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Abstract: Coastal habitats have experienced significant degradation and fragmentation in recent
decades under the strain of interacting ecosystem stressors. To maintain biodiversity and ecosys-
tem functioning, coastal managers and restoration practitioners face the urgent tasks of identifying
priority areas for protection and developing innovative, scalable approaches to habitat restoration. Fa-
cilitating these efforts are models of seascape connectivity, which represent ecological linkages across
heterogeneous marine environments by predicting species-specific dispersal between suitable habitat
patches. However, defining the suitable habitat patches and migratory pathways required to con-
struct ecologically realistic connectivity models remains challenging. Focusing on two reef-associated
fish species of the Florida Keys, United States of America (USA), we compared two methods for
constructing species- and life stage-specific spatial models of habitat suitability—penalized logistic
regression and maximum entropy (MaxEnt). The goal of the model comparison was to identify the
modeling algorithm that produced the most realistic and detailed products for use in subsequent
connectivity assessments. Regardless of species, MaxEnt’s ability to distinguish between suitable
and unsuitable locations exceeded that of the penalized regressions. Furthermore, MaxEnt’s habitat
suitability predictions more closely aligned with the known ecology of the study species, revealing
the environmental conditions and spatial patterns that best support each species across the seascape,
with implications for predicting connectivity pathways and the distribution of key ecological pro-
cesses. Our research demonstrates MaxEnt’s promise as a scalable, species-specific, and spatially
explicit tool for informing models of seascape connectivity and guiding coastal conservation efforts.

Keywords: habitat suitability modeling; seascape connectivity; seascape ecology; fish migrations;
marine spatial planning; habitat restoration

1. Introduction

Understanding the spatial, temporal, and environmental drivers of marine species
distributions is paramount to developing ecologically sound conservation and place-based
management strategies [1,2]. These efforts are increasingly urgent as global climate change
interacts with local and regional stressors (e.g., pollution, overexploitation) to degrade and
fragment marine ecosystems [3,4]. Coastal habitats, including mangroves [5], seagrasses [6],
corals [7], and salt marshes [8], have experienced precipitous declines worldwide over
the last several decades, thereby vastly reducing the suitable habitat space for many
marine species. Biodiversity loss stemming from environmental degradation enhances the
risk of functional collapse by reducing ecosystem resilience to interacting stressors [9,10].
Identifying priority locations for protection and restoration of coastal habitats at both local
and global scales is therefore one of the most important challenges in marine conservation
and spatial planning [11,12]. Seascape connectivity is increasingly recognized as a dynamic
and spatially explicit process regulating biodiversity patterns and ecosystem functions,
and playing an important role in guiding coastal conservation efforts [13–16].
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Seascape connectivity represents ecological linkages and flows across heterogeneous
environments [17,18], typically related to the flow of organisms, energy, nutrients, or genetic
material. The magnitude and location of these exchanges are shaped by patterns of intra-
and inter-habitat connectivity, with the latter being especially important for species whose
movements span multiple habitat types. In tropical coastal seascapes, for example, multi-
habitat use is widespread with almost half of all coral reef associated fish species having
also been recorded in two or more non-reef habitats [19]. Seascape connectivity can be
categorized into two major types—structural connectivity and functional connectivity [13].
Structural connectivity describes the spatial patterns and relationships of the seascape itself
(e.g., patch areas, inter-patch distances, habitat corridors), whereas functional connectivity
describes the degree to which animals move among resource patches in response to those
structural patterns [18,20]. Functional connectivity is therefore inherently species- and life
stage-specific, as it depends on the behavioral and life history traits of the organism, and
on the spatiotemporal scales of their movements [18,21]. Thus, management programs
that maximize functional connectivity across scales and communities, including through
place-based conservation measures such as marine protected areas, are expected to achieve
greater ecological outcomes [13–15]. Facilitating these efforts are models of potential
connectivity, in which limited data on species behavior or dispersal are related to metrics of
seascape structure [20]. These include graph-theoretic approaches, in which the seascape is
represented by a spatial graph constructed of suitable habitat patches (nodes) connected
by a series of dispersal links (edges) [22]. In this regard, potential connectivity models
can be used to estimate connectivity thresholds, movement corridors, and stepping-stones
unique to individual seascape residents, which can then serve as targets in conservation
and restoration planning [23,24].

To successfully inform conservation efforts, connectivity models must achieve a high
level of ecological realism, which relies on knowledge of the current distribution of suitable
habitats and species–environment relationships. One way to access this information is
through habitat suitability modeling, also referred to as species distribution modeling, a
method that uses known species locations and their associated environmental conditions
to predict habitat suitability over space and time [25]. When used as a precursor to
connectivity modeling, predictive habitat suitability models (HSMs) can reveal the locations
and sizes of suitable habitat patches, which can then serve as nodes in spatial graphs [26].
Furthermore, assuming that animals travel along pathways that minimize their ecological
costs, HSMs can be inverted to produce cost surfaces over which connectivity is predicted
(e.g., least-cost path models), potentially increasing the realism and precision of predicted
edges [27]. As the integration of three-dimensional surfaces alongside standard two-
dimensional predictors becomes more common in spatial modeling [28,29], the value
of HSMs and HSM-derived cost surfaces for connectivity analysis will likely increase.
Although realistic HSMs can help bridge the gap between connectivity modeling and
conservation planning, applications of this multi-step approach have been applied only to
terrestrial landscapes [26,30,31].

