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Abstract: The Iron Quadrangle (IQ) is one of the main iron ore producing regions of the world. The
exploitation of its reserves jeopardizes the high biological endemism associated with this region. This
work aimed to understand the diversity and bacterial potential associated with IQ caves. Floor and
ceiling samples of seven ferruginous caves and one quartzite cave were collected, and their microbial
relative abundance and diversity were established by 16S rRNA gene amplicon sequencing data. The
results showed that ferruginous caves present higher microbial abundance and greater microbial
diversity compared to the quartzite cave. Many species belonging to genera found in these caves,
such as Pseudonocardia and Streptacidiphilus, are known to produce biomolecules of biotechnological
interest as macrolides and polyketides. Moreover, comparative analysis of microbial diversity and
metabolic potential in a biofilm in pendant microfeature revealed that the microbiota associated with
this structure is more similar to the floor rather than ceiling samples, with the presence of genera that
may participate in the genesis of these cavities, for instance, Ferrovum, Geobacter, and Sideroxydans.
These results provide the first glimpse of the microbial life in these environments and emphasize the
need of conservation programs for these areas, which are under intense anthropogenic exploration.

Keywords: ferruginous outcrops; natural cavities; canga; microbiome; microorganisms

1. Introduction

For many researchers, karst is a type of landscape that only occurs in carbonates.
However, during the last decades several karst landscapes in non-carbonate rocks have
been identified in South America [1–5]. Although most of these landscapes are located on
siliciclastic rocks, karstic geoforms, mainly caves, have also been found in iron ore, such as
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banded iron formation and canga (superficial weathering product). Many of these iron ore
caves are in the Iron Quadrangle (IQ) in southeastern Brazil [6]. In IQ, although most caves
are small, they are high in density and several have strong evidence that the dissolution
processes were important to their morphogenesis [7–10]. This allows to classify the region
as karstic or, at least, pseudo-karstic.

The IQ is located in the center-south region of the State of Minas Gerais, Brazil, and
corresponds to an area of approximately 7200 km2 [11] (Figure 1) that share two biodiversity
hotspots: the Cerrado (Brazilian Savanna) and the Atlantic Forest [12] (Supplementary
Figure S1). The ironstone ranges, which are geologically formed by banded iron formation
(BIF) of itabirites with very variable iron concentration of Archean and Paleoproterozoic
ages, occur in this region. The iron concentration in itabirites is variable as this rock has two
bands: one composed by hematite (Fe2O3) and other by quartz (SiO2) and the thickness
of each one of these bands naturally varies. Duricrusts, known as cangas, formed by
minerals resulting from the natural alteration of itabirite, such as limonite and goethite
(FeO(OH)) [10,13], cover the upper reaches of ironstone ranges and reach up to 30 m in
thickness [13,14].

The ironstone ranges are subject to abiotic stressors such as acid substrates and possess
anomalous metal contents. These abiotic stressors are due to the natural weathering process
of BIF’s that transforms the hematite, present in the itabirite, into limonitic capping and
in laterized clay deposits, which are rich in goethite. The associated soils are extremely
oligotrophic and depleted of exchangeable nutrients, such as calcium, potassium, magne-
sium, and total nitrogen, resulting in an environment with intense ecological filters, and
harboring a high number of endemic species that are rare and endangered [15–17].

The IQ also shelters hundreds of ferruginous caves and is one of the regions with the
highest occurrence of these geoforms in the word. In general, although they take a long
time to form, ferruginous caves are small in size, as they rarely exceed 100 m in horizontal
projection, with an average of 61 m2 of area and 81.3 m3 of volume and 3 m of unevenness
in the cave elevation along its horizontal projection [18].
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Table 1. Characterization of sampled caves.

Cave
Number

Localization Geomorphology Other Features

County Locality Biome Latitude
(S)

Longitude
(W)

Altitude
(m) Lithology Ceiling Floor Human

Activity

Proximity
to Mine
(up to
500 m)

Protected
Area

1 Mariana Chapada Atlantic
Forest 20◦9′53.78” 43◦24′19.49” 879 Ferruginous Canga Canga No ~250 m No

2 Mariana Chapada Atlantic
Forest 20◦9′54.03” 43◦24′29.72” 865 Ferruginous Canga Canga No ~350 m No

3 Mariana Chapada Atlantic
Forest 20◦9′49.15” 43◦24′21.85” 880 Ferruginous Canga Canga No ~350 m No

4 Caeté Gandarela’s
Mountain

Atlantic
Forest 20◦3′19.58” 43◦41′42.41” 1624 Ferruginous Canga Itabirite No No Yes

5 Santa
Bárbara

Gandarela’s
Mountain

Atlantic
Forest 20◦3′23.40” 43◦35′59.94” 1236 Ferruginous Canga Itabirite No No Yes

6 Ouro Preto Lavras
Novas

Atlantic
Forest 20◦26′35.76” 43◦31′31.18” 1480 Ferruginous Canga Itabirite No No No

7 Ouro Preto Lavras
Novas

Atlantic
Forest 20◦28′42.20” 43◦31′15.72” 1346 Quartizite Quartizite Quartizite No No No

