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Abstract: Lichen secondary metabolites are natural products of high medicinal and industrial value,
which are produced by the fungal symbiont (mycobiont) of lichens in response to environmental
changes. It has been shown that the cultured mycobiont is capable of secondary metabolite produc-
tion, specifically polyketides, and polyketide production is affected by the presence or absence of
the algal or cyanobacterial symbiont (photobiont). Identification of polyketide synthases encoding
genes is, in turn, key for understanding the regulation of secondary metabolite synthesis. Using a
previously established method of resynthesis for Cladonia rangiferina as well as the sequenced and
assembled genome of that species, we compared transcriptomes of C. rangiferina cultured alone and
resynthesized with the photobiont (Asterochloris glomerata) to reveal transcriptionally active genes in
secondary metabolic gene clusters, as well some of the neighbouring genes, induced by the presence
of the photobiont and events of lichenization. The results identify potential candidates for PKS
genes in C. rangiferina, identify potential neighbouring genes in the PKS cluster, and offer insights
into further research. The study provides preliminary insights into the activity of several identified
biosynthetic gene clusters (BGC) as well as interactions of genes within those clusters.

Keywords: Cladonia rangiferina; lichen-forming fungi; transcriptomics; lichen secondary metabolites;
polyketide synthases; PKS; gene expression; lichenization; resynthesis

1. Introduction

There are over 1000 lichen secondary metabolites identified to date [1]. Their potential
for pharmaceutical and biotechnology uses lies in bioactive properties such as antibacterial
and antifungal activity, or industrially relevant features such as hydrophobicity and metal
chelation [2–6]. There is, therefore, a growing need for known and yet to be discovered
secondary metabolites. However, knowledge of their regulation in lichens has been a slow
process. Although modern improved culture methods increased progress in biotechnology
using axenic lichen fungi (mycobionts) [7], the use of engineered biosynthesis in an easily
cultivated universal host, carrying gene clusters of corresponding synthases, seems to be a
more viable solution [8]. Thus, the identification of genes involved in secondary metabolite
synthesis, and discerning conditions required for their activation, has become an important
part of the discovery and exploration of new bioactive compounds.

The conventional approach to identifying gene function is to begin with the product
that must be identified and characterised, and then the gene(s) responsible for its production
must be revealed [9]. Evolutionary and comparative genomics, combined with reverse
genetics and gene knockout techniques remain to be powerful tools allowing for the
identification and characterization of genes involved in biosynthetic pathways [10–13].
However, modern genome mining technologies and a growing amount of DNA sequence
data have allowed the opposite approach: the function of newly identified genes and gene
clusters can be predicted based on characteristics of already investigated genes and their
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products [14]. This genome mining method led to the discovery of many biosynthetic
pathways for which no actual product has been characterized until now [15–17].

The vast majority of the secondary metabolites in lichens are produced by three types
of synthases—large multienzyme protein complexes: terpene synthases (TPS) produc-
ing terpenes, nonribosomal peptide synthetases (NRPS) producing small peptides, and
polyketide synthases (PKS), producing polyketides [18–20]. Polyketide synthases may
be further characterized according to their sequences, primary structures, and catalytic
mechanisms into more specialized subgroups [21]. Lichen-forming fungi are known to
have type I polyketide synthases; however, recent assays revealed the presence of type
III-like PKS in some lichen mycobionts, though the role is unclear [22]. Genes involved in
the biosynthesis of secondary metabolites are usually organized in separate clusters for
fungi, often under the control of a single regulator, and not all of them are expressed under
standard laboratory conditions [19,23]. Activation of these genes in nature depends on
different environmental and physiological factors [18,24].

Although lichen polyketides, terpenes and small peptides, are known to be produced
by the mycobiont alone [25], their synthesis requires carbon, which in nature is provided
by the photosynthetic partner, algae or cyanobacteria (photobiont) [26]. Some lichen-fungi
that associate with cyanobacteria can fix nitrogen playing roles in nutrient acquisition or
pollution tolerance within the environment [27,28], but these lichens are less frequently
cultured and tend to produce fewer polyketides. Co-culturing of the lichen-forming fungus
with its green algal photobiont has been shown to allow secondary metabolite biosynthesis
to occur [7]. One study showed that the aposymbiotic cultures of the mycobiont growing
on the media supplemented with carbon sources, produced polyketides [29]. To identify
which genes are activated by lichenization, we compared transcriptomes of C. rangiferina
cultured alone, C. rangiferina at later stages of resynthesis (as identified by Athukorala, [30])
with the photobiont (Asterochloris glomerata), and the natural lichen thallus of C. rangiferina.

Profiles were screened for the presence and expression of predicted secondary metabo-
lite biosynthesis gene clusters, generated by the latest version of antiSMASH analysing
software (open access) [31] from previously sequenced and assembled (URGP 2014) genome
of Cladonia rangiferina. The study provides preliminary insights into the activity of several
identified biosynthetic gene clusters (BGC) as well as the interaction and mutual influence
of genes within those clusters. Further research can be focused on the specific BGC (and
neighbouring) genes, contributing to the research of probable gene transfer and engineered
biosynthesis of secondary metabolites in an artificial host.

