Maroso et al. and Gk-
agkavouzis [40,41]. Throughout this work, the terms “cultured” and “farmed” populations
or individuals are used interchangeably and have the same meaning.

2. Materials and Methods
2.1. Sampling and SNP Dataset

A total of 956 wild individuals from 23 different locations and 362 farmed individuals
from 5 Greek hatcheries were analyzed (Table 1). The species is not protected in any of the
sampling areas and all samples came from commercially fished animals or were provided
by the hatcheries; therefore, no specific permission or approval was required for this study.
Tissues (fin clip or muscle) were preserved in 95% ethanol right after sampling.

Table 1. Sampling site information and basic statistics.

Loc_ID Cluster Analysis_ID Location Latitude Longitude Year N Ho He FIS

FRA-1 ATL Noirmoutier −2.170 46.989 2003 22 0.13 0.15 0.08
SPA-1 ATL Vigo −8.953 41.831 2009 13 0.14 0.15 0.04
SPA-2 ATL Cadiz −6.400 36.500 2001 17 0.14 0.15 0.04
SPA-3 WMED Alicante −0.317 38.286 2009 20 0.12 0.14 0.08
SPA-4 WMED Valencia −0.100 39.500 2014 24 0.14 0.15 0.07
SPA-5 WMED Balearic 2.681 39.403 2013 36 0.14 0.16 0.07
ITA-1 WMED W Sardinia 8.402 39.826 2002 28 0.14 0.16 0.07
ITA-2 WMED Genova 8.901 44.360 2005 33 0.13 0.15 0.09
ITA-3 WMED Sabaudia 12.624 41.406 2013 52 0.14 0.16 0.07
ITA-4 WMED Tortoli 9.756 39.924 2002 29 0.14 0.16 0.07
ITA-5 WMED Trapani 12.449 38.006 2007 22 0.14 0.16 0.06

TUN-1 WMED Tunis 10.602 36.932 2014 106 0.13 0.15 0.10
ITA-6 WMED Otranto 18.532 40.360 2001 20 0.15 0.15 0.03
ITA-7 ION Venice 12.409 45.322 2014 40 0.12 0.14 0.10
GRE-1 ION Ionio 20.360 38.983 2013 31 0.15 0.15 0.04
GRE-2 ION Igoumenitsa 20.163 39.486 2006, 2014 53 0.14 0.15 0.08
GRE-3 ION Mesologgi 21.315 38.303 2004, 2013 49 0.14 0.15 0.09
GRE-4 ION Korinthiakos 22.945 37.270 2014 32 0.14 0.16 0.08
GRE-5 AEG Nayplio 22.758 38.046 2005 33 0.14 0.16 0.08
GRE-6 AEG Basova Kavalas 24.495 40.846 2006, 2013 79 0.14 0.15 0.07
GRE-7 AEG Thermaikos gulf 22.846 40.263 2014 81 0.14 0.16 0.09
GRE-8 AEG Agiasma 24.419 40.644 2006 43 0.14 0.16 0.07
GRE-9 AEG Alexandroupolis 25.916 40.778 2013 93 0.14 0.15 0.09

FA1 13 Hatchery 1 - - 2014 78 0.14 0.15 0.07
FA2 25 Hatchery 2 - - 2014 56 0.15 0.15 0.05
FA3 13 Hatchery 3 - - 2014 80 0.14 0.15 0.08
FA4 4 Hatchery 4 - - 2014 60 0.14 0.15 0.06
FA5 25 Hatchery 5 - - 2014 88 0.13 0.15 0.09

Total 1318
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Total DNA was extracted using a column-based kit (Invisorb Spin Tissue Mini Kit,
Invitek, STRATEC Biomedical, Birkenfeld, Germany) and a salt precipitation method, using
SSTNE buffer, for the samples that failed with the kit.

Multiple ddRAD libraries were prepared, including up to 144 samples each, splitting
samples from the same population into different libraries to avoid confounding biases.
More details on library preparation and bioinformatic analysis up to SNP calling are
described in [40]. Briefly, reads with one or more uncalled bases were filtered out, as well as
reads with 11 or more consecutive bases with an average quality score less than 20 (1% error
rate). For samples sequenced on multiple lanes, reads were combined into a single file
before processing. The Stacks 1.3 [43,44] de novo pipeline was used to cluster reads into
consensus tags and call high-quality SNPs. SNPs were filtered out if scored in less than
80% of the analyzed samples and when the minor allele frequency (MAF) was lower than
0.5%. Accordingly, samples were filtered to retain only those genotyped at more than 80%
of the markers.