8 Nova Lima Moeda’s
Mountain

Atlantic
Forest 20◦13′18.26” 43◦58′38.48” 1488 Ferruginous Canga Itabirite Yes No No
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The small diameter entrances of these caves are almost always located at the edges
of the canga as a result of erosive processes or, less frequently, are small vertical openings
caused by collapse of the canga mantle [7]. Although small, they have a very diversified
geological composition, found only in BIFs, in cangas, or in contact with both; they generally
have a ceiling composed by the canga and a floor formed by the BIF [10]. Despite their
distinct composition, their floors are usually filled with ferruginous sediments (rich in
hematite, limonite, and goethite) of granulometries ranging from clay to boulders [18].
Its speleogenesis may be related with many processes [19], but the most recent paper
defends a hypogenic genesis related to late vadose stages where the erosion only exhumes
the cave [20]. Most of the IQ caves, despite not having an evident entrance, are not
completely isolated from the surface. As the canga is very porous and the itabirite is
fractured, flows of superficial waters enable penetration of micro particles inside the caves.
The interiors of the caves present considerable aphotic extensions, and most of these have
stable environmental conditions such as temperature, pH, and humidity, providing a
highly selective environment for life [21]. Although the biofilm in pendant microfeature in
ferruginous cavities may be rare [22,23], these structures are defined as secondary mineral
deposits originating from the processes of circulation and discharge of water or from
biological activity [24].

Despite its biological and speleological importance, the IQ is one of the natural
areas in Brazil most endangered with a loss and degradation of natural ecosystems, due
to the intense mining activity and urban expansion. The region concentrates one of
the world’s largest open pit complexes [25,26] (Supplementary Figure S1). In BIF areas,
there is a defined relationship between the occurrence of iron ore and high-grade ore
caves, as a result of which, the full exploitation of iron resources will lead to the loss
of caves [27]. The industrial waste generated during mineral processing has several
impacts: pollution of groundwater, rivers, and soil by metals and trace elements (e.g., Cr,
Fe, Mn, and Zn); alterations to water turbidity; as well as silting of stretches of streams
located downstream of the dams. In addition, thousands of tons of chemicals used for the
treatment and processing of minerals (such as caustic soda, sodium hypochlorite, ether,
and hydrogen peroxide) are capable of altering the natural conditions of water bodies, soil,
biota, ecosystems, and human health [28]. Additionally, in the last years, discharges of
tailing dams have placed the IQ, causing disasters as well as irreparable environmental
damage [29,30]. However, there are still no studies that reveal the environmental impacts
and damages caused by scale mining industry. Therefore, it is likely that such influences
have been source of losses of microbial biodiversity and cave invertebrates.

Studies reporting the presence and importance of the microbiota in ferruginous caves
are still incipient. Parker and colleagues have made significant contributions to the im-
portance of the microbiota in the biogenesis of ferruginous cavities [23,31]. According to
these authors, the action of these bacteria when reducing iron III to iron II allows their
solubilization and subsequent leaching through groundwater, which, taking advantage of
the system of rock failures and fractures and the microporosities of the canga, penetrates
and seeps into the interior the cave. Thus, expanding knowledge about the diversity and
importance of the microbiota associated with these cavities, especially in the IQ region, pro-
vide important characterization of the ecosystems within these unique environments [32]
(Supplementary Figure S1).

In this context, this work aimed to investigate the prokaryotic diversity associated
with the natural subterranean cavities in ferruginous rocks by 16S rRNA gene amplicon se-
quencing, and to predict the characteristics and metabolic potentials of the microorganisms
identified in this environment. The reported data will contribute to a broader initiative
that aims to establish conservation areas within the IQ in the future. In addition, the data
may support the conservation in situ of iron caves into newly protect areas or to stimulate
studies in few caves located in conservation areas, such as the Gandarela National Park,
the main preservation area in the entire region, and the Natural Monument of Serra da
Moeda [33].
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2. Materials and Methods
2.1. Collection Sites

The determining factors in the selection of caves included geographic location, varia-
tion in altitude, and degree of human interference (Table 1 and Figure 1). Selection of the
quartzitic cave used as an experimental control took into account the geographic proximity
and lithology similarity to the IQ. According to the literature, caves are stable environments,
where changes in temperature and humidity are lesser than those in the atmosphere, and
therefore the internal temperature range between 11 ◦C and 22 ◦C and humidity between
48% and 98% in the IQ ferruginous caves throughout the year, while pH ranges from 3.5 to
4.9 [34]. The samples were collected at points close to the cavity entrances, therefore in a
borderline region between the photic and aphotic zones (when possible), and in different
aphotic regions depending on the dimensions of the cavities.

Samples of 50 g of solid material from the floor, ceiling, and biofilm hanging from the
ceiling were collected from seven caves associated with canga outcrops and a quartzite
cave (experimental control), using previously sterilized materials such as spatulas and
50-mL Falcon® tubes (Life Sciences, Corning, NY, USA).