Objectives:
The goal of the research was the identification of genes involved in polyketide synthe-

sis in Cladonia rangiferina, through expression patterns affected by the events of licheniza-
tion, with the more specific objectives being:

(a) To identify which, if any, secondary metabolite BGC genes are affected by licheniza-
tion processes.

(b) To identify additional genes responsible for PKS activation outside the BGC core.
(c) To evaluate the importance of the lichenization processes for potential use as a trig-

gering mechanism of secondary metabolite production.

2. Materials and Methods
2.1. Co-Inoculation and Resynthesis

Resynthesis was performed according to the previously established protocol for lich-
enization in C. rangiferina [30]. Two axenic cultures were obtained from a lab culture collec-
tion, Cladonia rangiferina and Asterochloris glomerata, which were subcultured three months
before resynthesis on 1.5% malt yeast extract agar (MY) (malt extract; 20 g, yeast extract; 2 g,
agar; 15 g in 1 L distilled water) and Bold’s Basal Medium (BBM, liquid) [32,33] respectively.

The identity of each of the cultured symbionts was confirmed by sequencing of
internal transcribed spacer 1 and 2 (ITS 1 and 2) region of the nuclear ribosomal RNA
gene performed with primers 1780-F (5’-CTGCGGAAGGATCATTAATGAG-3’) [34] for
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the mycobiont and 1780A (5’-CTGCGGAAGGATCATTGATTC-3’) [34] for the photobiont,
with ITS4 (3’-TCCTCCGCTTATTGATATGC-5’) [35] as a 3′ primer for both symbionts.
The resulting sequences showed 100% similarity to the sequences KY119381 (fungus) and
MT036563 (alga), respectively.

One month prior to co-inoculation, fungal colonies were gently ground with a sterile
mortar and pestle and inoculated into 100 mL of liquid MY medium (20 g malt extract and
2 g yeast extract in 1 L of distilled water). Liquid cultures were maintained at 20 ◦C with
continuous shaking at 150 r/min.

After one month incubation, 50 mL of fungal culture was centrifuged at 8000 rpm
for 10 min, drained, ground with a mortar and pestle under sterile conditions, and resus-
pended in 50 mL of 99:1 medium (1 mL of MY added to 99 mL of BBM; [36]) to obtain a
homogeneous suspension. One hundred millilitres of lichen algal culture was centrifuged,
at 8000 rpm for 10 min, drained, and the algal cell pellet was resuspended in 50 mL of
the same 99:1 medium (1 mL of MY added to 99 mL of BBM; [36]) to obtain a concen-
trated suspension. The resulting suspensions were used for co-inoculation: 500 µL of
the prepared C. rangiferina suspension was inoculated onto nitrocellulose filters (25 mm
diameter, 0.22 µm, MilliporeSigma, Canada GSWP02500) in the Petri plates containing
99:1 agar medium and allowed to dry for 1 h under sterile conditions. After 1 h the same
nitrocellulose filter papers containing C. rangiferina were inoculated with 500 µL of A.
glomerata and dried for 1 h under sterile conditions.

Two large Petri plates with five filters each were prepared for every culture, resulting
in 10 replicates of the alga alone, fungus alone (on the nutrient-poor medium and optimal
nutrient-rich medium), and fungus combined with the alga (co-culture). The 40-day old
cultures were pooled together for the total RNA extraction.

The natural thallus of C. rangiferina used in comparison experiments was collected
from Birchy Bay, Newfoundland (N49◦ 190 15.300; W56◦ 410 07.0200; 126.2 masl). Dry
thallus was rehydrated for about 6 h under the same incubation conditions as the cultures
prior to RNA extraction [37].

2.2. RNA Extraction, RNA Sequencing and Transcript Analysis

Total RNA was extracted using the RNeasy kit (Qiagen, Germantown, MD, Canada,
according to the manufacturer’s instructions (resulting in 35 µL of total RNA (RIN > 6.5)
with a concentration between 90–200 ng/µL). The cDNA library construction and RNAseq
were done through services offered by McGill University and Genome Quebec Innovation
Centre (http://www.gqinnovationcenter.com/index.aspx?l=e) using Illumina HiSeq 4000
System (Illumina, Inc., San Diego, CA, USA).