The limited availability and quality of species occurrence and environmental data rep-
resent major barriers to habitat suitability modeling in complex coastal seascapes. However,
recent advancements in remote sensing technology have increased the accessibility of data
on marine habitat mosaics, three-dimensional seascape terrain structure, and oceanographic
conditions, which can serve as ecologically relevant spatial predictors in HSMs [28,29,32].
When possible, systematic surveys (e.g., SCUBA censuses) can be performed to collect
detailed presence–absence data for focal species, which can then be used to predict the
probability of species presence via generalized linear or additive modeling (e.g., logistic
regression) [25,33]. The cost of systematic surveys, however, may limit their coverage and
usefulness for seascape-wide modeling. In contrast, presence-only species data may be
compiled from a variety of sources covering broad geographic and environmental space,
including online biodiversity databases (e.g., gbif.org, obis.org), fishery-dependent and
fishery-independent programs, and citizen science initiatives. When coupled with informa-
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tion on environmental conditions at a set of background points (i.e., presence-background
data), these data can be used to estimate the relative likelihood of species occurrence [34].
MaxEnt, an open-source machine learning software that uses the principle of maximum
entropy to model species distributions, is a popular presence-background technique [35,36].
Indeed, MaxEnt and standard regression techniques have displayed similar predictive per-
formance in several terrestrial studies [37–40], but whether this outcome holds in complex
seascapes and under the scrutiny of connectivity modeling remains unclear.

We compared penalized logistic regression and MaxEnt models of habitat suitabil-
ity for two common fish species across a spatially heterogeneous coastal seascape in
the Florida Keys, United States of America (USA). Our primary objective was to deter-
mine which modeling method produced the more realistic HSM for use in subsequent
connectivity assessments. To meet this objective, we examined each model’s ability to
discriminate between suitable and unsuitable locations using both threshold-independent
and threshold-dependent assessments. Our secondary objective was to identify the most
influential environmental and spatial predictors of habitat suitability for each species to
better understand the species-seascape interactions that shape patterns of connectivity.

2. Materials and Methods
2.1. Study Area

The Florida Keys—a string of islands located off the southern tip of Florida between
the Atlantic Ocean and the Gulf of Mexico—were selected as a case study for this research
(Figure 1). The seascape in this region has been described as a mangrove–seagrass–reef
continuum featuring patches of shoreline mangroves, dense seagrass beds interspersed
with patch reefs, and finally the Florida Reef Tract located 5–15 km offshore [41]. De-
spite protection from the Florida Keys National Marine Sanctuary (FKNMS) and Biscayne
National Park (BNP), this region has experienced significant declines in biogenic habitat
over the last 50 years. A range of local, state, and federal organizations are now focusing
substantial resources on habitat restoration to combat loss and fragmentation, with the
offshore reef tract being a major target [42]. These restoration efforts will benefit from a
thorough understanding of the daily, seasonal, and ontogenetic migrations of reef fishes
between spatially isolated habitats across the seascape, as these movements increase reef
productivity and resilience through the transfer of nutrients, the maintenance of top-down
control on coral predators, and the enhancement of grazing pressure on harmful epiphytes
and macroalgae that could otherwise shift reefs into a macroalgal state [43–45]. In fact, the
transfer of nitrogen and phosphorus from sheltering resident and migratory reef fishes
to their host corals has been demonstrated to significantly increase zooxanthellae abun-
dance and coral growth rates [46,47]. Fish-derived nutrient hotspots thus offer important
supplements to oligotrophic tropical and subtropical coral reefs, including those of the
Florida Keys [48]. Therefore, we focused on modeling habitat suitability for reef fishes in
the coastal region (≤50 m depth) from Key Biscayne in the Upper Keys to Cudjoe Key in
the Lower Keys.
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seagrass beds around September and February, respectively, before expanding to man-
groves several months later [51]. Juveniles often remain in nearshore nurseries for months 
to years, then, as sub-adults, undertake a cross-shelf migration to join adults on offshore 
coral reefs. Although it is clear that their ontogenetic migrations play an important role in 
maintaining seascape-wide ecological connectivity, there remains a paucity of infor-
mation on habitat suitability across the seascape for L. griseus and H. sciurus. Additionally, 
there may be considerable inter-species variation in habitat suitability, and consequently, 
functional connectivity, stemming from unique preferences for nearshore strata [51,52], 
tolerances to salinity fluctuation [53], and motivations for movement [54,55]. Addressing 
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ical and economic roles in the region as abundant members of the fish assemblage, highly 
mobile predators and vectors of nutrient transfer, and valued sport and commercial fish-
ery targets [56,57]. 
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Figure 1. Location of the study area in the Florida Keys, United States of America (USA), which included Biscayne National
Park (BNP) and portions of the Florida Keys National Marine Sanctuary (FKNMS).

2.2. Focal Species

We selected gray snapper (Lutjanus griseus) and bluestriped grunt (Haemulon sciu-
rus) as focal species due to their complex, multi-habitat life histories. Though generally
considered reef-associated as adults, these species occupy spatially discrete patches of
varying habitat type through ontogeny, resulting in them being categorized as seascape
nursery species [49,50]. In Southern Florida, larval L. griseus and H. sciurus settle in sea-
grass beds around September and February, respectively, before expanding to mangroves
several months later [51]. Juveniles often remain in nearshore nurseries for months to
years, then, as sub-adults, undertake a cross-shelf migration to join adults on offshore
coral reefs. Although it is clear that their ontogenetic migrations play an important role
in maintaining seascape-wide ecological connectivity, there remains a paucity of informa-
tion on habitat suitability across the seascape for L. griseus and H. sciurus. Additionally,
there may be considerable inter-species variation in habitat suitability, and consequently,
functional connectivity, stemming from unique preferences for nearshore strata [51,52],
tolerances to salinity fluctuation [53], and motivations for movement [54,55]. Addressing
these knowledge gaps is of critical importance as L. griseus and H. sciurus play key ecologi-
cal and economic roles in the region as abundant members of the fish assemblage, highly
mobile predators and vectors of nutrient transfer, and valued sport and commercial fishery
targets [56,57].