2.2. Total Genomic DNA Extraction

Total microbial DNA was extracted from 0.25 g of each sample using the PowerSoil
DNA Mobio™ kit (GeneWorks, Adelaide, South Australia, Australia), following the proto-
col recommended by the manufacturer. After extraction, the DNA samples were quantified
and their purity was analyzed using NanoDrop™ (Thermo Fisher Scientific, Waltham,
MA, USA). The sample quality was verified by electrophoresis on 0.8% agarose gel. No
blank samples were used as a contamination control associated with the sequencing kit
reagents [35].

2.3. Partial Amplification of the 16S Ribosomal Gene

To amplify 16S ribosomal genes of the V4-V5 region, 515F and 926R oligonucleotides
were used [36]. These oligonucleotides were designed to include the adapter sequences
used in the Ion Torrent sequencing protocol and were linked to a 10 nt barcode for each
sample [36]. The complete list of oligonucleotides used in this study can be found in
Supplementary Table S1. The PCR was prepared in a final volume of 30 µL containing
0.38 mM dNTP, 2.5 mM MgCl2, and 0.15 µM of each oligonucleotide, 20 ng DNA, 0.08 U
of Platinum™ Taq DNA polymerase (Invitrogen, Waltham, MA, USA), and 10× Buffer.
Amplification was performed in a thermocycler Biocycler® (Applied Biosystems, Waltham,
MA, USA) with an initial cycle of 5 min at 94 ◦C, followed by 35 cycles of 30 s at 94 ◦C,
1 min at 57 ◦C, and 1 min at 72 ◦C, with a final cycle of 5 min at 72 ◦C. The amplicons
were analyzed on an 0.8% agarose gel. Once quality was checked, 22 µL of the final PCR
product was purified using the GFX PCR Kit™ and Gel Band Purification™ (GE Healthcare,
Chicago, IL, USA) Kit, following manufacturer’s recommendations. The quality of the
purified product was again measured on 0.8% agarose gel.

2.4. 16S rRNA Amplicon Sequencing Using the Ion Torrent Platform

The DNA library was quantified using Qubit dsDNA HS™ (High Sensitivity) using
the Qubit 2.0™ fluorometer (Life technologies, Corning, NY, USA) and the samples were
then normalized to 70 pM. For library assembly, 20 µL of each sample was placed in a single
1.5 mL tube and homogenized. Then, 25 µL of this DNA pool was loaded onto a 318 v2™
chip (Life technologies, Corning, NY, USA), and the samples were sequenced using the
Ion PGM™ platform (Life technologies, Corning, NY, USA) following the manufacturer’s
recommendations. After sequencing, the polyclonal sequences were filtered using the
software Torrent Suite™, version 5.0.5, and the data obtained were exported as FastQ files.
The homopolymers, stretches of the same nucleotide sequence, are also detected at very
high accuracy by the Ion technology [37]. A 5-mer is currently called with greater 97.5%
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per base accuracy according to the IonTorrent Platform, although several studies report
that there should be a concern with the theme [37–40].

2.5. 16S rRNA Amplicon Sequencing Data Analyses

The data were processed using the clustering-based pipeline adapted from the Brazil-
ian Microbiome Project (BMP) [41]. In the pre-processing step, reads were filtered using
Prinseq [42]. Low quality reads of less than 100 bp, and with an average quality (Q) ≤ 20
were discarded. Filtered reads were dereplicated using the USEARCH v.8.1 script [43],
performing clustering of abundant sequences and discarding singletons (single unique
reads, without similarity). For rarefaction analysis, we adopted the sequencing depth of
28,252 reads for all samples, which was the number of reads of the smallest sample. After
rarefaction, the reads were grouped into OTUs (Operational Taxonomic Units) following
the UPARSE method [44], where the identity of sequences corresponding to the same
OUT was ≥97%. For each OTU generated, a taxonomy was assigned using the RDP 11.5
(Ribosomal Database Project) classifier [45] available in QIIME 2 v.2021.2 [46]. Additionally,
all sequences associated with chloroplasts were manually excluded from the analyses. A
table was then obtained in the BIOM (The Biological Observation Matrix) format containing
the corresponding read counts for the OTUs.

Alignment of OTUs was processed by PyNAST [47], available in QIIME 2. A phyloge-
netic tree was constructed using FastTree [48], also available in QIIME 2. Diversity analyses
were performed from the BIOM file and the phylogenetic tree to generate the results of
alpha-diversity, beta-diversity, frequency tables, and taxonomic classification charts. For
the rarefaction plot we used the alpha pipeline from the diversity plugin available on
QIIME 2 v.2021.2 [46]. To obtain the observed features for all samples, the following groups
were compared: cave vs. cave (regardless of coming from ceiling or floor), ceiling vs. floor
(regardless of the cave), and ceiling vs. floor separated by caves. The Kruskal–Wallis
test [49] was used for these comparisons (alpha-group-significance visualizer from the
diversity plugin).

