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Abstract: Wood-decaying fungi play crucial roles as decomposers in forest ecosystems. In this
study, two new corticioid fungi, Rhizochaete fissurata and R. grandinosa spp. nov., are proposed
based on a combination of morphological features and molecular evidence. Rhizochaete fissurata is
characterized by resupinate basidiomata with a cracking hymenial surface, a monomitic hyphal
system with simple-septa generative hyphae, presence of subfusiform to conical cystidia encrusted
at the apex or coarse on the upper half, and ellipsoid basidiospores. Rhizochaete grandinosa differs
in its resupinate basidiomata with a smooth hymenial surface, presence of two types of cystidia,
and ellipsoid basidiospores. Sequences of ITS and nLSU rRNA markers of the studied samples
were employed, and phylogenetic analyses were performed with maximum likelihood, maximum
parsimony, and Bayesian inference methods on two datasets (ITS+nLSU and ITS). Both dataset
analyses showed that two new species clustered into the genus Rhizochaete, in which, based on the
ITS+nLSU dataset, R. fissurata was sister to R. belizensis, and R. grandinosa grouped with R. radicata;
the phylogram inferred from ITS sequences inside Rhizochaete indicated that R. fissurata formed a
monophyletic lineage with a lower support; R. grandinosa grouped closely with R. radicata. In addition,
an identification key to all Rhizochaete species worldwide is provided.

Keywords: China; corticioid fungi; diversity; Phanerochaetaceae; molecular systematics; taxonomy

1. Introduction

Fungi make up an under-described, poorly documented clade of eukaryotes, in which
they have immense ecological and economic impacts; many fungi are microscopic or have
cryptic life cycles, which makes detection difficult [1]. Based on the ratio of vascular plants
and fungi in different regions, Hawksworth [2] conservatively estimated that there were
1,500,000 fungal species worldwide, with about 69,000 species known at that time, and
later, Blackwell [3] indicated that fungal species numbers were estimated to be as high as
5,100,000, with 97,861 known species. However, Hawksworth [4] proposed that the number
of existing fungal species should be between 1,500,000 and 3,000,000, which is currently
accepted by many mycologists [5,6]. Wood-decaying fungi are eukaryotic microorganisms
that play fundamental ecological roles as decomposers of plants in the fungal tree of life [7],
which drive carbon cycling in forest soils, mediate mineral nutrition of plants, and alleviate
carbon limitations of other soil organisms [5].

Rhizochaete Gresl., Nakasone & Rajchenb. is a small, distinctive genus of wood-
decaying fungi that produces hyphal cords and has a world-wide distribution. It was
typified by R. brunnea Gresl., Nakasone & Rajchenb., and the genus is characterized by
resupinate to effused, loosely adnate basidiomata of pellicular to membranous, fragile
consistency, with smooth to tuberculate hymenophore covering a yellow, orange, brown,
olivaceous, or violaceous hymenial surface, usually turning red to violet in KOH solution;
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fimbriate to fibrillose margin, often with hyphal cords; monomitic hyphal system with
simple septae or clamp connections on generative hyphae; usually present cystidia; clavate
to subcylindrical basidia, 4-sterigmate; cylindrical to ellipsoid basidiospores, which are
thin to slightly thick-walled, smooth, acyanophilous, not reacting to Melzer’s reagent;
occurring on wood and bark of angiosperms and gymnosperms, associated with a white rot-
decay [8]. Currently, about 14 species have been accepted in Rhizochaete worldwide [8–10].
Index Fungorum (http://www.indexfungorum.org; accessed on 25 August 2021) and
MycoBank (https://www.mycobank.org; accessed on 25 August 2021) register 14 specific
and infraspecific names in Rhizochaete.