2.2. Genetic Diversity and Population Structure

GenAlEx 6.502 [45] was used to calculate expected (He) and observed (Ho) heterozy-
gosity as well as the fixation index (FIS). FST matrices were calculated with Arlequin
3.5.2.1 [46] using 50,000 permutations to test for significance. To summarize and visualize
the genetic relationships among groups: the model-based clustering method, implemented
in Structure 2.3.4 [47], was run using different k values and replicates of each k value and
using the sampling location as a priori information. The analysis was run with k ranging
from one to ten for the wild populations and from one to five for the farmed populations,
each repeated five times to allow the evaluation of the likelihood of different simulated
numbers of ancestral clusters. Burn in (BI) was set to 50,000 and the number of iterations
(IT) to 100,000. Results from different runs were collated and the most likely k values were
detected using the Evanno’s method, implemented in Structure Harvester [48]. A further
Structure run was carried out with the most likely k value, using 100,000 burn-in cycles
and 300,000 iterations. A joint analysis of both the wild and the farmed populations was
run using the program fastSTRUCTURE v.1.0 [49] for reasons of computational efficiency.
Similar to the Structure analysis, fastSTRUCTURE was run with the default parameters for
k values ranging from one to ten, with five repetitions for cross-validation (CV). Results
were processed with StructureSelector [50] with the optimal k value selected as the one
that minimized the CV error. The structure plot was then visualized using Distruct [51]
from CLUMPAK [52].

2.3. Outlier Analyses

Genome-wide genotyping offers increased power for finding genetic regions poten-
tially under natural selection. These loci can be then used to correlate genetic and pheno-
typic traits selected in a particular environment. Given that there is no single method that
can confidently detect genomic outliers in all experimental designs, e.g., [53], we employed
various methods to detect outliers detected under different assumptions and models: two
Bayesian approaches implemented in BayeScan 2.1 [54–56] and BayeScEnv [57], which,
additionally to BayeScan, incorporates environmental information in the form of ‘en-
vironmental differentiation’ and two methods based on the f-statistic, implemented in
Arlequin [46] and Lositan [58]. A combination of different methods is strongly advised
to obtain reliable information from the data [59]. Outlier detection analyses were carried
out with samples grouped into distinct genetic clusters, as suggested by our clustering
analysis. Specifically, pairwise comparisons of every wild cluster with every farmed cluster
were performed using Arlequin, using a hierarchical island model, and Lositan. To address
concerns associated with multiple test comparisons in Arlequin and Lositan, we obtained
an FDR estimate for the list of significant SNPs, detected across all pairwise comparisons
using the R package “qvalue” [60]. Q-value is a widely used multiple testing criterion
that describes the proportion of false positives expected within a set of significant fea-
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tures [61]. To further minimize the possibility of false positives in Arlequin and Lositan,
we considered only SNPs that were found to be significant in at least two of the pairwise
comparisons performed for each genetic cluster of farmed fish. This strategy also allowed
us to minimize the possibility of population effects in the wild samples. For BayeScan
analysis, all the clusters were analyzed in common, whereas in BayeScEnv the wild/farmed
origin was set as an environmental parameter in each cluster before their common analysis.
All four programs were run with default parameters and outlier panels were defined using
a threshold of p-value/FDR < 0.05.

2.4. SNP Annotation

In order to investigate the functional effects of the studied SNPs, we relied on se-
quence similarity local blastn searches using sequenced regions flanking to the SNPs. As a
search database for the blastn searches we used the latest genome assembly of the species
(GenBank Assembly: GCA_900880675.1 fSpaAur1.1; date of download: 28 April 2021). The
maximum permitted e-value was set to 1E-10. Finding a unique and confident blast hit
for the vast majority of the SNPs proved trivial, given that in most cases the length of the
adjacent sequence information was sufficient (501 bp for 968 of the SNPs and then between
495 bp and 90 bp for the remaining 189 SNPs—mean = 149 bp). In the end, a genomic
location was confidently assigned to most of the SNPs (Supplementary File S1).