The Phyloseq package v.1.34.0 [50] was used for alpha and beta diversity analysis.
From the BIOM table imported into R software, alpha diversity metrics such as observed
features, Shannon [51], Simpson [52], and Chao1 [53] were calculated and plotted using
the function plot_richness from phyloseq. For ordination plots of beta diversity metrics,
sampling counts from the imported BIOM were first transformed to even sampling depth
with transform_sample_counts function (formula: 1 × 106 · x/sum(x), where x is the
number of OTU counts in a sample, and sum(x) is the sum of all OTUs counts in a sample).
Ordinate function from phyloseq was then used to calculate both unweighted and weighted
Unifrac distance [54] and the graphs of the Principal Coordinate Analysis (PCoA) were
generated from these distances [55]. Ellipses were computed for the ordination plot with
stat_ellipse function from ggplot2 v.3.3.3 [56] considering a multivariate t-distribution with
0.95 level. For beta diversity statistical analysis, we used the diversity plugin from QIIME2.
Unweighted Unifrac and weighted Unifrac [54,55] distances were calculated between
samples and added into distance matrices (beta and beta-phylogenetic pipeline). ANOSIM
and PERMANOVA tests [57] were used with 999 permutations in order to compare the
ceiling group vs. the floor group and one cave vs. another cave (beta-group-significance
visualizer with pairwise option from the diversity plugin). Biofilm in pendant microfeature
sample was not included for these tests, as the material associated with the biofilm structure
only allowed for one sample to be collected.

All Metagenome sequences were deposited in the Sequence Read Archive under
Bioproject PRJNA575049. The biosample IDs (SAMN12876970 to SAMN12876998) and
their corresponding cave names are present in the Supplementary Table S1.

2.6. Functional Metabolism Prediction from 16S rRNA Amplicon Sequences

To perform functional metabolic predictions, we used the program PICRUSt2 [58].
A Nearest Sequenced Taxon Index (weighted NSTI) of score 0.03 was used as default.
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Functional classification was based on KEGG [59], which classifies the metabolic pathways
into three possible levels, as detailed below. The analysis was performed for Level 1
categories: Metabolism, Cell Processes, Cell Process/Signaling, Environmental Information
Processing, and their respective subcategories (levels 2 and 3). Statistical analyses were
performed using STAMP (STatistical Analysis of Metagenomic Profiles) software 2.1.3 [60],
for multiple groups ANOVA was used followed by post hoc Tukey–Kramer test (p < 0.05)
and for two groups Welch’s t-test was used (p < 0.05).

3. Results
3.1. Sample Quality and the Number of Sequences Obtained

Thirty samples were collected from seven ferruginous and one quartzite caves: 16 sam-
ples from the floor, 13 from the ceiling, and one from a biofilm in pendant microfeature
(Table 1 and Figure 1). Sample 18 was disregarded from the analysis for technical prob-
lems with hybridization of the specific primer-barcode. No blank samples were used as a
contamination control. More than 8 million reads were generated, with fragments varying
between 100 and 450 bp (featuring a bimodal distribution in the lengths of 200 bp and
another in 400 bp), totaling 76% of the total capacity utilization of the chip (Supplementary
Table S1). After removal of the smaller-size sequences (between 100 and 300 bp, thus
eliminating the reads that made up the first peak of the read distribution), 6 million reads
were considered valid (74% of the chip capacity), distributed among 29 samples with
coverage varying between 84,000 and 358,000 reads per sample (Supplementary Table S1).

3.2. Alpha Diversity Characterization

Rarefaction curves were determined for each cave based on Observed_OTUs (Figure 2a).
Cave 1, followed by caves 5, 6, and 4, were those that presented the highest number of
observed OTUs, whereas cave 7 (quartzite), together with cave 8 and 3, presented the
fewest. The three representative caves of Chapada de Canga (1, 2, and 3) presented distinct
rarefaction curves. Despite the observed differences, there was no statistical difference
between any of the rarefaction curves.
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and weighted unifrac distance (p < 0.05). Orange line highlights the grouping of floor samples and
green line the ceiling samples. Quartzitic cave samples are separated from ferruginous cave samples.
Note that the floor sample from cave 8 (sample 27) is distant from all other samples (see details at
Supplementary Figure S3). * quartzite cave samples.
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The various measures of alpha diversity for a given cave yielded similar results
(Figure 2b and Supplementary Figure S2A,B). General observations that can be made are
that floor samples tend to be more diverse than ceiling samples, although there are no
statistical differences; and that there was substantial variation in alpha diversity in samples
from the same cave, especially for caves 2 and 8.

3.3. Beta-Diversity Characterization

PCoA (unweighted and weighted Unifrac, Figure 2c) analysis of samples showed that
floor samples could be clustered together more tightly than ceiling samples, with statistical
difference between ceiling and floor (Supplementary Table S2). Outliers in the case of floor
samples were 25 (quartzite cave) and 27 (cave 8). Note also that its ceiling sample (26) was
placed next to its floor sample, indicating that these samples have similar composition.
This was not the case for cave 8, as its ceiling samples (29 and 30) were placed far from the
floor sample.