Rhizochaete was distinguished from Phanerochaete P. Karst. by morphological and
molecular characters [9], in which six species were separated from Phanerochaete and
transferred to Rhizochaete. Phylogenetic studies indicated Rhizochaete in the Phanerochaete
clade [11] and the Phanerochaetaceae Jülich [6]. Based on studying the parenthesome
structure of some corticioid fungi, Bianchinotti et al. [12] reported that three Rhizochaete
species had perforate septal dolipore caps or parenthesomes. Phylogenetic reconstruction
of corticioid fungi using ITS and nLSU regions revealed that three species should be
transferred to the genus Rhizochaete—R. sulphurosa (Bres.) Chikowski, K.H. Larss. &
Gibertoni, R. sulphurina (P. Karst.) K.H. Larss., and R. violascens (Fr.) K.H. Larss.—and
three new combinations were made (Include reference). Floudas and Hibbett [11] revealed
that Rhizochaete was monophyletic in multigene phylogenetic analyses of the Phanerochaete
clade and was represented by four species. Chikowski et al. [10] resolved Rhizochaete
as monophyletic in the phylogenetic analyses of ITS sequence data, which included six
Rhizochaete species. On the basis of the combined ITS and nLSU analyses by Miettinen
et al. [6], seven Rhizochaete species were included in a nine-way polytomy in the Phlebiopsis
clade, in which Rhizochaete was resolved as a distinct subclade within the Phlebiopsis clade.
Morphological studies and molecular sequence data from two nuclear ribosomal DNA
regions (ITS and LSU) supported the recognition of Rhizochaete, in which R. belizensis was
closely related to R. radicata, and three new combinations were proposed. An in-depth study
of the phylogeny and taxonomy of the corticioid genus Phlebiopsis (Phanerochaetaceae)
was conducted, in which Rhizochaete clustered as a sister clade to Phaeophlebiopsis and
Hapalopilus, and ten species of Rhizochaete grouped together [13].

In this study, two undescribed species of wood-decaying fungi from forest ecosystems
were collected in Yunnan Province, China. We present morphological and molecular
phylogenetic evidence that supports the recognition of two new species in Rhizochaete
based on the internal transcribed spacer ITS and nLSU sequences.

2. Materials and Methods
2.1. Sample Collection and Herbarium Specimen Preparation

Fresh fruiting bodies of the fungi growing on angiosperm stumps and trunks were
collected from Dali, Puer, Wenshan, and Yuxi of Yunnan Province, China. The samples
were photographed in situ, and their fresh macroscopic details were recorded. Photographs
recording the bioluminescence in complete darkness were taken with a Jianeng 80D camera.
All photos were focus stacked and merged using Helicon Focus software. Macroscopic
details were recorded in situ. Samples were transported to a field station where the
fruit bodies were dried on an electronic food dryer at 35 ◦C. The dried specimens were
deposited in the herbarium of Southwest Forestry University (SWFC), Kunming, Yunnan
Province, China.

2.2. Morphology

Macromorphological descriptions are based on field notes and photos captured in
the field and lab. Color terminology follow Petersen [14]. Micromorphological data were
obtained from the dried specimens observed under a light microscope following Dai [15].
The following abbreviations were used: KOH = 5% potassium hydroxide water solution,
CB = Cotton Blue, CB– = acyanophilous, IKI = Melzer’s reagent, IKI– = both inamyloid
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and indextrinoid, L = mean spore length (arithmetic average for all spores), W = mean
spore width (arithmetic average for all spores), Q = variation in the L/W ratios between
the specimens studied, and n = a/b (number of spores (a) measured from given number
(b) of specimens).

2.3. Molecular Phylogeny

The CTAB rapid plant genome extraction kit-DN14 (Aidlab Biotechnologies Co., Ltd.,
Beijing, China) was used to obtain genomic DNA from the dried specimens using the
manufacturer’s instructions (as done in [16]). The nuclear ribosomal ITS region was
amplified with primers ITS5 and ITS4 [17]. The nuclear ribosomal LSU gene was amplified
with primers LR0R and LR7 [18,19]. The PCR procedure for ITS was as follows: initial
denaturation at 95 ◦C for 3 min, followed by 35 cycles at 94 ◦C for 40 s, 58 ◦C for 45 s and
72 ◦C for 1 min, and a final extension of 72 ◦C for 10 min. The PCR procedure for nLSU
was as follows: initial denaturation at 94 ◦C for 1 min, followed by 35 cycles at 94 ◦C for
30 s, 48 ◦C for 1 min and 72 ◦C for 1.5 min, and a final extension of 72 ◦C for 10 min. The
PCR products were purified and sequenced at Kunming Tsingke Biological Technology
Limited Company, Kunming, Yunnan Province, China. All newly generated sequences
were deposited in NCBI GenBank (Table 1).