The sequencing reads were mapped to the C. rangiferina genome (unpublished) by
alignment program HISAT2 v. 2.2.1 (The Center for Computational Biology at Johns
Hopkins University, Baltimore, MD, USA) [38]. Genome annotation was performed using
gene finder tool GlimmerHMM v. 3.0.4. (The Center for Computational Biology at Johns
Hopkins University, Baltimore, MD, USA) [39], a gene finder based on a Generalized
Hidden Markov Model [40] trained on the genome of Cladonia grayi [41], and the perl
toolkit AGAT v. 0.5.1 (BeeBiome-consortium, Alcediag, Montpellier, France) [42]. After
the file conversion with samtools v.1.9 (HTSlib, GitHub) (http://www.htslib.org/) and
extraction of gene sequences with BEDTools v.2.29.2 (HTSlib, GitHub) [43], transcripts
were assembled and their abundances estimated with StringTie v.2.1.3 (The Center for
Computational Biology at Johns Hopkins University, Baltimore, MD, USA) [44].

The differential expression analysis was performed using Bioconductor software
package edgeR (Storey Lab, Princeton University, Princeton, NJ, USA) [45]. A gene was
classified as differentially expressed if the expression change exceeded two-fold (Log2
2-FC) at an FDR of 0.05.

Using GlimmerHMM (The Center for Computational Biology at Johns Hopkins Uni-
versity, Baltimore, MD, USA) [39], the number of protein coding genes was predicted. The

http://www.gqinnovationcenter.com/index.aspx?l=e
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sequenced reads for all four samples were mapped to the C. rangiferina mycobiont genome
with over 90% overall alignment rate for each sample.

2.3. Secondary Metabolite Gene Clusters Determination and Analysis

The web-based prediction tool “antibiotics and secondary metabolites analysis shell”
(antiSMASH)–a tool designed to identify secondary metabolite ‘biosynthetic gene clusters’
(BGCs) in genomes of plants, bacteria and fungi [31] (v.5, the latest version on the day of
research) was used to reveal secondary metabolite gene clusters within the C. rangiferina
genome. The potential gene clusters (or “regions”) were searched against the database of
highly conserved enzyme HMM profiles (core-enzymes), which are indicative of a specific
BGC type, and after that individual protoclusters encoded in the region were determined
according to pre-defined cluster rules. The regions that make up a core later were extended
by its neighbourhood, which constitutes genes encoded up-stream and down-stream of the
core, that may affect core gene transcription.

The list of all differentially expressed genes (DEG) was compared to predicted gene
clusters and the resulting genes were analysed using R statistical packages for graphi-
cal representation.

3. Results and Discussion

Two long-term axenic cultures from the laboratory culture collection—Cladonia rangife-
rina and Asterochloris glomerata—were used to investigate transcriptome changes during
the process of resynthesis. The chosen experimental conditions included control: the
non-symbiotic fungus C. rangiferina growing on the diluted nutrient-poor medium (Fdl),
and two experimental treatments: the non-symbiotic fungus C. rangiferina growing on
the nutrient-rich malt yeast extract (Fopt)—a medium known as optimal for growth of a
variety of fungi [46], and a co-culture of C. rangiferina fungus mixed with alga A. glomerata
growing on the diluted medium (FA). Natural thallus (NT) of C. rangiferina collected in
Central Newfoundland was used for comparison (Figure 1).

A similar experiment with a photobiont, A. glomerata, was conducted: the non-
symbiotic alga (A) versus a co-culture of C. rangiferina mixed with A. glomerata (FA),
with the natural thallus (NT) of C. rangiferina used for comparison.

Using a previously established protocol for C. rangiferina lichenization [30] we chose
the 40-day incubation for sampling as the point when the stable expression of a few known
PKS genes could be observed [29].

3.1. RNA Sequencing and Transcriptome Analysis

In order to obtain the necessary amount of RNA for an efficient next-generation
sequencing (Illumina Hiseq (Illumina, Inc., San Diego, CA, USA) paired-end reads, 100 bp),
all replicates for each culture respectively were pooled together. Pooling samples together
(biological averaging) is a method that was used in microarray research for years [47,48],
and was later adopted for the RNA sequencing optimization [49,50], supported by modern
methods of computation of differential expression between two experimental conditions
(the NOISeq package for R, [51,52]). Applying this strategy resulted in a sufficient amount
of RNA that provided an average of ~50 million 100-bp reads for each sample.

The number of predicted genes (28,715 for the mycobiont and 26,162 for the pho-
tobiont), as well as the numbers of protein coding genes (10,140 and 8431, respectively)
and differentially expressed genes during lichenization (Figure 2a,b, Additional file S2,
Supplementary Materials), were in agreement with previous observations [41,53–56].
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glomerata growing on the diluted medium (FA); the non-symbiotic alga (A). Photo credits: N. 

Sveshnicova, D. Gunawardana, M. Piercey-Normore. 
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Figure 1. Co-inoculation and resynthesis. (a) Cladonia rangiferina in its natural habitat (bottom),
the natural thallus (NT) of C. rangiferina (top). (b) Two axenic cultures from a lab culture collec-
tion, Cladonia rangiferina and Asterochloris glomerata (left), filters showing culture/conditions (right):
non-symbiotic fungus C. rangiferina growing on the diluted nutrient-poor medium (Fdl) and the
optimal nutrient-rich malt yeast extract (Fopt); a co-culture of C. rangiferina fungus mixed with alga
A. glomerata growing on the diluted medium (FA); the non-symbiotic alga (A). Photo credits: N.
Sveshnicova, D. Gunawardana, M. Piercey-Normore.