Data describing the size, abundance, and distributions of L. griseus and H. sciurus
were obtained from two multi-agency monitoring programs coordinated by the NOAA
Southeast Fisheries Science Center: the South Florida Reef Visual Census (RVC) and the
Mangrove Visual Survey (MVS). Using a two-stage stratified random sampling design,
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the RVC program surveys fish communities on coral reefs and other hard bottom habitats
biennially using a stationary visual survey method [58]. Similarly, the MVS program
conducts annual belt transect surveys alongside randomly selected mangrove shoreline
sites in Biscayne Bay, Card Sound, Barnes Sound, and northeastern Florida Bay [59,60]. At
each site, a trained diver records the identity, abundance, and size structure of all fishes
encountered; RVC surveys occur within a 7.5 m-radius imaginary cylinder extending
vertically from the seafloor to the surface, while MVS surveys take place over 30 × 2 m
transects established parallel to the shore. These programs were designed to collect data
that enables the detection of spatiotemporal changes in reef fish species composition, size,
and abundance using statistical analyses. Thus, we compiled RVC and MVS data collected
at unique sampling sites in 2014, 2016, and 2018 to maximize the spatial coverage of
georeferenced L. griseus and H. sciurus records. This process also ensured a temporal match
between the two reef fish monitoring programs and the spatial predictors described below,
which are based largely on data collected between 2014 and 2018. Considering the dynamic
nature of the Florida Keys, where seafloor features change over time, we used temporal
data alignment to prevent model inaccuracies.

2.3. Spatial Predictors

To explore the relationship between spatial predictors and L. griseus and H. sciurus
distributions, we constructed raster data layers to map the following environmental cate-
gories: benthic habitat, bathymetry and seafloor morphology, and water conditions (Table 1,
Figure 2). All rasters had an interpolated resolution of 5 × 5 m and were referenced to
the Florida East projected coordinate system and the NAVD vertical coordinate system
where applicable.

Table 1. Spatial predictors available for habitat suitability modeling. Grayed-out predictors were removed due to collinearity
issues. BTM: Benthic Terrain Modeler ArcGIS extension (v3.0). Calculations performed using a 3 × 3 moving window of
cells, unless otherwise noted.

Predictor Units Description Tool Used

Habitat
Benthic Habitat Categorical (12) Bottom habitat type Not Applicable

Distance to Mangrove Meters Euclidean distance to the nearest
mangrove habitat

gridDistance function in
the raster R package

Bathymetry
& Seafloor

Morphology

Depth Meters Water depth in each cell Not Applicable
Depth (Standard

Deviation) Meters Local dispersion Calculate Metrics tool
in BTM

Slope Degrees Rate of maximum change in depth Slope tool in BTM

Curvature
1

100 th of a meter, convex
(+) or concave (−)

Second derivative of the bathymetric
surface

Curvature tool in ArcGIS
Spatial Analyst

Plan Curvature
1

100 thof a meter, convex
(+) or concave (−)

Curvature perpendicular to the
direction of maximum slope

Curvature tool in ArcGIS
Spatial Analyst

Rugosity Ratio Local surface roughness calculated as
the ratio of surface area to planar area

Surface Area to Planar
Area (slope-corrected)

tool in BTM

Broad-Scale Bathymetric
Position Index (BPI)

Ridge (+), Flat (0), or
Valley (−)

Depth of a cell relative to its
surroundings, evaluated using

concentric rings of 125 m and 1250 m

Broad-Scale BPI tool in
BTM (standardized)

Fine-Scale BPI Ridge (+), Flat (0), or
Valley (−)

Depth of a cell relative to its
surroundings, evaluated using

concentric rings of 5 m and 125 m

Fine-Scale BPI tool in
BTM (standardized)

Water
Conditions

Winter Temperature Degrees Celsius Mean winter (January–March)
temperature

Krige function in the gstat
R package

Winter Salinity Practical Salinity Units Mean winter (January–March)
salinity

Krige function in the gstat
R package

Winter Dissolved
Oxygen Milligrams per Liter Mean winter (January–March)

dissolved oxygen
Krige function in the gstat

R package

Summer Temperature Degrees Celsius Mean summer (July–September)
temperature

Krige function in the gstat
R package

Summer Salinity Practical Salinity Units Mean summer (July–September)
salinity

Krige function in the gstat
R package

Summer Dissolved
Oxygen Milligrams per Liter Mean summer (July–September)

dissolved oxygen
Krige function in the gstat

R package
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occurrence records used to train MaxEnt models and penalized logistic regressions of habitat suitability in the Florida
Keys, USA.