In addition to their genomic location, for significant SNP outliers we also retrieved
information on neighboring genes, which, due to hitchhiking, background selection or
both, e.g., [62], may also have a role in the observed patterns of divergent selection for
the particular SNP. Some reports suggest that causative genes can be up to 2 Mbps away
from trait-associated SNPs [63]; however, we do not consider this to be the case in our
study given that such observations were made largely on large-effect SNPs identified from
genome-wide association studies with high-density SNP panels [63]. Here, we inspected
genes within a window of 20 Kbps in either direction, which is much closer to what is
considered common practice, e.g., [63–65].

To investigate common functional themes of associated genes, that is, of the genes
found within 20 Kbps from the significant SNP outliers, we relied on semantic similarity
measures of Gene Ontology (GO) annotations. Semantic similarity measures assess the
degree of relatedness between Gene Ontologies by means of similarity in the meaning
of their annotations [66], thus allowing additional-to-enrichment ways to assist in their
interpretation from noise reduction and multidimensional scaling to graph-based visualiza-
tions [67,68]. GO terms for our list of studied genes were retrieved using the official GO
annotations for zebrafish (Danio rerio) orthologs, given that zebrafish is a genetic model for
teleosts [69]. The GO annotations for zebrafish were downloaded from the Gene Ontology
consortium (www.geneontology.org; release: 1 September 2021) and zebrafish ortholog IDs
were identified using the gene names at the UniProt database (www.uniprot.org, accessed
on 2 September 2021). GO semantic similarity was calculated by means of the SimRel
measure with default allowed similarity = 0.7 using the REVIGO program [70]. Multidi-
mensional scaling was then applied to the similarity matrix of GO terms as implemented
by REVIGO followed by K-means clustering to decide on clusters of semantically simi-
lar GO terms. K-means clustering was performed using the K-means method from the
Scikit-learn module in Python [71] for K numbers from 1 to 10 with the final number of
K decided using the Elbow method using distortion, calculated as the average of squared
distances from the cluster centers of the respective clusters for each K value. The analysis
was focused on the Biological Process category of GO terms as we wanted to focus on
the “larger processes or biological programs accomplished by multiple molecular activities”
(http://geneontology.org/docs/ontology-documentation/, accessed on 1 September 2021)
instead of specific molecular functions and cellular components. A Jupyter notebook with
the dataset and the accompanying Python script for the K-means analysis is provided in the
Supplementary Materials (Supplementary File S2).

www.geneontology.org
www.uniprot.org
http://geneontology.org/docs/ontology-documentation/
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3. Results
3.1. Genetic Diversity and Population Genetic Structure

After filtering the raw reads and the initial number of called SNPs, as described in
detail by Maroso et al. [40], 956 wild gilthead seabreams were consistently genotyped at
1159 high-quality SNPs. In this sample dataset, 362 farmed individuals were added with
their genotypes, acquired in the context of the Aquatrace project. Of the overall data set,
two non-common genotyped loci were removed (8727_39, 13938_26) and the final dataset
consisted of 1318 gilthead seabreams genotyped at 1157 SNPs, which were used for the
subsequent analyses.

For the wild populations, the mean observed and expected heterozygosity values were
0.14 (range 0.12–0.15) and 0.15 (range 0.14–0.16), respectively (Table 1). These parameters
tended to be lower in the Atlantic populations. The inbreeding index varied from 0.03 to
0.10 and averaged 0.07 (Table 1). No general trend was found for this parameter when com-
paring Atlantic and Mediterranean samples. For the farmed populations, mean observed
and expected heterozygosity were also 0.14 (range 0.13–0.15) and 0.15, respectively, which
were not significantly different from the wild populations. The inbreeding index varied
from 0.05 to 0.09 and averaged at 0.07, the same value as in the wild populations. This
is possibly due to the implementation of breeding programs and circulation of favorable
breeders among fisheries, as the first key step of such programs is to address the problem of
inbreeding amongst breeders by restocking (S.P. Pers. Comm; [32]). The FST values among
hatcheries and the clusters of wild populations ranged between 2.4% and 4.9% and all the
pairwise calculations were statistically significant (p ≤ 0.005) (Supplementary File S3).