Sequences were aligned in MAFFT 7 (https://mafft.cbrc.jp/alignment/server/, ac-
cessed on 5 October 2021) using G-INS-i strategy for ITS+nLSU and ITS datasets, and
they were manually adjusted in BioEdit [26]. The datasets were deposited in TreeBASE
WEB (submission ID 28787). Byssomerulius corium (Pers.) Parmasto was selected as an
outgroup for the phylogenetic analysis of ITS+nLSU (Figure 1), referred to following [8],
and Phaeophlebiopsis caribbeana Floudas & Hibbett was selected as an outgroup taxon in ITS
phylogenetic analysis following a previous study [11].

Table 1. List of species, specimens, and GenBank accession numbers of sequences used in this study.

Species Name Specimen No.
GenBank Accession No.

References Country
ITS nLSU

Byssomerulius corium FP 102382 KP135007 KP135230 [11] USA, Wisconsin
Hapalopilus eupatorii Dammrich 10744 KX752620 KX752620 [6] Germany

H. nidulans JV 0206/2 KX752623 KX752623 [6] Sweden
H. percoctus Miettinen 2008 KX752597 KX752597 [6] Botswana

Phanerochaete affinis KHL 11839 EU118652 EU118652 [20] Sweden
P. ericina HHB 2288 KP135167 KP135247 [11] USA, North Carolina
P. laevis HHB 15519 KP135149 KP135249 [11] USA, Alabama

P. rhodella FD-18 KP135187 KP135258 [11] USA, Massachusetts
P. velutina LE 298547 KP994360 KP994385 [21] Russia

Phaeophlebiopsis
caribbeana HHB-6990 KP135415 KP135243 [11] USA, Florida

P. peniophoroides FP 150577 KP135417 KP135273 [11] USA, Hawaii
Phlebiopsis crassa KKN 86 KP135394 KP135215 [11] USA, Arizona

P. crassa MAFF 420737 AB809163 AB809163 [22] Japan
P. flavidoalba KHL 13055 EU118662 EU118662 [20] Costa Rica
P. gigantea FBCC 315 LN611131 LN611131 [23] Sweden

Rhizochaete americana FP-102188 KP135409 KP135277 [11] USA, Illinois
R. americana HHB 2004 AY219391 AY219391 [9] USA, Georgia
R. belizensis FP 150712 KP135408 KP135280 [11] Belize
R. borneensis WEI 16-426 MZ637070 MZ637270 Unpublished China
R. brunnea MR 11455 AY219389 AY219389 [9] Argentina

R. filamentosa FP 105240 KP135411 AY219393 [8] USA, Indiana
R. filamentosa HHB 3169 KP135410 KP135278 [11] USA, Maryland

R. fissurata CLZhao 2200 MZ713640 MZ713844 Present study China
R. fissurata CLZhao 7965 MZ713641 MZ713845 Present study China
R. fissurata CLZhao 10407 MZ713642 MZ713846 Present study China

https://mafft.cbrc.jp/alignment/server/


Diversity 2021, 13, 503 4 of 12

Table 1. Cont.

Species Name Specimen No.
GenBank Accession No.