2.3.1. Benthic Habitat

Benthic habitat data were obtained from Florida’s Unified Reef Map v2.0 [61], a seam-
less map of benthic habitats from Martin County to the Dry Tortugas derived from remote
sensing imagery, high-resolution bathymetric data, and in situ observations using a five-tier
hierarchical classification system. We supplemented the Reef Map with a separate GIS
dataset of shoreline mangroves to fully capture the extent of this potentially important
nursery habitat [62]. For this research, we used Level 1 map classifications, which delineate
the major benthic habitat types while maintaining agreement between the Reef Map’s
contributing agencies. Habitat data were rasterized, producing cells that reflected the IDs
of 12 possible benthic habitats: individual or aggregated patch reef, scattered coral and
rock in unconsolidated sediment, continuous seagrass, discontinuous seagrass, unconsoli-
dated sediment, aggregate reef, pavement, reef rubble, mangrove, artificial, dredged and
excavated, and ridge. We also assessed the importance of mangrove nursery proximity
by constructing a raster of Euclidean distances to the nearest mangrove habitat using the
raster R package (v3.3–13) [63] in R version 4.0.2 [64].

2.3.2. Bathymetry and Seafloor Morphology

NOAA’s 1/9th ArcSecond Resolution Continuously Updated Digital Elevation Model
served as an initial bathymetric surface for this research [65]. Seafloor morphology was
quantified from the bathymetric surface by applying metrics of slope, curvature, rugosity,
bathymetric position index (BPI), and standard deviation of depth using the Benthic
Terrain Modeler ArcGIS extension (BTM v3.0) [66] in ArcGIS v10.7.1. These rasters captured
detailed information on the structure and complexity of the seafloor, including the locations
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of crests, flats, and valleys, the direction of benthic flow, and the roughness of the local
surface [67]. The influence of seascape surface morphology on the distribution of tropical
reef fishes has been demonstrated in coral reef ecosystems in the U.S. Caribbean [68,69],
Hawaii [29,70,71], and elsewhere [72]; however, this approach has not been applied at a
seascape scale to fishes of the Florida Keys.

2.3.3. Water Conditions

Seasonal water conditions, in addition to habitat availability and seafloor morphology,
may play a role in shaping the distributions of L. griseus and H. sciurus. We investigated
this possibility using raster data layers of mean bottom temperature, salinity, and dis-
solved oxygen. Using the gstat R package (v2.0–6) [73], we interpolated water quality
data from sites that were sampled regularly over the 2014–2018 period by the Southeast
Environmental Research Center’s Water Quality Monitoring Network and the Miami-Dade
County Surface and Groundwater Quality Viewer. Our research focused on two critical
seasons—winter (January–March) and summer (July–September)—to capture not only
annual extremes, but also important periods in the life histories of L. griseus and H. sciurus,
including habitat expansion and spawning activity [51,74,75].

2.4. Model Development
2.4.1. Filtering and Partitioning of Occurrence Records

As functional connectivity for L. griseus and H. sciurus across the Florida Keys seascape
is maintained primarily by the cross-shelf (5–15 km) ontogenetic migrations of their sub-
adult life stage, we focused our habitat suitability modeling efforts specifically on this
subpopulation. Therefore, we restricted L. griseus and H. sciurus records using the size
cut-offs defined in a previous Florida study [51], where sub-adults are those between the
size at year 1 and the size at maturation (Table 2). Prior to habitat suitability modeling,
species occurrence records were partitioned into calibration (70%) and evaluation (30%)
subsets following a random split approach (Table 2).

Table 2. Sub-adult gray snapper (Lutjanus griseus) and bluestriped grunt (Haemulon sciurus) occur-
rence records in the southern Florida study area. Prior to habitat suitability modeling, data were
randomly partitioned into calibration (70%) and evaluation (30%) subsets.

Size (cm TL) Presence Sites Absence Sites Total

Calibration Data
Lutjanus griseus 9.51–24.71 378 1129 1507

Haemulon sciurus 11.90–25.33 447 1060 1507

Evaluation Data
Lutjanus griseus 9.51–24.71 167 479 646

Haemulon sciurus 11.90–25.33 216 430 646

2.4.2. Selection of Spatial Predictors

Pearson correlation coefficients (r) and variance inflation factors (VIF) were used to
assess collinearity among the environmental raster data layers using thresholds of |0.7|
and 5 for r and VIF scores, respectively [76]. Four spatial predictors were removed due
to multicollinearity issues—standard deviation of depth, plan curvature, and dissolved
oxygen across both seasons. Of the 12 predictors retained for modeling, the highest
correlation was between summer and winter salinities (r = 0.61) and the largest VIF score,
belonging to depth, was 2.63 (Supplementary Table S1 and Supplementary Figure S2).

2.4.3. Penalized Logistic Regressions

Penalized logistic regressions predicting habitat suitability for sub-adult L. griseus
and H. sciurus were constructed in R using the glmnet (v4.1.1) [77] and caret (v6.0.86) [78]
packages, in R version 4.0.2. [64]. For each species, two logistic regressions were fit via
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penalized maximum likelihood. The first set of models applied the lasso penalty (i.e.,
L1-regularization, alpha = 1), a method that minimizes the absolute magnitude of the
regression coefficients [79]. The lasso penalty reduces variance by shrinking or assigning a
value of zero to some coefficients, thereby finding the optimal balance between model fit
and complexity. The second set of models applied the ridge penalty (i.e., L2-regularization,
alpha = 0), a method that minimizes the sum of the squared coefficients [80]. Unlike lasso,
the coefficients in ridge regression can only asymptotically approach a value of zero. We
applied these penalty terms independently to determine whether predictive performance
varies based on regularization strategy.

The appropriate shrinkage parameters (lambda) for lasso and ridge were determined
based on 10-fold cross validation using the cv.glmnet function of the glmnet package [77].
Penalized logistic regressions were then fit for each species separately using caret, again
using 10-fold cross validation for model calibration. Thus, each model was fit using the 70%
of presence–absence records set aside for model calibration and the 12 spatially explicit
environmental predictors. Finally, the fitted training models were used to extrapolate
predictions across the study area via the predict function of the R package raster [63].