3.4. Comparison of Prokaryotic Community Structures among Caves

The composition of the communities in each cave was investigated. It was found
that between 14 and 26 phyla associated with 101 to 183 genera can be found per inves-
tigated sample, with a number of non-redundant phyla varying between 23 and 27, and
non-redundant genera ranging from 161 to 216 per investigated cave (Supplementary
Tables S3 and S4). In the ferruginous caves, the most abundant phyla were Acidobacte-
ria (43.6%), Chloroflexi (15.4%), Proteobacteria (14.8%), Actinobacteria (4%), Nitrospirae
(2.0%), and Firmicutes (1.8%), which together represented 86% of the entire prokaryotic
community (Figure 3). The most representative classes in the ferruginous caves were Al-
phaproteobacteria (16.4%), Betaproteobacteria (15.8%), and Actinobacteria (15.4%), whereas
Gammaproteobacteria (16%), Betaproteobacteria (15%), and Actinobacteria (15%) dom-
inated in the quartzite cave (Figure 4a). The genera with greatest relative abundance
in the quartzite cave were Aciditerrimonas and Leucobacter (Actinobacteria), Bryobacter,
and GP6 (Acidobacteria), Alcaligenes (Betaproteobacteria), Jahnella (Deltaproteobacteria),
Coxiella, Rhodonobacter, and Xanthomonas (Gammaproteobacteria), Gemmatimonas (Gem-
matimonadetes), and Nitrospira (Nitrospira). In contrast, the most abundant genera in
the ferruginous caves were Blastopirellula (Planctomycetia), WPS1 (WPS), and Beijerinckia
(Alphaproteobacteria) (Supplementary Tables S3 and S4 and Figure 4b).
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showed relative abundance > 1% in the composition of the total samples.
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Figure 4. Relative abundance and diversity analysis. (a) Relative abundances and bacterial diversity
at class level in ferruginous and quartzitic caves. The numbers 1 to 8 indicate the eight caves
investigated in this study and georeferenced in Figure 1. (b) Heatmap of genus abundances (trend) in
the samples collected in caves 1 to 8 (according to Table 1). The numbers in red circles indicate which
cave presented greater relative abundance of the genus in comparison to other investigated caves.

3.5. Metabolic Analysis

A general metabolic prediction analysis identified similarities in metabolic potential be-
tween the ferruginous microbiota and the quartzite cave microbiota (Figure 5A). However,
some categories of biotechnological interest, when analyzed separately showed statistical
differences between the quartzite cave and ferruginous cave samples (Figure 5B). Within
all 61 metabolic pathways associated with the level Metabolism (level 1), four subcategories
on level 3 are highlighted: novobiocin biosynthesis (Biosynthesis and Biodegradation
of secondary metabolites), nitrogen metabolism (Energy metabolism), biosynthesis of
12, 14, and 16 membered macrolides, and biosynthesis of type II polyketide products
(Metabolism of Terpenoids and Polyketides). Regarding categories associated with (i) Cel-
lular Processes/Signaling and (ii) Environmental Information and Processing (all level 1),
we highlight the level 3 subcategories involved in Signal Transduction Mechanisms (Sig-
nal Transduction) and Secretion System (Membrane Transport) (Figure 5B). The samples
from the ferruginous caves showed a higher proportion of sequences for the categories
signal transduction mechanisms, nitrogen metabolism, novobiocin biosynthesis, and se-
cretion system. For the pathways: biosynthesis of 12, 14, and 16 membered macrolides
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and biosynthesis of type II polyketide products the highest proportions were from the
quartzite cave.
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Figure 5. Relative proportions of the functional metabolic profiles based on sequences for ferruginous
and quartzite caves. (a) Relative abundance of sequences between the caves based on Picrust
predictions for functional categories inferred at level 3. Categories highlighted in yellow are presented
in detail in b. (b) Comparative analysis of proportion of sequences (%) for predicted metabolic
functions on genus level between the ferruginous caves and the quartzite cave. Welch’s t-test was
used (p < 0.05).

3.6. Ferruginous Caves Associated with Chapada de Canga

Three of the eight caves investigated in this study are located in the Chapada de Canga
region (Figure 6a). Despite their geographical proximity, the observed microbiological
richness differed between these three caves. Although no statistical difference was observed
while cave 1 presented highest richness (Figure 2a), cave 3 presented the least richness
and still showed the highest diversity among the caves in this region (with 32 specific
OTUs) (Figure 6b). Considering only the samples of the cave floor, the highest diversity
(at the genus level) was observed in cave 2, with 27 specific OTUs (2.1% of all OTUs)
(Figure 6c). Specific OTUs are those identified only at that location when compared to the
other Chapada de Canga caves in this study. The samples from cave 3, with 38 specific



Diversity 2021, 13, 494 11 of 21

OTUs (22.5% of all OTUs) (Figure 6d), showed the highest diversity among the ceiling
samples. Among the specific OTUs of the ceiling of each cave, cave 2 stands out due to its
high relative abundance of Actinobacteria (30%). Less abundances of Actinobacteria, 0 and
19%, were observed in the ceiling samples of cave 1 and 3, respectively.
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Figure 6. Geographical location of caves of Chapada de Canga and relations between genera
determined in the caves. (a) A site map of Chapada de Canga caves. For more details see Figure 1.
The map was obtained from “Instituto Prístino: atlas digital geoambiental. WebGis system (Web
Geographical Information System): https://institutopristino.org.br/atlas, accessed on 15 June 2020.
(b) Venn diagram representing the number of OTUs (on genus level) shared by the three caves of
Chapada de Canga. (c,d) Venn diagrams representing unique and shared genera between each
Chapada cave for floor and ceiling, respectively.