References Country
ITS nLSU

R. fissurata CLZhao 10418 MZ713643 MZ713847 Present study China
R. flava PR 1141 KY273030 KY273033 [8] Puerto Rico
R. flava PR 3148 KY273029 - [8] Puerto Rico

R. fouquieriae KKN 121 AY219390 GU187608 [8] USA, Arizona
R. fouquieriae KKN-121-sp KY948786 KY948858 [24] United States
R. grandinosa CLZhao 3117 MZ713644 MZ713848 Present study China

R. radicata FD 123 KP135407 KP135279 [11] USA, Massachusetts
R. radicata FD 338 KP135406 - [11] USA, Massachusetts
R. radicata HHB 1909 AY219392 AY219392 [9] USA, North Carolina

R. rubescens Wu 0910-45 LC387335 MF110294 [25] China
R. sulphurina DLL 2014-176 KY273032 - [8] USA, Idaho
R. sulphurina HHB 5604 KY273031 GU187610 [8] USA, Montana
R. sulphurosa KHL 16087 KT003523 - [10] Brazil
R. sulphurosa URM 87190 KT003522 KT003519 [10] Brazil
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Figure 1. Maximum parsimony strict consensus tree illustrating the phylogeny of the two new species and related species
within the family Phanerochaetaceae based on ITS+nLSU sequences. Branches are labeled with maximum likelihood
bootstrap values > 70%, parsimony bootstrap values > 50%, and Bayesian posterior probabilities > 0.95, respectively.

Maximum parsimony analysis was applied to the combined ITS+nLSU and ITS
datasets. The approach followed the previous study by Zhao and Wu [16], and the tree
construction procedure was performed in PAUP* version 4.0a169 (http://phylosolutions.
com/paup-test/, accessed on 5 October 2021). All characters were equally weighted, and
gaps were treated as missing data. Trees were inferred using the heuristic search option
with TBR branch swapping and 1000 random sequence additions. Max-trees were set
to 5000, branches of zero length were collapsed, and all parsimonious trees were saved.
Clade robustness was assessed using bootstrap (BT) analysis with 1000 replicates [27].
Descriptive tree statistics—tree length (TL), consistency index (CI), retention index (RI),
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rescaled consistency index (RC), and homoplasy index (HI)—were calculated for each
maximum parsimonious tree generated. The combined dataset was also analyzed using
maximum likelihood (ML) in RAxML-HPC2 through the Cipres Science Gateway [28].
Branch support (BS) for ML analysis was determined by 1000 bootstrap replicates.

MrModeltest 2.3 [29] was used to determine the best-fit evolution model for each
dataset (ITS+nLSU and ITS) for Bayesian inference (BI). BI was calculated with MrBayes
version 3.2.7a [30]. Four Markov chains were run for 2 runs from random starting trees for
250 thousand generations for ITS+nLSU (Figure 1) and 200 thousand generations for ITS
(Figure 2). The first one-fourth of all generations was discarded as burn-in. The majority
rule consensus tree of all remaining trees was calculated. Branches were considered as
significantly supported if they received maximum likelihood bootstrap value (BS) > 70%,
maximum parsimony bootstrap value (BT) > 70%, or Bayesian posterior probabilities
(BPP) > 0.95.
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3. Results
3.1. Molecular Phylogeny

The ITS+nLSU dataset (Figure 1) included sequences from 35 fungal specimens
representing 27 taxa. The dataset had an aligned length of 738 characters, of which
388 characters are constant, 99 are variable and parsimony-uninformative, and 251 are
parsimony-informative. Maximum parsimony analysis yielded 61 equally parsimonious
trees (TL = 412, CI = 0.4733, HI = 0.5267, RI = 0.6146, and RC = 0.2909). The best model
for the ITS+nLSU dataset estimated and applied in the Bayesian analysis was GTR+I+G.
Bayesian analysis and ML analysis resulted in a similar topology as in the MP analysis with
an average standard deviation of split frequencies = 0.009664 (BI). The phylogram inferred
from ITS+nLSU sequences within family Phanerochaetaceae highlighted two undescribed
species nested in genus Rhizochaete, in which R. fissurata was sister to R. belizensis Nakasone,
K. Draeger & B. Ortiz with a medium supported lineage (99% BS, 79% BP and 1.00 BPP);
R. grandinosa grouped with R. radicata (Henn.) Gresl., Nakasone & Rajchenb. (100% BS, 99%
BP and 1.00 BPP).
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The ITS-alone dataset (Figure 2) included sequences from 25 fungal specimens repre-
senting 13 taxa. The dataset had an aligned length of 728 characters, of which 459 charac-
ters are constant, 62 are variable and parsimony-uninformative, and 207 are parsimony-
informative. Maximum parsimony analysis yielded 18 equally parsimonious trees (TL = 334,
CI = 0.5749, HI = 0.4251, RI = 0.7380, and RC = 0.4242). The best model for the ITS dataset
estimated and applied in the Bayesian analysis was GTR+I+G. Bayesian analysis and ML
analysis resulted in a similar topology as in the MP analysis with an average standard
deviation of split frequencies = 0.008927 (BI). The phylogram inferred from ITS sequences
within genus Rhizochaete revealed that R. fissurata formed a monophyletic lineage with a
lower support; R. grandinosa grouped closely with R. radicata.