2.4.4. MaxEnt Models

Maximum entropy models predicting relative habitat suitability for sub-adult L. griseus
and H. sciurus were constructed using MaxEnt version 3.4.1. [81]. MaxEnt automatically
applies L1-regularization to find the most parsimonious model [35,82]. The default reg-
ularization multiplier is 1.0, however, we used species-specific tuning to identify the
regularization value and feature classes (i.e., functions of continuous environmental covari-
ates) that enhanced predictive ability while minimizing overfitting [83,84]. After comparing
five potential regularization multipliers (0.25, 0.5, 1.0, 2.0, and 5.0) using the ENMEval R
package (v0.3.1) [85], it was determined that a value of 5.0, in combination with linear,
quadratic, and hinge features, was optimal for constructing presence-background HSMs for
sub-adult L. griseus and H. sciurus. Additionally, to prevent environmental bias stemming
from spatially biased occurrence data [86,87], we created a Gaussian kernel density surface
to capture the distribution of RVC and MVS sampling effort. This bias grid was fed into
MaxEnt via the “bias file” option, enabling the sampling distribution to be factored out
during construction of the training algorithm.

MaxEnt models were constructed using the 12 spatially explicit environmental pre-
dictors and the 70% of presence-only records designated for model calibration. Initial
tuning and subsequent modeling were conducted using 10-fold cross validation and a set
of 10,000 background points selected according to the bias file described above. The com-
plementary log–log (cloglog) transformation was used, producing surfaces that reflected
the predicted relative habitat suitability (or relative likelihood of occurrence) on a scale of 0
to 1.

2.5. Model Assessment
2.5.1. Discriminatory Ability

Predictive performance was compared between penalized logistic regression and Max-
Ent models using the area under the receiver-operator curve (AUC). AUC is a threshold-
independent, rank-based statistic that indicates a model’s ability to discriminate between a
random absence (or background) point and a random presence point [35]. By assessing
model performance over a variety of thresholds, the AUC test statistic provides an indi-
cation of discriminatory ability on a continuous scale and enables comparisons between
modeling algorithms. AUC values range from 0 to 1, with the latter representing perfect
discrimination. AUCs ≤ 0.5 suggest random or worse than random performance [88].

2.5.2. Binary Predictive Performance

We assessed the binary classification accuracy of each model using the 30% of presence–
absence records set aside during the initial train–test split. The predicted suitability surfaces
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for each species were first discretized to a binary scale using a standard threshold of 0.5
for the predicted probability (penalized regression) or relative likelihood (MaxEnt) of
presence. A confusion matrix was then calculated for each species–model combination, and
the accuracy, sensitivity (i.e., percentage of correctly predicted presences), and specificity
(i.e., percentage of correctly predicted absences) were examined. Though this standard
threshold enables a general comparison of map accuracy between modeling algorithms,
it may not represent the suitability cut-off at which the models optimally distinguish
between suitable and unsuitable locations, which is an essential goal when defining nodes
for subsequent connectivity modeling. Thus, we also identified the suitability thresholds
at which each model achieved a maximum sum of sensitivity plus specificity (max SSS).
Max SSS provides an indication of how conservative of a suitability cut-off must be used to
maximize discrimination between the presence and absence (or suitable and unsuitable)
locations [89].

2.5.3. Variable Importance

Variable importance scores were also calculated for each species across the three
modeling techniques. For penalized logistic regressions built using glmnet and caret,
variable importance was assessed using varImp, a function of the caret package that scales
variables from 0 to 100 according to the absolute value of their standardized coefficients.
For MaxEnt models, jackknife resampling was used to assess the influence of each predictor,
this procedure sums the change in regularized gain (i.e., a goodness of fit measure based
on a variable’s ability to distinguish species presence sites) across the ten cross validation
folds. Regardless of model type, larger values indicate a higher level of importance.

3. Results
3.1. Discriminatory Ability

We used the AUC test statistic to determine whether penalized logistic regression
and MaxEnt modeling techniques differ in their ability to discriminate between suitable
and unsuitable locations across a variety of thresholds. According to the AUC statistic,
regularization strategy had little effect on the discriminatory ability of regression HSMs,
as lasso- and ridge-penalized models displayed similar performance within species. For
sub-adult L. griseus, both penalized regressions achieved an AUC value of 0.74, indicating
a good model fit. Discriminatory ability improved slightly for penalized regressions of
sub-adult H. sciurus suitability, with lasso and ridge regressions producing AUCs of 0.76
and 0.75, respectively. However, regardless of the regularization strategy, the penalized
logistic models were outperformed by MaxEnt, which yielded AUC values of 0.88 for
L. griseus and 0.86 for H. sciurus (Table 3).

Table 3. Performance assessment for the various species–model combinations. Discriminatory ability on a continuous scale
was assessed using the area under the receiver–operator curve (AUC). Binary predictive performance was assessed using
confusion matrices following discretization at two suitability thresholds—a standard threshold of 0.5 and the threshold at
which each model achieved a maximum sum of sensitivity and specificity (max SSS). Accuracy, sensitivity, and specificity
values are displayed as percentages and thresholds represent predicted suitability levels on a scale of 0 to 1.