The genetic structure results, obtained with the SNP datasets for the wild populations,
are described extensively in [40]. Overall, the results suggested a subdivision of wild
gilthead seabream into four major genetic clusters: Atlantic (ATL), West Mediterranean
(WMED), Ionian/Adriatic seas (ION), and the Aegean Sea (AEG), with the strongest
differentiation being between Atlantic and Mediterranean samples (Figure 1).

Figure 1. Structure clustering analysis of the wild populations. Results for the most likely number of clusters (k = 4). Labels
under the graph indicate the sample groups. Labels above the graph indicate the genetic clusters suggested by the analysis
(reproduced with permission from [40]).

Similarly, for genetic structure analysis of the farmed populations, Evanno’s method
suggested a subdivision into three genetic clusters as being the most likely result, and all
runs at this number of ancestral groupings showed the same clustering pattern. Farmed
samples showed a high degree of admixture with the structure’s Bayesian analysis, with
the FA1 and FA3 hatcheries’ samples assigned into the same cluster, the FA2 and FA5
hatcheries’ samples clustered together, and the FA4 hatchery’s samples assigned to their
own individual cluster (Figure 2). The joint analysis supported a clear distinction between
wild and cultured populations (Figure 3) for the optimal k = 7 (Supplementary File S4).
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Figure 2. Structure plot depicting/justifying the genetic groups in the farmed populations.

Figure 3. fastSTRUCTURE results for the optimal k = 7 for the jointed dataset that included both the wild and the farmed
populations. Populations are ordered as in Figures 1 and 2.

3.2. SNP Outliers of Hatchery-Induced Evolution in Gilthead Seabream

The different outlier detection methods yielded slightly different results in terms of
significant SNPs detected as outliers (Supplementary Files S5–S8). Both Arlequin and Losi-
tan were implemented in 12 pairwise comparisons between the three recognized clusters
of farmed fish and the four identified clusters of wild fish (Supplementary Files S5 and S6).
The number of outlier SNPs recognized as significant in individual pairwise comparisons
ranged from 48 to 69 in Arlequin (Supplementary File S5) and from 70 to 215 in Lositan
(Supplementary File S6) with q-values estimated at 0.46 and 0.45, respectively, at the 5%
significance level. However, after considering only the SNPs that were found to be sig-
nificant in at least two out of the total of four pairwise comparisons performed for each
genetic cluster of farmed fish, Arlequin recognized nine outlier SNPs and Lositan 18 outlier
SNPs (Figure 4). Furthermore, BayeScan detected 49 outlier loci (Supplementary File S6),
and BayeScEnv detected three outlier loci (Supplementary File S8). The overlap of outliers
across method implementations revealed one SNP detected with all methods, namely,
the SNP 901_49, whereas two additional SNPs, the SNP 8901_12 and SNP 12232_7, were
detected by means of BayeScEnv, BayeScan, and Lositan (Figure 4).

Figure 5 shows the semantic similarity space by means of multidimensional scaling
for the GO Biological Process of the associated genes to the three SNPs. K-means clustering
and the described elbow method suggested three clusters of GO terms with the label of the
cluster decided for one of the GO terms closest to each cluster center.
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Figure 4. Venn diagram of the number of outlier SNPs detected using each method.

Figure 5. Scatter plot of the GO terms for biological process (n = 33) for the associated genes, summarized by multidimen-
sional scaling on the semantic similarity matrix. Each point represents a GO term for a biological process, and its position in
the scaled space of semantic similarities depicts its similarity of meaning relative to the other GO terms. Colors correspond
to K-means clusters for an optimal K-value = 3. Labels correspond to GO terms that are nearest to each cluster center. A full
list of the description of the GO terms and the Python code used to create this figure is provided in the form of a Jupyter
notebook (Supplementary File S2).
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4. Discussion
4.1. Assessing the Significance of Candidate SNPs for Domestication in Gilthead Seabream