Cave 2 was analyzed in detail as it is the only one to present a biofilm hanging
from the ceiling. When comparing the floor, ceiling, and biofilm samples obtained in
cave 2, it was possible to identify different number of specific OTUs. A greater number
of specific genera (24) was observed in the floor samples, compared with 10 and 9 in the
biofilm and ceiling, respectively (Figure 7a). Interestingly, the number of genera shared
exclusively between the floor and biofilm (26) and between the floor and ceiling (25) was
much larger compared to the number of genera shared between the ceiling and biofilm (1),
which are physically connected. In order to make this correlation more evident between
the microbiota of the floor and biofilm, functional prediction of microbiota metabolism
involving the three substrates was analyzed. Among the 24 categories investigated, 21
presented direct correspondence between the floor and biofilm, with emphasis on the
pathways of secondary compounds and cellular processes (Figure 7b).

https://institutopristino.org.br/atlas
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Figure 7. Diversity and prediction of functional metabolism in cave 2. (a) Venn diagram showing
relations between floor, ceiling, and biofilm hanging from the ceiling samples from cave 2 (Chapada
de Canga), on phylum level. (b) Analysis of the functional prediction and metabolic pathways
associated with the ceiling, floor, and biofilm of cave 2. Elevated abundances for each pathway
are shown in green, reduced abundances in red. ANOVA followed by post hoc Tukey–Kramer test
(p < 0.05), however no statistical difference was observed to the categories available.

3.7. Inference of Ecological Relations in Ferruginous Caves

A systematic analysis of metabolic capacity of each genus identified in cave 2 (Supple-
mentary Table S5) was performed to establish a model that indicates the importance of the
microbiota for maintaining ecological relations within the ferruginous caves.

4. Discussion
Ferruginous Caves in IQ

The physical environmental heterogeneity inside the iron cavities is directly reflected
in their microbiological biodiversity, and provides unique habitats with pronounced dif-
ferences in resources, with some being wet and others with and without light [23,31]. In
addition, the fine sediments injected into the floor of the caves through microcracks and
microchannels drainage are formed in an anaerobic environment. Finally, as the dissolution
of silica and iron is very slow [61] the iron-developed caves of the IQ have taken a long
time to form and have been isolated from the surface [20]. The chemical and physical prop-
erties of the caves indicate that the microbiomes inhabiting their interiors have to possess
mechanisms to survive in such peculiar environments. The characteristics and aspects of
the environment in IQ form this singular environment, which adds even greater scientific
interest as it is a key area for the conservation efforts focused on protecting microbiological
diversity. These conservation efforts also favor the investigations about bacteria associated
with rare plants of ferruginous rocky fields as a reservoir of the microbiota of biotech-
nological and ecological [62,63] and, in addition, protect the plant biodiversity, which
includes hundreds of endemic [64–66] and rare species [65] (Supplementary Figure S1).
Even with the imminent risk of loss of these environments, studies involving such cavities
are still incipient, and the microbiota associated with this geosystem are understudied.
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Such studies can contribute to conservation efforts, as well as broaden our understanding
of the rehabilitation capacity of areas degraded by mineral extraction, as demonstrated by
a recent work involving the mined areas of the ferruginous fields of the Carajás region, also
in Brazil [67].

To our knowledge, this work is the first report of the 16S rRNA gene amplicon
sequencing data analyses associated with seven ferruginous caves located in the Brazilian
IQ. It is important to highlight that, although no control sample has been incorporated
in this work (blank sample), possible contamination from water and other reagents used
in sequencing [35], if they have occurred, probably interfered very little and equally in
the results obtained, as all samples were processed and sequenced using the same inputs.
The results obtained showed that when compared to a quartzite cave, ferruginous caves
presented high microbial richness (Figure 2), even though a significant statistical difference
was not observed. Microorganisms have a biogeochemical function, including biogenesis
processes in the iron caves themselves, active participation in iron oxi-reduction cycles,
generation of sulfate and phosphate, and a role in the formation of microchannels and
speleothems [68–70]. Energy flux within ferruginous caves is not fully understood. In
general, microorganisms in cave systems can play key roles in maintaining subterranean
biodiversity, allowing nutrient cycling [71] and potentially the survival of plants established
above these cavities, as well as of animals. Although the roles of microorganisms and their
ecological interactions need further investigation, the fact that extensive branching root
systems are established within the structures of the cavities indicates complex ecological
functions (Supplementary Figure S4).

Unlike all other cavities, cave 8 showed signs of human interference, such as traces
of fire and litter (PET bottles, cigarette packs and plastic bags). Campfires were found
in the vicinity of the cave and also about three meters inside it. A comparison between
samples revealed that the microbiota in samples collected closest to the anthropogenic
intervention zone in cave 8 differed from the microbiota in areas farther from it. Such a
distinct spatial difference was not observed in other caves (where more than one sampling
point was tested).