3.2. Taxonomy

Rhizochaete fissurata C.L. Zhao sp. nov. Figures 3 and 4.
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Figure 4. Microscopic structures of Rhizochaete fissurata (holotype): (A) basidiospores; (B) basidia and
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MycoBank no.: 841215
Holotype—China. Yunnan Province, Dali, Nanjian County, Lingbaoshan National

Forestry Park, GPS co-ordinates 24◦44′N, 100◦29′E, altitude 2300 m asl., on an angiosperm
trunk, leg. C.L. Zhao, 10 January 2019, CLZhao 10,407 (SWFC).

Etymology—fissurata (Lat.): referring to the cracking hymenial surface.
Fruiting body—Basidiomata annual, resupinate, loosely adnate, soft, membranous to

pellicular, without odor and taste when fresh, up to 10 cm long, 3 cm wide, 500–900 µm
thick, violet in KOH. Hymenial surface smooth, obviously cracking, buff to olivaceous buff
when fresh, olivaceous buff to pale brown on drying. Margin sterile, thinning out, narrow,
cream. Hyphal cords fimbriate.

Hyphal system—Monomitic, generative hyphae having simple septa, colorless, thin-
walled, frequently branched, interwoven, 2–7 µm in diameter; IKI–, CB–; tissues unchanged
in KOH; subhymenial hyphae sometimes densely covered with crystals.

Hymenium—Cystidia numerous, subfusiform to conical, slightly thick-walled, <1 µm
thick, encrusted at the apex or with coarse upper half, 18–60.5 × 6–11 µm; basidia cylin-
drical, slightly constricted in the middle to somewhat sinuous, with four sterigmata and
simple septa, 11–33 × 3–5 µm.

Spores—Basidiospores ellipsoid, colorless, thin-walled, smooth, IKI–, CB–, 3–4.5 ×
(2–)2.5–3 µm, L = 3.68 µm, W = 2.74 µm, Q = 1.23–1.51 (n = 120/4).

Additional specimens examined—China. Yunnan Province, Yuxi, Xinping County,
Mopanshan National Forestry Park, GPS co-ordinates 23◦46′ N, 101◦16′ E, altitude 2214 m
asl., on an angiosperm trunk, leg. C.L. Zhao, 18 August 2017, CLZhao 2200 (SWFC); altitude
2322 m asl., on an angiosperm trunk, leg. C.L. Zhao, 19 August 2018, CLZhao 7965 (SWFC);
Dali, Nanjian County, Lingbaoshan National Forestry Park, GPS co-ordinates 24◦44′ N,
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100◦29′ E, altitude 2300 m asl., on an angiosperm stump, leg. C.L. Zhao, 10 January 2019,
CLZhao 10,418 (SWFC).

Habitat and ecology—Climate of the sample collection site is monsoon humid, the for-
est type is evergreen broad-leaved forest, and samples were collected on an angiosperm trunk.

Rhizochaete grandinosa C.L. Zhao & Z.R. Gu, sp. nov. Figures 5 and 6.
MycoBank no.: 841216
Holotype—China. Yunnan Province, Puer, Laiyanghe National Forestry Park, GPS

co-ordinates 22◦36′ N, 101◦1′ E, altitude 1500 m asl., on an angiosperm trunk, leg. C.L.
Zhao, 30 September 2017, CLZhao 3117 (SWFC).