This study represents the first genome-wide investigation of the genetic basis of
domestication in gilthead seabream. By screening 1159 SNPs of genome-wide distribution
from five Greek farmed and 23 wild populations of Mediterranean-wide distribution, we
report on a distinct genetic makeup of the farmed populations compared to the wild ones
(Figure 3), and we provide evidence for three candidate SNPs with signatures of parallel
divergent selection in multiple farmed gilthead seabream populations. To minimize the
possibility of false positives, we used conservative criteria for the detection of candidate
SNPs. On one hand, candidate SNPs were significant across three different genomic outlier
detection methods, namely, first, a Bayesian approach as implemented in the programs
BayeScan and BayScEnv, second, an FST approach that uses a hierarchical island model as
implemented in the program Arlequin, and third, an FST approach that uses a stepwise
mutation model as implemented in the program Lositan. Comparative studies have shown
different strengths and weaknesses for individual genomic outlier detection methods, often
depending on the confounding effects of the demographic history, structure, and drift of
the populations, e.g., [53,72,73]. Hence, genomic outliers proposed by multiple methods
that assume different demographic models are more likely to be true positives than any
individual method given that we have no knowledge about the demographic history
of the studied populations [53,74]. On the other hand, candidate SNPs were significant
in different pairwise comparisons between farmed and wild genetic clusters recognized
by the programs Structure (Figures 1 and 2) and fastSTRUCTURE (Figure 3). In this
way, we controlled for the confounding factors of population structure in our studied
samples and of unknown management practices such as broodstock supplementation with
wild fish and the exchange of farmed fish [28]. Importantly, with this approach we also
managed to report on parallel patterns of divergence across multiple farmed and wild
population comparisons. We investigated SNPs that were significant outliers in multiple
farmed populations when contrasted with our best-known wild gilthead seabream genetic
variation in the Mediterranean region for the 1159 studied SNPs (Figure 1) [40]. The
fact that our farmed samples were only of Greek origin might be seen as a limitation
of this study. Nevertheless, it is not uncommon for gilthead seabream to be exchanged
between European farms (A.T. Pers. Comm.); in fact, it is known that gilthead seabream
broodstock fish are exchanged between the hatcheries grouped under the same clusters
according to structure analysis (FA1–FA3 and FA2–FA5) (A.T. Pers. Comm.). It is thus
possible that our findings are valid across a wider range of gilthead seabream farms in
the Mediterranean region; however, this remains to be tested. The fact that we detected
three candidate SNPs for domestication in gilthead seabream by screening a relatively low
number of 1159 random genomic SNPs suggests potentially strong divergent selection
for domestication that, for example, medium-to-high-density SNP screening approaches
may be able to elucidate further. To this end, Peñaloza et al. recently reported on the
development of a 15K SNP chip for gilthead seabream that may be ideally suited for this
purpose [75]. Our analysis of the semantic similarity of the genes within 20 Kbps from
the three candidate SNPs also managed to recognize some common functional patterns
(Figure 5). Below, we discuss in detail the potential biological significance of each of the
recognized candidate SNPs in the domestication process of gilthead seabream.

4.2. Evidence on the Genetic Basis of Domestication in Gilthead Seabream
4.2.1. Genes Associated with the SNP 901_49

Of the three reported candidate SNPs, the one labeled as 901_49 was found to be sig-
nificant in all four method implementations and thus represents perhaps the strongest can-
didate SNP for divergent selection in the farmed gilthead seabream populations (Figure 4).
Furthermore, its allele frequencies showed a marked decrease from an average of 39.79%
(±4.39%) in the wild populations to 10.70% (±5.65%) in the farmed ones for one of the
alleles (Figure 6).
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Figure 6. Plot of the allele frequencies of the SNP_901_49 at the studied clusters in which a marked change in frequencies
has been observed between farmed (in green) and wild (in red) clusters of gilthead seabream populations. Error bars
denote standard deviations, whereas circles and diamonds represent the two different alleles. The information of which
populations are grouped in each cluster id can be found in Table 1

The SNP was mapped on the chromosome 21 (position: 7694060) of the published
gilthead seabream genome, and it is found within the coding region of the UROD gene. The
SNP, however, was found to represent a synonymous mutation and is not expected to have
any obvious effect on the sequence and function of the uroporphyrinogen decarboxylase
protein. In addition to the UROD gene, the following genes were found within 20 Kbps
in either direction of the SNP: ZSWIM5, LYN, and PKIA, which encode respectively for
the proteins zinc finger SWIM-type containing 5, tyrosine-protein kinase Lyn, and cAMP-
dependent protein kinase inhibitor alpha-like.