Discrimination Binary Performance (Standard) Binary Performance (Max SSS)

AUC Cut-Off Accuracy Sensitivity Specificity Cut-Off Accuracy Sensitivity Specificity

Lutjanus griseus
Lasso Regression 0.74 0.5 77.9 32.7 93.3 0.28 69.4 73.9 67.8
Ridge Regression 0.74 0.5 77.7 32.7 93.1 0.24 65.5 80.0 60.5

MaxEnt 0.88 0.5 50.5 84.9 38.7 0.65 59.0 80.0 51.8

Haemulon sciurus
Lasso Regression 0.76 0.5 73.2 37.5 91.2 0.32 72.8 71.3 73.5
Ridge Regression 0.75 0.5 74.2 35.7 93.5 0.32 72.8 70.8 73.7

MaxEnt 0.86 0.5 41.3 79.1 24.3 0.65 51.7 72.6 42.3
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3.2. Binary Predictive Performance

To produce the discrete patches of suitable habitat (i.e., nodes) required for modeling
potential connectivity, the continuous habitat suitability surfaces must be discretized to
a binary scale. Therefore, we used confusion matrices to assess each model’s binary
predictive performance following discretization at two thresholds. When first discretized
using a standard suitability cut-off of 0.5 and compared to the withheld validation data,
lasso and ridge HSMs for sub-adult L. griseus achieved classification accuracies of 77.9%
and 77.7%, respectively. Map accuracy was slightly lower for sub-adult H. sciurus, with
values of 73.2% and 74.2% for lasso and ridge regressions, respectively. Relative to the
penalized regressions, overall map accuracy for MaxEnt was low when assessed at this
suitability cut-off, ranging from roughly 40–50% (Table 3). The models also varied in terms
of sensitivity and specificity, with penalized regressions successfully identifying known
absence (i.e., unsuitable) locations more frequently than known presence (i.e., suitable)
locations and MaxEnt following the opposite trend.

The max SSS threshold selection strategy, which optimizes discrimination between
known presence and absence localities, identified substantially different suitability cut-offs
for each of the modeling algorithms (Table 3). In general, the penalized logistic models
would have to lower their suitability thresholds to roughly 0.30 to maximize discrimination,
whereas the MaxEnt models optimized discrimination between known presence and
absence sites at a threshold of 0.65, a far less conservative cut-off. Although the overall
map accuracy of the MaxEnt models still trailed those of the penalized regressions, the
percentage of correctly predicted presence locations (i.e., sensitivity) was higher for MaxEnt
than nearly all regressions. Additionally, discretization using max SSS thresholds increased
the balance between sensitivity and specificity across all species–model combinations.

3.3. Variable Importance

To better understand the species–seascape interactions driving patterns of habitat
suitability and, consequently, potential connectivity, we examined the continuous habitat
suitability surfaces and variable importance plots produced by each model. Within species,
there was a high level of agreement between the habitat suitability predictions of the three
modeling techniques; however, lasso- and ridge-penalized regressions predicted smooth,
gradual patterns of decreasing suitability as distance from shore increased, whereas MaxEnt
captured patchy distributions of suitable habitat with noticeable fine-scale differences
(Supplementary Figure S3). Furthermore, the models revealed species-specific responses to
the various spatial predictors, resulting in considerable inter-species variation in predicted
suitability across the seascape (Figure 3). For brevity, we focus here only on the variable
contributions of the top-performing continuous HSM for each species (i.e., the MaxEnt
models); variable importance information for the penalized regressions is provided in
Supplementary Figure S4 and response curves for the top five MaxEnt predictors are
provided in Supplementary Figure S5.

For sub-adult L. griseus, MaxEnt’s jackknife procedure identified benthic habitat type
as the single most influential predictor of habitat suitability, followed by Euclidean distance
to the nearest mangrove, slope, depth, and broad-scale BPI (Figure 4, Supplementary
Figure S5). Predicted habitat suitability for L. griseus was high in shallow waters (<5 m
depth) within roughly 200 m from mangroves, with the highest values predicted at the
interface of shoreline mangroves and seagrass meadows (i.e., the seagrass fringe). Patches
of high suitability were also identified along the shoreward side of the barrier reef tract,
primarily in areas of increasing slope (>5 degrees) and over aggregate reefs and isolated
patch reefs with shallow peaks surrounded by dense seagrass (Figure 3). In contrast, uncon-
solidated sediment and discontinuous seagrass were predicted to have the lowest relative
likelihood of sub-adult L. griseus presence. Broad-scale BPI positively influenced predicted
suitability levels, with broad peaks and ridges favored over flats and valleys. Though their
roles were negligible relative to the top five predictors, mean winter salinity and mean
summer temperature both showed negative relationships with predicted suitability when
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used in isolation. The remaining predictors—curvature, rugosity, fine-scale BPI, mean
summer salinity, and mean winter temperature—were assigned a variable importance
score of zero.
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The five most influential predictors regulating the distribution of suitable habitat for
sub-adult H. sciurus were benthic habitat type, slope, Euclidean distance to the nearest
mangrove, depth, and broad-scale BPI (Figure 4, Supplementary Figure S5). Similar to the
L. griseus model, predicted habitat suitability for sub-adult H. sciurus was high along the sea-
grass fringe and over individual patch reefs and aggregate coral reefs, especially those with
broad peaks (Figure 3). However, relative to the L. griseus model, MaxEnt predicted higher
suitability levels for H. sciurus over ridges and in patches of pavement, scattered rock, and
reef rubble, and lower suitability levels in seagrass with the exception of those in shallow
areas immediately adjacent to mangroves. Although depths shallower than 5 m were
predicted to be the most suitable, the relative likelihood of H. sciurus presence remained
above 50% at depths down to roughly 25 m. Predicted habitat suitability for H. sciurus
also declined rapidly as Euclidean distance from the nearest mangrove approached 200 m,
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however, suitability levels for this species began gradually increasing again at a distance of
around 1 km rather than continuing to decline. Furthermore, the mangrove shorelines on
the windward and leeward sides of the Florida Keys had consistently higher estimates of
habitat suitability than those along the mainland in Biscayne Bay (Figure 3). Although this
trend was also visible in the L. griseus model, it was much more pronounced for H. sciurus.
Water conditions contributed only weakly to overall model fit, however, there were positive
relationships between the relative likelihood of sub-adult H. sciurus presence and mean
winter salinity and temperature. In contrast, curvature, rugosity, fine-scale BPI, and mean
summer salinity and temperature had contribution scores of zero.
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4. Discussion
4.1. Model Performance