Etymology—grandinosa (Lat.): referring to the grand nose or protrusion of the basidiomata.
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Fruiting body—Basidiomata annual, resupinate, loosely adnate, soft, membranous
when fresh, cottony upon drying, up to 9 cm long, 4.5 cm wide, 300–500 µm thick, violet in
KOH. Hymenial surface smooth, with grand nose or protrusion, curry-yellow when fresh,
curry-yellow to cinnamon-buff upon drying. Margin sterile, slightly brown, 1 mm wide.
Hyphal cords fimbriate.

Hyphal system—Monomitic, generative hyphae with simple septa, colorless, thick-
walled, rarely branched, interwoven, 3–6 µm in diameter, IKI–, CB–; tissues unchanged
in KOH.

Hymenium—Cystidia numerous, colorless, subfusiform to conical with an obtuse
apex, simple septa at base, protruding or enclosed, sometimes with secondary septa, thin
to slightly thick-walled, <1 µm thick, upper half lightly to heavily encrusted with hyaline,
insoluble crystals, 24–50× 4–9 µm; basidia clavate to subcylindrical, constricted, somewhat
sinuous, with four sterigmata and simple septa, 14.5–21 × 4.3–5.2 µm.

Spores—Basidiospores ellipsoid, colorless, thin-walled, smooth, IKI–, CB–, 3–4(–4.5)
× 2.5–3(–3.3) µm, L = 3.65 µm, W = 2.79 µm, Q = 1.31 (n = 30/1).

Habitat and ecology—Climate of the sample collection site is a transition between
tropical and subtropical climate, the forest type is tropical monsoon evergreen broad-leaved
forest, and samples were collected on an angiosperm trunk.

4. Discussion

In the present study, two new species, Rhizochaete fissurata and R. grandinosa, are
described based on phylogenetic analyses and morphological characters.

A revised family-level classification of Polyporales (Basidiomycota) using nrLSU,
nrITS, and rpb1 genes across Polyporales showed that the genus Rhizochaete nested into
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family Phanerochaetaceae, in which Rhizochaete was grouped with Phlebiopsis, Phaeophlebiop-
sis, and Hapalopilus [24]. In the present study, all species of the Rhizochaete group together
and the genus cluster with a sister clade comprising Phlebiopsis and Phaeophlebiopsis.

Phylogenetically, the two new taxa were found to group into genus Rhizochaete based
on the ITS+nLSU dataset, in which R. fissurata was sister to R. belizensis; R. grandinosa
was grouped with R. radicata (Figure 1). Based on the ITS dataset, R. fissurata formed a
monophyletic lineage; R. grandinosa grouped closely with R. radicata (Figure 2). However,
morphologically, R. belizensis Nakasone, K. Draeger & B. Ortiz differs from R. fissurata
by having the orange white to violaceous hymenial surface and generative hyphae with
rare single clamps [8]; R. radicata differs from R. grandinosa by its yellowish buff to ochra-
ceous hymenial surface, becoming reddish purple in KOH, and by larger basidiospores
(4–5 × 2.5–3 µm) [31].

Morphologically, Rhizochaete fissurata is similar to R. brunnea and R. sulphurosa in
the hymenium turning violet in KOH. However, R. brunnea differs by its larger cystidia
(100–250 × 8–15 µm) [9]; R. sulphurosa is separated from R. fissurata by having the lemon
yellow to mustard to buff hymenial surface and larger basidiospores (4.5–5.5× 2–3 µm) [10].

Rhizochaete fissurata is similar to R. filamentosa (Berk. & M.A. Curtis) Gresl., Nakasone
& Rajchenb. and R. percitrina (P. Roberts & Hjortstam) Nakasone in having the simple-
septa generative hyphae. However, R. filamentosa differs from R. fissurata by its orange-
gray to brownish orange basidiomata and larger basidiospores (4.5–5.5 × 2–2.5 µm) [32];
R. percitrina differs in its smooth to farinaceous hymenial surface with no change in KOH,
and narrower cystidia (22–35 × 3.5–6 µm) [8].