Regarding the function of these four genes, the uroporphyrinogen decarboxylase
protein is involved in heme biosynthesis [76], which is an important pathway in fish adap-
tation to novel environmental conditions and stress, for example, in salinity adaptation in
European flounder (Platichthys flesus) [77] and in Atlantic salmon (Salmo salar) infected with
sea lice [78]. Decreased hematocrit levels in cultured gilthead seabream are not uncommon
due to bacterial infections [79] or under stressful environmental conditions such as low
temperatures [80,81]. Regarding the ZSWIM5 gene, its protein contains an evolutionary
conserved domain that may interact with DNA, RNA, and proteins, which suggests a po-
tentially major regulatory role [82,83]. Chang et al. provided evidence of an important role
for the protein in mice during early development [84], whereas Micheletti et al. identified
in Chinook salmon (Oncorhynchus tshawytscha) a related gene, ZSWIM7, associated with
sex differences [85]. Whether this evidence indicates a potential unknown confounding
factor in relation to sex or perhaps the rate of sexual maturation in the protandrous gilthead
seabream remains to be investigated. Concerning the LYN gene, its protein is a member of
subfamily B of Src kinases [86], and has been assigned roles in hematopoiesis and immune
function [87], in spermatogenesis [88], and as a key regulator of the stress-activated protein
kinase pathway in response to diverse environmental stimuli [89,90]. These roles have
been somewhat validated in several fish species, for example, the tyrosine-protein kinase
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Lyn transcript has been found expressed in the spleen tissue of the grass carp (Ctenopharyn-
godon idella) [91] and was found to be markedly unregulated during hyperosmotic stress
in the fish Gillichthys mirabilis [92]. Arguably, immune function and stress resistance are
paramount for the health of any farmed fish species, including gilthead seabream [93,94],
and these biological roles may explain the divergent selection observed at the adjacent
SNP 901_49 in the farmed gilthead seabream. Notably, “innate immune response” was
a GO term that described one of the three clusters of GO terms in our analysis of seman-
tic similarities (Figure 5). Regarding the PKIA gene, its protein belongs to the family of
cAMP-dependent protein kinase (PKA) inhibitors, which in several fish species have been
found to regulate the growth hormone (GH) and the gonadotropin-releasing hormones
(GnRH) [95]. In many fish raised in captivity, including gilthead seabream, GnRH has
been found to be responsible for the regulation of ovulation and spawning [96–98]. GH is
furthermore a key hormone in fish during exposure to stress, helping the fish adapt to a
wide range of environmental stressors such as water temperature and salinity changes [99].
Altogether, we provided several lines of functional evidence as to why the genomic region
surrounding SNP 901_49 at chromosome 21 of the gilthead seabream may be an intriguing
topic of further research to understand the genetic basis of domestication in the species.

4.2.2. Genes Associated with SNP 8901_12 and SNP 12232_7

The other two reported candidate SNPs, labeled 8901_12 and 12232_7, showed similar
behavior at the four methods used to detect divergent selection in the farmed gilthead
seabream populations. Both SNPs were found to be significant in the BayeScEnv, BayeScan,
and Lositan analyses, but not in Arlequin (Figure 4). In Arlequin, both SNPs were within
the top 50 most significant SNPs (p-value < 5%) in all three genetic clusters of farmed fish,
but only when compared with the ATL cluster of wild populations (Supplementary File S5).
This observation suggests population-specific effects, although methodological limitations
cannot be excluded given that we did not get similar observations with the other three meth-
ods (Supplementary Files S6–S8). Furthermore, in Lositan for SNP 12232_7, two of the four
comparisons with the ATL cluster were not found to be significant (Supplementary File S7),
which indicates that the population effect detected with Arlequin may not be very strong.
However, a shortcoming of the method itself that we did not investigate further, such
as under the conditions described in [73], cannot be excluded. Furthermore, the allele
frequency for the less frequent allele showed for SNP_8901_12 an increase from zero in
the farmed populations to 6.13% (±1.14%) in the wild ones, and for SNP 12232_7 an in-
crease from zero in the farmed populations to 5.59% (±3.21%) in the wild ones. These
changes in frequencies were thus much smaller than those observed with SNP 901_49.
Nevertheless, we report on SNP 901_12 and SNP 12232_7 as loci with correlative evidence
in the domestication of gilthead seabream that future research will investigate further. The
SNP 8901_12 was mapped at chromosome 21 (position: 15127025), the same chromosome
at which the aforementioned SNP 901_49 was found. The SNP 8901_12 is located within
the gene ZZZ3, which encodes for the ZZ-type zinc finger-containing protein 3, at about
the middle of its ca. 16 Kbps gene region. However, it is located at an intronic region,
between exon 7 and exon 8 of the ZZZ3 gene, and thus it is not expected to have an effect
on the sequence and function of the produced protein. Within 20 Kbps in either direction of
the SNP, two more genes were found, namely, the genes USP33 and AK5, which encode for
the proteins ubiquitin carboxyl-terminal hydrolase 33 and adenylate kinase isoenzyme 5,
respectively. The SNP 12232_7 was mapped at chromosome 12 (position: 25666771) of
the gilthead seabream genome. It is found within the gene PPIL1, which encodes for the
protein peptidyl-prolyl cis-trans isomerase-like 1, but SNP 12232_7 is also located at an
intronic region between exons 4 and 5.