We compared penalized logistic regression and MaxEnt models of habitat suitability
for two economically and ecologically critical reef fish species in the Florida Keys, USA,
with the goal of identifying which modeling algorithm produces the most realistic and
detailed products for use in subsequent connectivity modeling. MaxEnt’s AUC values were
consistently higher than those of either the lasso- or ridge-penalized logistic regressions,
suggesting that MaxEnt was better able to distinguish between suitable and unsuitable
locations for sub-adult L. griseus and H. sciurus when evaluated across a range of suitability
thresholds. Although the overall accuracy of the MaxEnt models fell below those of the
penalized regressions when discretized using standard and max SSS suitability thresholds,
MaxEnt produced similar or improved sensitivity estimates relative to the penalized
regressions. MaxEnt’s consistently high sensitivity values suggest that these models were
able to reliably identify known presence locations, which is essential for delineating the
suitable habitat nodes required to produce spatial graphs for connectivity assessment. The
high-resolution suitability maps produced by MaxEnt also appear to be better suited for
conversion to resistance surfaces, as these models predicted patchy distributions of suitable
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habitat across the seascape that more closely aligned with the known ecology of the study
species, as described below in Section 4.2.

Consistent with our findings, MaxEnt’s predictive performance has paralleled or
exceeded that of other machine learning and regression techniques in several comparative
studies. For instance, MaxEnt and penalized logistic regression techniques yielded similar
AUC values when used to model the distributions of several tree species in Spain, with both
models outperforming standard logistic regressions [90]. Similarly, MaxEnt achieved the
highest predictive performance out of five modeling methods when used to model habitat
suitability for the invasive Argentine ant across the Iberian Peninsula, producing predictive
distributional maps that highlighted areas susceptible to invasion [39]. MaxEnt has even
performed well in spatially and topographically complex seascapes, as demonstrated by
a comparative study of ten presence-only modeling algorithms applied to demersal fish
species of Australia [91]. Our research, therefore, joins these and other examples from the
literature that illustrate MaxEnt’s usefulness as a tool for mapping species distributions
across a range of taxa and environmental settings, especially in scenarios where distribu-
tional patterns are thought to be driven by complex species–environment relationships.
These results can likely be attributed to MaxEnt’s ability to harness categorical data and
linear, quadratic, hinge, and threshold functions of continuous environmental variables,
while simultaneously maintaining a balance between model fit and complexity using regu-
larization [82]. Despite its growing promise and popularity among ecologists, attempts to
leverage MaxEnt products for connectivity modeling remain scarce.

4.2. Variable Importance

Of the 12 environmental predictors assessed in our study, habitat type was identified
as the main driver of suitability for sub-adult L. griseus and H. sciurus, with dense seagrass
beds, shoreline mangroves, patch reefs, and shoreward aggregate reefs being especially
important. According to our models, these habitats play a variable role in supporting
sub-adult L. griseus and H. sciurus, depending on their geographic location. This trend was
especially apparent for shoreline mangroves, with suitability predicted to be highest in
mangroves along the leeward and windward sides of the Keys and surrounding Biscayne
Bay’s southern islands. Previous research in the region revealed a similar pattern of habitat
use whereby sub-adult L. griseus and H. sciurus selected for easterly mangroves along
the Keys, whereas larger-bodied adults were more common in Biscayne Bay’s expansive
mainland forests [51,52]. The high suitability levels predicted along the seagrass fringe
and in areas within several hundred meters of a nearby mangrove shoreline likely reflect
the regular diel migrations of grunts and snappers between daytime resting sites in man-
groves and nocturnal foraging grounds in seagrass meadows, which cover distances of
up to 1 km [51,92,93]. Furthermore, patch reefs and sections of the reef tract adjacent
to lush seagrass beds and mangrove shorelines, particularly those along the Keys, were
predicted to have a higher relative likelihood of presence for both species compared to
those located alongside unvegetated substrates. Together, these results suggest that patch
reefs serve as critical stepping-stones connecting mangrove and seagrass nurseries to adult
habitat on offshore reefs. However, sub-adult dispersal between back reef habitats may be
limited to only immediately accessible patches of topographically complex habitat, with
implications for the replenishment of adult populations across the barrier reef tract [94,95].
These findings also suggest that nutrient supplementation and top-down control of coral
predators by migratory reef fishes may be greatest in patch reef, back reef, and reef crest
communities neighboring seagrasses and mangroves, with consequences for coral growth
and the placement of coral restoration efforts [44,48].