Pairwise differential expression analysis of read counts in the experimental conditions
(FA, Fopt, NT for mycobiont; and FA, NT for photobiont) relative to the non-symbiotic
monocultures (Fdl and A respectively) was combined with GO/InterPro annotation using
Blast2Go software to identify genes and cell processes affected by the events of lichenization.

Figure 3 presents the fifteen most active up- and down-regulated processes for every
GO category in the co-culture for both partners.

Despite the long history of lichenology, lichen-forming fungal and algal genome
databases are lacking in entries, but other fungal and algal databases are available for
comparison (Figure 3, Table 1). As expected (and was previously reported for different
co-cultures [41,56]) both the mycobiont and photobiont demonstrated downregulation of
the expression of the numerous genes in comparison to the mono-cultures (Figure 2a,b).
Interestingly enough, in the case of the mycobiont, the same effect was observed for
the monoculture, growing on the optimal nutrient-rich media (Fopt, growing on malt
yeast extract), indicating that the genes and processes in question may be related to the
carbohydrate intake.
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Figure 2. Gene expression analysis. (a,c) Number of differentially expressed genes at a false discovery rate (FDR) < 0.05
in (a) fungal and algal co-culture (FA), fungal monoculture on optimal medium (Fopt), and natural thallus (NT) (all three
conditions were compared to the fungal monoculture on diluted medium) or (b) in fungal and algal co-culture (FA), and
natural thallus (NT) (both conditions were compared to the algal monoculture); (c,d) unsupervised hierarchical clustering
showing heat maps for the top 50 (out of 3500–4500) differentially expressed genes, for all four conditions for the fungi (c),
and all three conditions for alga (d) calculated for monoculture/co-culture pairs (Fdl/FA and A/FA respectively).

Table 1 shows the annotated genes for the top 50 differentially expressed genes in this
study. The photobiont genes include upregulated photosynthetic proteins (MSTRG.2269,
MSTRG.3363) and those participating in amino acid transportation (MSTRG.1890), which
may have been expected during lichen formation and was observed for other lichen
species [56], while far fewer annotated down-regulated genes include hydrolases and
proteins involved in transcription regulation.
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co-culture for mycobiont and photobiont.

Table 1. Annotated most up-/down- regulated genes relative to non-symbiotic cultures.

Photobiont Mycobiont

Up-regulated

photosystem I reaction center,
chloroplastic plastocyanin,

glutathione-dependent
formaldehyde dehydrogenase,
integral membrane single C2
domain protein, auxin influx

carrier, phosphatase regulator,
glutamate dehydrogenase 1,

auxin influx carrier

p450, acyl transferase, POB3,
transcription factors, a

putative regulatory protein,
IBR, heterokaryon

incompatibility protein

Down-regulated

glutathione-dependent
formaldehyde dehydrogenase,

signal peptides, auxin
transport protein, carbonic

anhydrase, bZIP transcription
factor, pre-mRNA processing

factor 8

heme exporter protein D,
berberine bridge-like enzyme,

renin receptor-like protein,
MFS-1, FAD linked oxidases, a
post-Golgi secretory-vesicle
coat complex, AAA proteins,

proteins binding to
iron-sulphur clusters, major

facilitator protein family,
amino acid permease,

polyketide synthase, alcohol
dehydrogenase

In the case of the mycobiont, the most downregulated cluster (genes MSTRG.2157—
MSTRG.9202, Figure 2c) includes FAD-dependent oxidoreductases and proteins involved
in processes related to membrane transportation, which is common for the production
of degrading compounds by saprobic organisms and it forms part of fungal metabolic
processes [57]. It can be speculated, that a monoculture of fungus, lacking any other
source of carbohydrate, might be forced to rely on those processes to extract nutrients from
nutrient deficient media. However, when other nutrient sources are available such as a
photobiont producing carbohydrates or carbohydrates easily absorbed from the media, the
need for those proteins is lessened.

Among the up-regulated genes of the mycobiont, the most common was found to be
p450 (MSTRG.9191, MSTRG.3591, MSTRG.3588), which is known to catalyze monooxy-
genation reactions in primary and secondary metabolism [58]. Expression of p450 genes
was observed in previous studies on polyketide synthases [59]. Even though the en-
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tire transcriptome analysis was not the goal of this research, the presence of polyketide
synthase (MSTRG.960, region 17.1, Figure 4a) among the most differentially expressed
genes was notable, supporting a possible influence of lichenization processes on secondary
metabolite enzymes.
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Figure 4. Expression of the core biosynthetic genes in predicted BGCs. (a) Non-clustered heatmap showing the unfiltered
expression data for all expressed regions (log2-ratio of conditions (FA, Fopt, and NT) vs. mono-culture (Fdl)). (b) Percentage
of each type of enzyme, including several mixed clusters (T1PKS/NRPS). (c) Unfiltered numbers of up- and down-regulated
genes within predicted BGC for each of FA, Fopt, and NT. (d) Strongly differentially expressed genes in BGC regions, filtered
by probability threshold of 0.9.