It has been demonstrated that caves accessible to the human visitors and the presence
of exogenous organic matter affect diversity and richness when compared to undisturbed
areas [72]. In this context, the slow genesis and seclusion of the IQ caves have been
essential factors in defining and sustaining their microbial diversity. As observed in cave 8,
even minor human interventions cause disturbances, indicating a low resilience of these
subterranean systems [17]. This further highlights the mineral extraction activities of the
IQ region as an important factor contributing to the loss of potential uncharted genetic
heritage, as mining of the ores that constitute the cavities leads to a complete destruction of
the caves.

Despite similar geomorphological composition to that of cave 8 (canga ceiling and
itabirite floor), much greater richness in terms of observed OTUs was observed in caves
1, 4, 5, and 6. As cave 4 has small dimensions of its conduits, only one ceiling sample
was analyzed. It presented a diversity of microorganisms very similar to other caves
that had more points sampled. Although different points of cave 5 and 6 were sampled,
metabolic diversity predictions were quite homogeneous among the samples investigated,
demonstrating that the composition of microbial communities is quite conserved. In other
words, the distance of the sample collection point from the entrance of the cave did not
affect the microbial diversity, which supports our abovementioned speculation about the
effect of anthropogenic interference on the microbiota in cave 8.

Beta-diversity analyses, especially using the weighted Unifrac metric, showed that the
majority of floor samples clustered together; ceiling samples on the other hand tended to
be more scattered. Other factors, such as altitude or location (within or outside protected
areas), did not seem to affect the clustering. In contrast to ferruginous caves, floor and
ceiling samples from the quartzite cave were quite similar to each other.
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It was observed that the phylum Acidobacteria dominated in ferruginous caves,
while the phylum Proteobacteria was the most abundant in other kinds of caves [73–76].
This observation can be explained by differences in geomorphological and geochemical
characteristics, genesis and/or ecological interactions [10]. Additionally, Acidobacteria
are associated with low pH of the environment, which is in agreement with the reference
values (pH below 5.09) observed in ferruginous caves. The most abundant genus in the
canga caves was Blastopirellula, whereas the genera that present the greatest abundance in
the quartzite cave included Aciditerrimonas, Bryobacter, Rhodanobacter, and Nitrospira.

From the abundance of identified taxa, it was possible to trace a metabolic profile and
to identify traits in the microbiota associated with ferruginous caves that could have use
in biotechnologies. Although it is known that only a small proportion of microorganisms
can be cultivated [77], thus allowing a targeted analysis of the metabolites produced, it is
already demonstrated that it is possible to identify and isolate new biomolecules of wide
interest without dependence on culture medium [77,78]. Such techniques could be used in
the future to analyze samples from the ferruginous caves, in order to support or refute the
conclusions of this study that are described below.

Out of the 328 metabolic pathways identified at level 3, six were selected based on
their biological importance and biotechnological interest. Except biosynthesis of 12, 14,
and 16 membered macrolides and biosynthesis of type II polyketide products categories,
the quartzite cave samples contained reduced proportions of sequences associated with
metabolic predictions in all other selected categories.

Macrolides and novobiocin are antibiotics naturally produced by some species be-
longing to the Staphylococcus and Streptomyces genera, as well as Cyanobacteria [79–81],
and are of wide interest to the pharmaceutical industry [82–84]. However, polyketides
are an important and structurally diverse group of secondary prokaryotic metabolites
that have several biological functions, but have also been widely reported as molecules
with antibiotic and immunosuppressive activities [85]. Considering that the main bacterial
genera that produce these compounds belong to the phylum Actinobacteria, which was
detected in higher proportions in the caves 8, 7, and 2 (averages 16.6%, 15.4 % and 14.2% of
the total OTUs of the floor, ceiling, and biofilm samples from each cave, respectively), the
natural cavities could become a promising source of isolates that might find use in the pro-
duction of new drugs. In addition to potential biotechnological applications, Acidobacteria
play important ecological roles, such as plant biomass degradation [86], and plant growth
promotion [87].

Adaptive responses to the environment are dependent on signal transduction mecha-
nisms, which can activation secretion systems in prokaryotes [88]. These systems, in turn, can
secrete toxins into the environment. Therefore, these categories are related to one another, and
may be related to the ecological complexity established in these environments [89].

In caves of other lithologies, the importance of nitrogen fixation and the nitrogen
cycle have already been reported as fundamental to maintain the entire ecosystem [90].
As Desai and collaborators (2013) have suggested, diazotrophy might be widespread in
chemosynthetic communities in dark caves. Elevated abundance of chemosynthetic organ-
isms (including Aquisphaera, Ferrovum, Georgfuchsia, Methylocystis, and Propionibacterium)
were determined by the metagenomics analysis, indicating the occurrence of fixation of
atmospheric nitrogen in the ferruginous caves.