Beyond the type and spatial arrangement of benthic habitats, suitability varied as a
function of depth and seafloor surface morphology, as quantified by slope and bathymetric
position index (BPI). Generally, the likelihood of L. griseus and H. sciurus presence decreased
with increasing depth, with this pattern being especially abrupt for L. griseus. The predicted
suitability maps also displayed within-patch variation, with both species responding pos-
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itively to even small increases in slope (<5 degrees). Additionally, our models revealed
that the influence of BPI on habitat suitability is both scale- and species-dependent, with
broad-scale BPI having a stronger influence over predicted suitability levels for L. griseus
than H. sciurus. Nonetheless, fine-scale BPI and two other fine-scale metrics of seafloor
surface complexity—curvature and rugosity—were dropped entirely from both MaxEnt
models. These results indicate that the distributions of sub-adult L. griseus and H. sciurus
across the seascape are primarily driven by broad-scale habitat features and geographic
location, a finding that is consistent with previous research on predatory reef fishes and
which may be related to the high vagility and large home range sizes of these species
(1–5 km) [96–99]. However, previous work in the Caribbean revealed that seafloor mor-
phology and geographic location interact to drive the distributional patterns of herbivores,
in addition to invertivores and piscivores, suggesting that this trend is likely common
across coastal reef fish communities rather than being restricted to mobile predators [68].

Although neither salinity nor temperature acted as a major determinant of suitabil-
ity, these variables acted as filters to mediate the relative suitability of otherwise similar
habitats. Previous research has demonstrated significant inter-species variation in salinity
tolerances, with L. griseus being abundant in low-to-intermediate salinities and H. sciurus
being abundant in stable, high salinities [53,100]. These relationships were reflected in
MaxEnt’s predictions and were especially noticeable in Biscayne Bay, where salinity fluctu-
ates significantly as a result of both freshwater discharge and tidal exchange. As such, the
western and southwestern mainland coasts, which are characterized by extreme salinity
fluctuations and lower overall means [59], were predicted to have higher suitability levels
for L. griseus than H. sciurus. In contrast, habitats along the leeward and windward sides of
the Upper Keys that have narrow salinity ranges dominated by seawater were predicted to
have higher suitability levels for H. sciurus. Additionally, the present finding that relative
suitability for sub-adult L. griseus decreases rapidly as summer temperatures approach
31 ◦C is in agreement with previous laboratory experiments that estimated 33 ◦C as being
close to the maximum for juvenile gray snapper feeding [101]. Considering that settlement
and grow-out occur from summer through early fall [51], this temperature constraint may
be an artifact of juvenile habitat selection. On the other hand, the positive relationship
between mean winter temperature and predicted suitability for sub-adult H. sciurus may
reflect the winter spawning and settlement behavior of this species, as warmer winter
temperatures decrease the overwinter mortality of juveniles and increase the chances of
successful sub-adult dispersal to the offshore reefs [102,103].

4.3. Implications for Seascape Connectivity Modeling and Conservation

Based on our case study, habitat composition and arrangement, depth, and broad-scale
bathymetric features are among the most important factors to consider when planning con-
servation efforts for reef fish species with complex, multi-habitat life histories. In particular,
our models highlight the value of targeting mosaics of interconnected habitats, rather than
single biotopes, when planning marine protected areas, reserve networks, and resource
management [13,14,104]. The importance of considering surrounding seascape context
and connectivity is not limited to the protection and conservation of existing ecosystems,
but also to the restoration of degraded and fragmented habitats. By strategically placing
restoration activities within the seascape, restoration practitioners can enhance intra- and
inter-habitat connectivity, thereby increasing dispersal and harnessing key ecological pro-
cesses including herbivory and primary production, predation and secondary production,
and nutrient turnover [44]. Although the application of seascape connectivity as a spatially
explicit metric in restoration planning has been limited thus far, projects that have incor-
porated surrounding seascape context in their site selection process have seen positive
outcomes [105]. Integrative approaches that combine the strengths of habitat suitability
modeling and connectivity modeling are becoming increasingly common and accessible
thanks to improvements in data availability and the development of decision support tools
like Marxan Connect and Zonation [15,24].
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In conclusion, our research demonstrates that MaxEnt, a presence-background ma-
chine learning approach, outperforms traditional presence–absence techniques in terms
of predictive performance and ability to produce habitat suitability maps that reflect the
known ecology of sub-adult L. griseus and H. sciurus in the Florida Keys. These results are
consistent with previous terrestrial studies that have found similar or improved predictive
performance of MaxEnt relative to standard or penalized logistic regressions [37,90,106].
Furthermore, our research, coupled with previous work on warm-water kelps [107], de-
mersal fishes [91], and shallow and deep-sea corals [108,109], demonstrate that MaxEnt’s
promise as a fast, open-source tool for mapping species distributions extends beyond the
land–sea interface. Although analogs exist from the terrestrial literature (e.g., [26,30]), the
application of habitat suitability modeling as a precursor to marine connectivity assess-
ments and conservation planning remains scarce. We anticipate that MaxEnt-derived nodes
and linkages can be combined with data on species biological traits to produce detailed and
ecologically realistic spatial graphs for connectivity assessment. As a next step, we plan to
construct and operationalize these graphs for habitat restoration planning through scenario
testing, including the iterative addition or removal of nodes and linkages (i.e., restoration
and fragmentation scenarios, respectively). As habitat restoration efforts ramp up across
the spatially and topographically complex seascape of the Florida Keys, we encourage
restoration practitioners and coastal managers to adopt a multi-step site selection strategy
that harnesses the strengths of both habitat suitability and connectivity modeling.
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