3.2. PKS Transcription Analysis

Version v.5 of the antiSMASH software identified 33 potential biosynthetic gene
clusters (BGCs, or “regions”) within the genome of Cladonia rangiferina: 22 Type I PKS, one
Type III PKS, three terpene-synthases, and seven NRPS (Additional file S1, Supplementary
Materials). However, two of them, region 1.1 (core gene MSTRG.3413) and region 39.1
(core gene MSTRG.8594), were not found in the transcriptome of C. rangiferina (neither
mono-culture, co-culture, or the wild type), and one, region 54.1 (core gene MSTRG.7390),
was not expressed in co-culture (while both mono-cultures and the natural lichen thallus
showed some level of expression). All three belong to the T1PKS family. The reason for the
lack of their expression could be investigated in future research, but in the present study,
they had to be excluded from further analysis.

Figure 4a shows the expression of the core biosynthetic genes in the remaining 30 BGCs
for all three conditions: mono-culture, co-culture and natural lichen thallus of C. rangiferina.

Although the high probability threshold excludes some genes from the list of DEGs,
the log2-ratio of the two conditions was used as an indicator of the direction of expression
(up- or down-regulated) (Figure 4a,c). Results clearly indicate that events of lichenization
required down-regulation of a number of biosynthetic genes, whether strict DEG selection
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was applied (Figure 4d, FA) or not (Figure 4c, FA), while the survival of a monoculture in
the optimal medium (Fopt) or the functioning of the natural thallus (NT) both required
higher expression levels of biosynthetic genes.

The difference was found to be even more prominent after further separation of
biosynthetic genes into two groups, those with the same direction of expression regulation
(up or down) across all three conditions (co-culture, monoculture in optimal medium, and
the natural lichen thallus) and those that demonstrate some difference in regulation. The
first group was an unlikely candidate for the genes affecting lichenization processes (due
to the similar expression pattern in the monoculture). Thus, regions 3.1, 6.1, 15.1b, 17.1,
29.1, 33.1, 38.1, 47.1, 54.1a were excluded from further investigation (along with regions
1.3, 1.3a, 1.4, 2.1, 10.2, 13.1, 13.1a, 24.1 and 34.1a, that, with relaxed rules for DEG selection,
showed the same tendency in expression across different conditions).

The exclusion of these regions left only 21 regions as potential candidates with
10 of them being differentially expressed and mostly down-regulated in the co-culture
(Figure 5b).
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DEGs of the selected regions. (b) Expression regulation of the DEGs in ten selected regions.

One exception (region 1.2) was found to be highly upregulated in both mono- and
co-culture (Fopt and FA), while down-regulated in the natural lichen thallus (NT). This
may indicate that the secondary metabolite gene is responsible for fungal metabolism,
rather than lichenization processes and could be excluded from further investigation.

The cluster analysis (Figure 5) of nine remaining BGCs separated them into two
distinct groups: strongly expressed (or repressed) regions 9.1, 14.1, 15.1a (with the less
prominent 24.1a) and weaker differentially expressed regions 4.1, 3.2, 9.2, 33.2 and 67.1.
While all of them are up-regulated in the monoculture and down-regulated in the co-
culture, they show different expression patterns in the natural lichen thallus. There can be
a number of explanations for the difference. For example, the requirements of establishing
algal–fungal interaction in the co-culture could be different from those for sustaining the
natural lichen thallus. Alternatively, the re-hydration process could affect the expression
profile of the natural lichen thallus. However, at least four regions in the transcriptome of
the natural lichen (3.2, 9.2, 24.1a and 33.2) demonstrated an expression pattern similar to
the one found in the co-culture.
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3.3. Functional Analysis of the Selected Core Biosynthetic Genes

Table 2 and Figure 6 provide a summary of the findings for each antiSMASH pre-
dicted biosynthetic genes in the C. rangiferina genome potentially affected by lichenization.
To our knowledge, none of them have been described for C. rangiferina, and except for
general class prediction, little is known about most of them. Therefore, for a meaningful
characterisation the most similar proteins identified among the top BLAST search results
were used for comparison.

Table 2. Biosynthetic gene clusters with DEG in each of the experimental conditions (FA, Fopt, and
NT) and the most similar regions based on BLAST.