Rhizochaete grandinosa is similar to R. americana (Nakasone, C.R. Bergman & Burds.)
Gresl., Nakasone & Rajchenb., R. rhizomorphosulphurea (B.K. Bakshi & Suj. Singh) Nakasone,
and R. rubescens (Sheng H. Wu) Sheng H. Wu in having the thick-walled, encrusted cystidia.
However, R. americana differs from R. grandinosa by its greyish brown to yellowish brown
hymenial surface and larger basidia (22–36 × 4–5 µm) [31]; R. rhizomorphosulphurea differs
from R. grandinosa by having the widely effused basidiomata, with sulfur yellow to light or-
ange hymenial surface and larger basidiospores (4–4.5× 2.8–3.6 µm) [8]; R. rubescens differs
in its hymenial surface reddening in KOH and generative hyphae rarely clamped [33].

Rhizochaete species are worldwide distributed (e.g., America, Argentina, Belize, Borneo,
Brazil, Burundi, Cameroon, Canada, China, Costa Rica, Cuba, Denmark, Finland, Germany,
India, Jamaica, Japan, Mexico, New Zealand, Norway, Sweden, Switzerland, Uganda,
Vietnam) and are mainly found on angiosperm bark and wood. Wood-decaying taxa
were widely collected and studied from China [34–38], in which three Rhizochaete species—
R. filamentosa, R. rubescens, and R. sulphurina—were reported [39]. Further studies should
focus on the relationships between Rhizochaete species and their hosts as well as trying to
better understand the evolutionary directions between hosts and Rhizochaete species.

Key to all species of Rhizochaete worldwide
1. Generative hyphae regularly clamped.........................................................................................2
1. Generative hyphae primarily simple septa..................................................................................6
2. Cystidia absent............................................................................................................R. violascens
2. Cystidia abundant...........................................................................................................................3
3. Cystidia up to 250 µm long with thick walls, basidia > 40 µm in length................R. brunnea
3. Cystidia up to 100 µm long with thin walls, basidia < 40 µm in length....................................4
4. Basidiospores > 3 µm in width..............................................................................R. fouquieriae
4. Basidiospores < 3 µm in width......................................................................................................5
5. Basidiomes olive brown to yellowish brown, cystidia < 60 µm in length.........R. americana
5. Basidiomes bright to dull yellow, cystidia > 60 µm in length..........................R. sulphurina
6. Cystidia with thin or slightly thickened walls, < 1 µm thick...................................................7
6. Cystidia with distinctly thick walls, > 1 µm thick....................................................................14
7. Hymenium turning violet or red in KOH.................................................................................8
7. Hymenium not reacting or changing to orange or brown in KOH........................................12
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8. Hymenium turning red in KOH...............................................................................................9
8. Hymenium turning violet in KOH............................................................................................10
9. Subiculum brown....................................................................................................R. filamentosa
9. Subiculum colorless.................................................................................................R. rubescens
10. Subiculum yellow...................................................................................................R. sulphurosa
10. Subiculum colorless.................................................................................................................11
11. Hymenial surface smooth, cracking.......................................................................R. fissurata
11. Hymenial surface grandinioid, not cracking.......................................................R. grandinosa
12. Basidiomes bright yellow, unchanged in KOH....................................................R. percitrina
12. Basidiomes yellow to brownish orange, darkening in KOH..............................................13
13. Basidia > 30 µm in length..................................................................R. rhizomorphosulphurea
13. Basidia < 30 µm in length................................................................................................R. flava
14. Cystidia < 50 µm in length.....................................................................................R. borneensis
14. Cystidia > 50 µm in length......................................................................................................15
15. Subiculum mustard yellow to brown, cystidia > 60 µm in length, basidiospores > 4 µm

in length.........................................................................................................................R. radicata
15. Subiculum yellow, cystidia < 60 µm in length, basidiospores < 4 µm

in length.....................................................................................................................R. belizensis
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