The PPIL1 gene produces an evolutionary conserved peptide sequence from humans to
zebrafish and fission yeast [100]. It has peptidyl prolyl isomerase activity (PPIase) [100,101]
and also participates in the spliceosome that removes introns from pre-mRNA [102]. As a
function, PPIase activity has been implicated in the environmental stress response of a wide
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range of organisms from water draught in plants, e.g., [103], to heat stress in Escherichia
coli [104]. Alternative splicing, although not fully yet understood, has been suggested to
play an important role in the evolutionary adaptation of eukaryotes such as temperature
adaptation in Drosophila [105]. In fish, a comparative analysis of orthologous transcripts
of four species of the Percidae family has recognized the PPIL1 transcript amongst those
fast-evolving and positively selected genes, by means of the dN/dS ratio, with a potential
role in temperature adaptation [106]. A similar stress coping role may be assigned to the
ZZZ3 gene. It belongs to the zinc finger superfamily of proteins, which are considered
master regulators of coping with environmental stress, especially in plants [107,108], but
also in animals [109,110]. The USP33 gene functions primarily as an ubiquitin-specific
protease (USP) and thus regulates cellular protein traffic [111] and modulates interactions
that regulate autophagy and immune responses to various stressors [112]. In fish, for
example, the transcription of USP33 was found to be significantly altered in zebrafish after
exposure to toxic nanomaterials [113], whereas in the large yellow croaker (Larimichthys
crocea) a GWAS analysis listed USP33 amongst those candidate genes associated with
acute heat tolerance in this fish species [114]. It should also be noted that “ubiquitin-
dependent catabolic process” was a GO term that described one of the three clusters of
GO terms in our analysis of semantic similarities (Figure 5). The AK5 gene encodes an
enzyme with an evolutionarily conserved role in energy metabolism that in fish has been
involved in various aspects of temperature acclimation from sperm motility in brown trout
(Salmo trutta), burbot (Lota lota), and the European grayling (Thymallus thymallus) [115]
to the muscles of rainbow trout (Oncorhynchus mykiss) and bastard halibut (Paralichthys
olivaceus) [116,117]. Overall, we provide several lines of evidence on the biological role
of neighboring genes that may explain the observed parallel divergence of the reported
SNPs in the farmed gilthead seabream. These genes and genomic regions may be targets of
future studies that will investigate further the domestication process in this fish species.

5. Conclusions

In conclusion, we here present the first genome-wide evidence of the genetic basis of
domestication in the commercially important fish gilthead seabream, using 1159 randomly
identified SNPs of genome-wide distribution. The three reported robust outlier SNPs were
found to be significant outliers in multiple genetic clusters of farmed fish populations when
contrasted with different genetic clusters of wild populations. This finding supports a
scenario of parallel signatures of adaptation of gilthead seabream to the farmed conditions,
which remains to be investigated further, for instance, with the use of higher-density
SNPs that have been recently developed for gilthead seabream [75]. We also reported
on the biological role and function of multiple genes closely linked to the outlier SNPs
that may explain the observed divergence, and provide targets for future research in the
domestication of gilthead seabream. Notably, two of the outlier SNPs, namely, SNP 901_49
and SNP 8901_12, were mapped onto the same chromosome 21, which drew some attention
as to the genetic variation of this chromosome with regard to the domestication process.
Amongst the associated genes, a common biological pattern has to do with coping in
stressful conditions, for example, the associated UROD, LYN, PKIA, ZZZ3, USP33, and
AK5 genes have been assigned such a role, which growing in hatchery environments may
explain successful growth in high population densities and resistance to pathogens. This
was also evident in the analysis of the semantic similarity of the GO biological process of the
associated genes, where clusters of GO terms associated with the “innate immune response”
and with the “ubiquitin-dependent protein catabolic process” were identified (Figure 5).
It is well known that ubiquitin-dependent pathways play major roles in modulating the
effects of environmental stress at the molecular level [118]. We acknowledge that these
pathways are also involved in several processes other than stress, such as in the cell cycle
and proliferation, and thus more research is needed in this direction. Some possible
links were also found with genes that are important for growth and maturation, such
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as the gene PKIA, which may also explain the selection for high growth rates in the
hatchery environment.