Region Gene
Expression

Type Description
FA Fopt NT

Region 15.1a MSTRG.2707 DOWN UP UP TS Squalene/phytoene
synthase

Region 14.1 MSTRG.4117 DOWN UP UP T1PKS
Conidial yellow

pigment biosynthesis
PKS

Region 9.1 MSTRG.9071 DOWN UP UP NRPS Acetyl-CoA synthetase

Region 4.1 MSTRG.6153 DOWN UP UP NRPS Acetyl-CoA synthetase

Region 67.1 MSTRG.1101 DOWN UP UP NRPS PKS-NRPS enzyme

Region 9.2 MSTRG.9225 DOWN UP DOWN T1PKS Diketide synthase

Region 3.2 MSTRG.646 DOWN UP DOWN T1PKS Diketide synthase

Region 33.2 MSTRG.7006 DOWN UP DOWN T1PKS-NRPS NRPS-PKS hybrid

Region 24.1a MSTRG.4303 DOWN UP DOWN T1PKS Reducing PKS DEP5

The analysed genes in biosynthetic clusters can be separated into two groups: those
in which expression is up-regulated in the natural lichen thallus (NT), similar to mono-
culture grown on an optimal substrate (Fopt), and those that are down-regulated in the
natural lichen thallus, similar to the co-culture (FA). Analysis of GO terms associated
with the genes (Figure 6) revealed that the GO terms were not unique to each group
(Figure 6b), supporting the previous observations of existing overlap in function of fungal
gene clusters [60,61].

Only two out of nine genes could be annotated with the Kyoto Encyclopedia of Genes
and Genomes (KEGG) and assigned a functional metabolic pathway to the predicted gene
cluster: region 9.2 (down-regulated) and region 14.1 (up-regulated). Both of them were
found in a specialised fatty acid biosynthesis pathway, while region 9.2 alone was also
found in general metabolic pathways like biotin metabolism, thiamine metabolism and
purine metabolism. Since secondary metabolite pathways also include genes encoding
tailoring enzymes, transcription factors, and transporters, similar to those in general
metabolic pathways [62], the two regions above could conceivably be part of secondary
metabolite pathways.

The group of five secondary metabolite gene clusters whose up-regulation was ob-
served both in the natural thallus of C. rangiferina and the mycobiont growing on the
optimal nutrient-rich medium may be obtained from axenic lichen fungi without licheniza-
tion. Their similarity with already established genes makes them promising candidates for
the biotechnological industry. Region 15.1a is recognised as a putative squalene/phytoene
synthase (Cladonia uncialis), and triterpene squalene is known as a natural compound
with a number of uses in pharmaceutical, nutraceutical, and personal care industries [63].
Region 14.1 is putatively a type I PKS (Cladonia uncialis), and shows similarity with conidial
yellow pigment biosynthesis polyketide synthase (Xylona heveae), which is a secondary
metabolite affecting conidiation, cell wall integrity, and stress tolerance of fungal cells [64].
Regions 9.1 and 4.1 are recognised as acetyl-CoA synthetase-like proteins (Phialocephala
scopiformis and Rhizodiscina lignyota respectively), which form part of numerous primary
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and secondary metabolic pathways, participating in the formation and regulation of nat-
ural products like nonribosomal peptides, polyketides, phenylpropanoids, lipopeptides,
and terpenes [65,66]. In addition, there is a similarity between region 4.1 and microper-
furanone synthase (Colletotrichum orbiculare) producing furanone derivative compounds,
which are quorum-sensing inhibitors with potential as novel therapeutics [67,68]. Lastly,
region 67.1 is a hybrid PKS-NRPS enzyme that shows similarity with beta-ketoacyl syn-
thase (Macrophomina phaseolina), an enzyme involved in fatty acid synthesis by processing
malonyl-CoA as a carbon source. However, the sequence of the region also resembles some
synthases directly producing secondary metabolites like lovastatin nonaketide synthase
(Arthroderma uncinatum) or gramicidin synthase (Cucurbitaria berberidis), that are of interest
in the pharmaceutical industry [69,70].
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Figure 6. GO term analysis. (a) GO terms associated with selected BGC by antiSMASH software for nine selected regions.
(b) Overlapping terms between two groups: up-regulated (Up) and down-regulated (Down) in the natural thallus of
C. rangiferina. (c) Representation analysis of the GO terms: from up-regulated group (red), down-regulated (green), and
overlapping regulation (beige).

The role that these genes and their products play in the metabolism of the natural
lichen thallus of C. rangiferina remains to be discovered. However, the fact that they are
downregulated in the co-culture might suggest a negative influence on cell recognition
and interaction processes. There is also a possibility that the production of secondary
metabolites from those genes is highly resource demanding and requires a stable influx of
carbohydrates, which cannot be provided at the early stages of interactions between the
fungus and alga before the thallus is formed.

3.4. Expression of Neighbouring Genes in Biosynthetic Gene Clusters

Several categories of neighbouring genes for the predicted BGC were identified by
antiSMASH in accordance with smCOG annotation (clusters of orthologous groups, [71]).
These include additional biosynthetic genes, transport-related genes, regulatory genes,
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and “other genes” which are not known to be directly involved in secondary metabolite
production. The genes from each group were found upstream and downstream of the core
of each predicted BGC thought to be affected by events of lichenization. However, only
five genes in all nine clusters demonstrated the expected expression pattern that correlated
(positively or negatively) with the expression of the cluster’s core. Table 3 shows the list
of these genes and their predicted function, while Figure 7 shows the correlation between
the expression of predicted cores and corresponding additional proteins. For most of the
pairs, the correlation is positive, and a few exceptions (like regions 3.2 or 4.1) could be
condition-dependent.