The Chapada de Canga, located in the east of the IQ, extends for about 3900 ha [91]
and has a unique biological, archaeological, speleological, geological, and landscape her-
itage [91]. Despite these characteristics, this region is surrounded by areas of mining and
tailing dams, one of which ruptured in 2015, causing irreparable environmental, economic,
and social harm [30,92,93]. Three out of the seven caves selected for this study are located
in the region affected by the dam’s spill. Our work has shown that each of these three caves
presented completely different diversity, despite similar morphology, dimensions, and
proximity to each other. It was found that, although the richness of cave 3 is the smallest
of all analyzed in relation to the abundance of OTUs, its diversity is the largest among
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the Chapada de Canga. Another feature of the caves of Chapada de Canga is related to
the abundance of specific phyla. The phylum Actinobacteria includes bacteria that are
widely studied as they present potential antagonistic activity to human, animal, and plant
pathogens [94] which contributes to give importance to the caves of Chapada de Canga,
where abundances of this phylum were identified. Bacteria belonging to this phylum
have been detected in several environments, including extreme habitats [95–97], and have
been characterized as potential producers of biomolecules with anticancer and antimalaria
action among other pharmacological interests [98]. These findings are in agreement with
the functional metabolic predictions in categories shown, and indicate that cavities could
serve as a source of organisms for a new biomolecule production.

A biofilm hanging from the ceiling was identified in cave 2 and sampled for metage-
nomic analysis. The mineralogy of speleothems is diverse, including, e.g., oxides and
hydroxides of iron, phosphates, and sulfates [99], which affect the composition of micro-
biomes that, on the other hand, play a fundamental role in the mineral deposit forma-
tion [100]. The prokaryotic community found in the biofilm was more similar to the floor
samples than the ceiling samples, and included genera unique to each of the niches.

This high correspondence between biofilm and floor samples was also seen in func-
tional metabolic predictions. In almost all pathways of secondary compound metabolism
and for most of the cell pathways investigated, there was a direct correspondence between
the floor and biofilm, except for the nitrotoluene degradation pathways, novobiocin biosyn-
thesis, and bacterial toxins in this context. This result dynamically highlights two important
biological events commonly observed in cave environments: the origin of the microbiota
associated with the biofilm as a product of the weathering of the soil and the canga above
the cavity, and the biofilm as a physical chemistry structure for transferring the associated
microbiota to the floor [101].

Results showed that the genera associated with biofilm hanging from the ceiling have
a high capacity for oxidation and reduction in iron, phenomena directly associated with the
genesis process of the cavities [20,68]. Among the OTUs unique to the biofilm (that were
not present in the floor and ceiling samples from the same cave), the most abundant genera
were Ferrovum, Geobacter, and Sideroxydans, described as iron oxidizers [102–104]. Ferrovum
and Sideroxydans species are often associated with caves [105], being directly involved with
mineral precipitation and thus formation of biofilm [106,107]. In addition, Geobacter species
have been described as capable of reducing toxic and radioactive metals [108,109], and
they therefore play an important role in bioremediation of contaminated sites [110,111].

Methylocapsa, Proprionibacterium, Streptacidiphilus, and Pseudonocardia were identified as
unique genera in cave 2 ceiling samples. Methylocapsa species have already been described
as capable of fixing atmospheric nitrogen [112], whereas bacteria belonging to the genera
Proprionibacterium, Streptacidiphilus, and Pseudonocardia have been described as species with
high potential for antifungal activity [113–116]. Additionally, all these genera are directly
or indirectly associated with nutrient cycling (e.g., recalcitrant organic compound and
organic matter; Atashgahi et al. [117]) maintenance of biogeochemical cycles (carbon; [118]
and nitrogen; [119]), and other metabolic functions (fixation, reduction, and oxidation of
metals). These organisms are therefore suitable for several biotechnological applications,
such as rhizoremediation [120], effluent treatment [121], promotion of plant growth [120],
plant pathogen control [122], and metal biotransformation [123]. In the floor samples, the
genera Burkholderia, Rhodanobacter, and Variovorax dominated. Some species of Burkholderia
are of broad agricultural and industrial interest [124,125]. Rhodanobacter has been reported
to remove uranium from uranium-contaminated sites [126–128], and Variovorax has been
described as a genus capable of degrading metaldehyde [129].

5. Conclusions

This work presents, for the first time, the microbial diversity associated with ferrugi-
nous caves from the Brazilian Iron Quadrangle identified by high-throughput sequencing
of the 16S rRNA gene, bringing new findings that could potentially be used in biotech-
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nology. In addition, great variations in richness and abundance were observed among
ferruginous caves, including those the Chapada de Canga region that are geographically
extremely close. Comparisons of prokaryotic diversity in floor and ceiling samples also
showed differences in microbiomes within individual caves, which may have a direct
correlation, respectively, with the chronology and geomorphological processes linked to
the genesis of these cavities. Finally, the data presented in this study highlight the need for
conservation of these areas exposed to intense anthropogenic pressure.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/d13100494/s1, Figure S1: Maps characterizing the iron quadrilateral region, Figure S2: Diversity
indices, Figure S3: Functional metabolic prediction, Figure S4: Plant root system throughout the
structure of the cavities, Table S1: Sequencing data of collected samples, Table S2: Beta-Diversity
indices analysis, Table S3: The most abundant OTUs by sample and the unique OTUs by cave, Table
S4: Relative abundance (%) of all OTUs identified, and Table S5: Features of the genera found on the
floor, ceiling, and biofilm hanging from the ceiling of cave 2 in Chapada de Canga.
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