Supplementary Materials: The following are available at https://www.mdpi.com/article/10.3390/
d13110563/s1. Supplementary_File_S1_SNP_annotations.xlsx: Information on the annotation of the
studied SNPs found based on sequence similarity (blastn) between a query sequence that contained
the SNP and the published genome of gilthead seabream as a BLAST database (GenBank Assembly:
GCA_900880675.1 fSpaAur1.1; date of download: 28 April 2021). In a few cases, an SNP could not be
unambiguously assigned to a single genomic location and thus information on all hits was included.
#N/A marks missing information. Supplementary_File_S2_semantic_similarity_notebook.ipynb: A
Jupyter notebook with the dataset and the accompanying Python script for the K-means analysis.
Supplementary_File_S3_FST_results.xlsx: This file contains the results of the FST analysis among
hatcheries and clusters of wild populations, conducted with the program ARLEQUIN. The statistically
significant values (p ≤ 0.005) are shown in bold text. Supplementary_File_S4_fastStructure_CVerror.png:
Lineplot of the CV error of fastSTRUCTURE runs of k values ranging from one to ten for the joint dataset
that included both the wild and the farmed populations. The red dotted lines highlight the optimal
k value (k = 7) that minimized the CV error. Supplementary_File_S5_Arlequin_results.xlsx: This file
contains the results of the outlier detection method conducted with the program Arlequin. The “IDs
map” sheet contains the mapping of SNP_id with the numeric code for each SNP used in the analysis.
The following 12 sheets contain the results of the analysis for each pairwise comparison between the
three genetic clusters of farmed populations, coded as “4”, “13”, and “25”, and the four genetic clusters
of wild populations, coded as “AEG”, “ATL”, “ION”, and “WMED”. These sheets are named accord-
ingly so that the name of the sheet distinguishes the pairwise comparison analyzed, for example,
the sheet “4ION” contains the results of the pairwise comparison between clusters “4” and “ION”.
The sheet “Rank_TOP50” contains the ranking of each SNP in each pairwise comparison and their
occurrence within the top 50 most significant outliers. Supplementary_File_S6_Lositan_results.xlsx:
This file contains the results of the outlier detection method conducted with the program Losi-
tan. The “IDs map” sheet contains the mapping of the SNP_id with the numeric code for each
SNP used in the analysis. The following 12 sheets contain the results of the analysis for each pair-
wise comparison between the three genetic clusters of farmed populations, coded as “4”, “13”,
and “25”, and the four genetic clusters of wild populations, coded as “AEG”, “ATL”, “ION”, and
“WMED”. These sheets are named accordingly so that the name of the sheet distinguishes the
pairwise comparison analyzed, for example, the sheet “4ION” contains the results of the pairwise
comparison between clusters “4” and “ION”. The sheet “Outliers_5%” contains a summary of each
SNP recognized as an outlier at the 5% significance level in each pairwise comparison. Supplemen-
tary_File_S7_BayeScan_results.xlsx: This file contains the results of the outlier detection method
conducted with the program BayeScan. The “IDs map” sheet contains the mapping of SNP_id with
the numeric code for each SNP used in the analysis, and the sheet “Result” contains the results of
the analysis. Supplementary_File_S8_BayeScEnv_results.xlsx: This file contains the results of the
outlier detection method conducted with the program BayeScEnv. The “IDs map” sheet contains
the mapping of the SNP_id with the numeric code for each SNP used in the analysis, and the sheet
“Result” contains the results of the analysis.
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