Table 3. Differentially expressed neighbouring genes in selected BGCs.

Region Corresponding DEG Predicted Protein

Region 3.2 MSTRG.646
MSTRG.636

type I PKS
alpha/beta hydrolase fold

Region 4.1 MSTRG.6153
MSTRG.6127

NRPS
leucyl-tRNA synthetase

Region 14.1 MSTRG.4117
MSTRG.4119

type I PKS
short-chain

dehydrogenase/reductase (SDR)

Region 15.1a MSTRG.2707
MSTRG.2708

terpene synthase
ATP-dependent RNA helicase

Region 33.2 MSTRG.7006
MSTRG.6982

NRPS-PKS hybrid
alpha/beta hydrolase
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As with the core clusters, none of these proteins in Table 3 were previously charac-
terised for C. rangiferina. Therefore, their function was deduced by domain characteristics
and similarity with proteins from non-lichenized fungi. Three of those regions (regions
3.2, 14.1, 33.2) were recognised as additional biosynthetic genes, and two regions (4.1 and
15.1) were similar to “other genes”, two hydrolases, one SDR protein, a synthetase, and
a helicase.

The expression of hydrolases could be expected during lichenization processes for the
establishment of the symbiotic interface [56]. The alpha/beta hydrolase from region 3.2
shows high similarity with epoxide hydrolase from Glonium stellatum and is up-regulated
in both the co-culture and the natural lichen thallus (negatively correlating with expression
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of the core genes of the cluster). The second hydrolase (region 33.2), also belonging to
the alpha/beta hydrolases family, is down-regulated (similar expression pattern as the
cluster core). This region 33.2 shows similarity with thioesterase (found in Trichophyton
interdigitale), which is an enzyme catalyzing the production of fatty acids and CoA, and
thus could be involved in the production of a secondary metabolite. Considering the fact
that similar genes are predicted to be part of the PKS and NRPS clusters in different fungi,
they may represent NRPS-PKS hybrids of C. rangiferina.

Another predicted protein was found to be short-chain dehydrogenases/reductases
in the region 14.1 (Table 3). The short-chain dehydrogenases/reductases (SDR) constitute
one of the largest enzyme superfamilies involved in the metabolism of a large variety
of compounds and contribute to essential functions of every known organism [72]. The
fact that the expression of SDR in the cluster 14.1 positively correlates with the expres-
sion of corresponding core gene might indicate its involvement in the production of a
secondary metabolite.

Finally, both predicted proteins found in regions 4.1 and 15.1 (Table 3) seem to be
the unlikely candidates for the signal/regulation genes of biosynthetic gene clusters. The
tRNA-synthetases and RNA helicases play important roles in RNA metabolism, often
associated with antivirus and stress responses [73–75]. As stress response is also considered
as the major function of the secondary metabolite, that can explain the close proximity of
both types of genes on the chromosome.

Without further research, it would be too early to speculate on the relationship between
neighbouring proteins and secondary metabolite synthases, and whether they represent a
necessary part of the full biosynthetic gene cluster. However, their position and coordinated
expression patterns with core enzymes suggest there may be possible relationships.

4. Conclusions

Lichen secondary metabolite production depends on the photobiont partner and is
expected to be affected by the processes of lichenization. We analysed the transcriptome
of the co-culture of the lichen-forming fungus of Cladonia rangiferina and its photobiont
partner—Asterochloris glomerata in comparison with the monoculture(s) and the natural
lichen thallus to determine which, if any, of the predicted biosynthetic gene clusters were
affected by lichenization. Thirty out of 33 predicted biosynthetic gene clusters within
the genome of Cladonia rangiferina were found to be expressed in the mono-culture of
the mycobiont as well as in the natural lichen thallus. Nine of them were shown to be
actively regulated during the lichenization process that includes core enzymes (five type I
polyketide synthases, three nonribosomal peptide synthases, and one terpene synthase)
and five additional genes potentially involved in lichen secondary metabolite production.

The function of these genes is unknown; however, all nine affected secondary metabo-
lite synthases were found to be down-regulated during the events of lichenization, suggest-
ing possible inhibitory roles in the early stages of lichen formation.

Although the role of the five additional neighbouring genes, with expression patterns
that correlate with expression of the core genes in clusters, remains to be discovered, they
show similarity with known genes of other fungal species, involved in the production
of secondary metabolites. This knowledge can help to determine the function of the
biosynthetic gene clusters containing those genes, as well as the role of the core genes of
these clusters.

Overall, the study provides a research basis for further investigation of the secondary
metabolite biosynthesis of lichens in general and C. rangiferina in particular, as well as the
possibility of engineered biosynthesis of secondary metabolites in an artificial host.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/d13110529/s1, Additional file S1: antiSMASH analysis of the genome of Cladonia rangiferina,
Additional file S2: the list of differentially expressed genes (DEGs) with indicated expression level
and their sequences, Figure S1: Experimental conditions, changes over time, Figure S2: Heatmap
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demonstrating transcription levels of the core and neighbouring genes in BGCs for all three conditions:
FA, Fopt and NT.

Author Contributions: Conceptualization, N.S. and M.D.P.-N.; methodology, N.S.; validation, N.S.
and M.D.P.-N.; formal analysis, N.S.; investigation, N.S.; data curation, N.S.; writing—original draft
preparation, N.S.; writing—review and editing, M.D.P.-N.; project administration, M.D.P.-N.; funding
acquisition, M.D.P.-N. All authors have read and agreed to the published version of the manuscript.

Funding: National Sciences and Engineering Research Council of Canada (NSERC).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Geentic sequences of the genes discussed in this paper are available as
a supplement to this paper.

Acknowledgments: A National Sciences and Engineering Research Council of Canada (NSERC) grant
awarded to MPN is gratefully acknowledged. This research was enabled in part by support provided
by ACENET (https://ace-net.ca/) and Compute Canada (https://www.computecanada.ca).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Molnár, K.; Farkas, E. Current results on biological activities of lichen secondary metabolites: A review. Z. Für Nat. C J. Biosci.

2010, 65, 157–173. [CrossRef] [PubMed]
2. Calcott, M.J.; Ackerley, D.F.; Knight, A.; Keyzers, R.A.; Owen, J.G. Secondary metabolism in the lichen symbiosis. Chem. Soc. Rev.

2018, 47, 1730–1760. [CrossRef] [PubMed]
3. Reddy, R.G.; Veeraval, L.; Maitra, S.; Chollet-Krugler, M.; Tomasi, S.; Dévéhat, F.L.; Boustie, J.; Chakravarty, S. Lichen-derived

compounds show potential for central nervous system therapeutics. Phytomedicine 2016, 23, 1527–1534. [CrossRef] [PubMed]
4. Nguyen, K.H.; Chollet-Krugler, M.; Gouault, N.; Tomasi, S. UV-protectant metabolites from lichens and their symbiotic partners.

Nat. Prod. Rep. 2013, 12, 1490–1508. [CrossRef] [PubMed]
5. Shrestha, G.; Clair, L.L.S. Lichens: A promising source of antibiotic and anticancer drugs. Phytochem. Rev. 2013, 12, 229–244.

[CrossRef]
6. Zambare, V.P.; Christopher, L.P. Biopharmaceutical potential of lichens. Pharm. Biol. 2012, 50, 778–798. [CrossRef]
7. Stocker-Wörgötter, E. Metabolic diversity of lichen-forming ascomycetous fungi: Culturing, polyketide and shikimate metabolite

production, and PKS genes. Nat. Prod. Rep. 2008, 25, 188–200. [CrossRef]
8. Gao, X.; Chooi, Y.H.; Ames, B.D.; Wang, P.; Walsh, C.T.; Tang, Y. Fungal indole alkaloid biosynthesis: Genetic and biochemical

investigation of the tryptoquialanine pathway in Penicillium aethiopicum. J. Am. Chem. Soc. 2011, 133, 2729–2741. [CrossRef]
[PubMed]

9. Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 2012, 75,
311–335. [CrossRef] [PubMed]

10. Hittinger, C.T.; Rokas, A.; Carroll, S.B. Parallel inactivation of multiple GAL pathway genes and ecological diversification in
yeasts. Proc. Natl. Acad. Sci. USA 2004, 101, 14144–14149. [CrossRef] [PubMed]

11. Schwachtje, J.; Kutschbach, S.; Baldwin, I.T. Reverse genetics in ecological research. PLoS ONE 2008, 3, e1543. [CrossRef]
[PubMed]

12. Zhang, H.; Abraham, N.; Khan, L.A.; Gobel, V. RNAi-based biosynthetic pathway screens to identify in vivo functions of
non-nucleic acid-based metabolites such as lipids. Nat. Protoc. 2015, 10, 681–700, published correction in Nat. Protoc. 2015, 10, 939.
[CrossRef] [PubMed]

13. Krause, D.J.; Kominek, J.; Opulente, D.A.; Shen, X.-X.; Zhou, X.; Langdon, Q.K.; De Virgilio, J.; Hulfachor, A.B.; Kurtzman, C.P.;
Rokas, A.; et al. Functional and evolutionary characterization of a secondary metabolite gene cluster in budding yeasts. Proc.
Natl. Acad. Sci. USA 2018, 115, 11030–11035. [CrossRef] [PubMed]

14. Ziemert, N.; Alanjary, M.; Weber, T. The evolution of genome mining in microbes—A review. Nat. Prod. Rep. 2016, 33, 988–1005.
[CrossRef] [PubMed]
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