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Abstract: A study was conducted to evaluate planktonic microcrustacean species composition,
abundance, and diversity in lakes with different trophic status and to determine the relationship
between microcrustacean community structure and lake environmental conditions. This study
hypothesized that there are correlations between eutrophication levels and microcrustacean
community structures in a lake. Three shallow lakes of different trophic status (Sembrong, Putrajaya
and Subang lakes) were selected for this study. Two-Way Analysis of similarities (ANOSIM) revealed
differences in microcrustacean diversity and density amongst lakes, where the hypereutrophic
condition in Sembrong lake resulted in the lowest diversity but the highest density of microcrustaceans.
Similarity percentage (SIMPER) analysis identified the discriminator species among lakes where the
domination of small-sized microcrustaceans was observed in lakes with high levels of eutrophication;
the hypereutrophic Sembrong lake (Ceriodaphnia cornuta, 74.0%); the meso-eutrophic Putrajaya lake
(Bosmina longirostris, 46.9%; C. cornuta, 19.4%). Chlorophyll a, total phosphorus and water transparency
showed significant roles in the distribution of microcrustaceans. The canonical correspondence
analysis (CCA) scores indicated that small-sized C. cornuta and B. longirostris were related to the
eutrophic conditions of lakes. This study elucidated that the lake trophic status could be one of the
main factors contributing to the community restructuring of microcrustaceans in tropical lakes.

Keywords: cladocerans; copepods; eutrophication; indicator species; water quality; zooplankton

1. Introduction

Freshwater microcrustacean communities, consisting mainly of cladocerans and copepods, play
significant roles in nutrient recycling and energy transfer to higher trophic levels in aquatic food
webs [1,2]. They also form a major food source for many invertebrates and planktivorous fish [3].
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Microcrustacean species in lakes adapt to various environmental changes to maintain their population
growth, and form a unique community characterized by their preferences for biotic and abiotic factors,
which enable them to be a potential bioindicator species [4,5]. Environmental parameters are important
elements that influence the occurrence and distribution of microcrustaceans in aquatic ecosystem as
optimum conditions are required by microcrustaceans for their survival [6]. Water temperature, pH,
dissolved oxygen (DO), turbidity, water transparency and nutrient concentrations are responsible
for microcrustacean biological processes such as metabolic rate, developmental time and healthy
growth [7–12]. In addition, the adequate light availability enhances phytoplankton growth
and production of phytoplankton, which, in turn, serves as microcrustacean food sources [13].
Low water transparency resulted from limited light penetration caused by high turbidity decreases the
photosynthesis rate by phytoplankton [14]. Consequently, less DO is released into the water, which can
directly influence microcrustacean mortality. Therefore, unfavorable environmental conditions would
reduce microcrustacean abundance, decreased biodiversity as well as disappearance of some species.

Microcrustacean species composition, abundance and diversity differ at different levels of
eutrophication [15,16]. The continuous accumulation of nutrients, mainly phosphorus and nitrogen,
accelerates lake eutrophication by promoting algal blooms that have deteriorating effects on water
quality and biodiversity [17,18]. To some extent, eutrophication produces harmful algal blooms
(HABs) that lead to the production of noxious toxins, which affect developmental, immunological,
neurological and reproductive capacities of microcrustaceans [19]. Adibah et al. [20] showed that
the reproductive capacity and growth rates of a cladoceran, Moina micrura, significantly decreased
when fed with toxic cyanobacteria Microcystis aeruginosa and M. viridis compared to those fed with a
green alga, Chlorella vulgaris. A decline in microcrustacean species richness and diversity is generally
observed in eutrophic environments due to the deterioration of water quality and poor-quality food
sources [21]. Thus, it is likely that microcrustacean species composition and abundance can be altered
by eutrophication, resulting in changes to the microcrustacean community structure.

Microcrustacean occurrence in lakes with different trophic status is also influenced by their ability
to tolerate changes in environmental parameters and food availability. For example, small-sized
cladocerans such as Ceriodaphnia spp., Bosmina spp. and Moina spp. are normally dominant in eutrophic
lakes as they can feed on bacteria and detrital materials, which are highly abundant in eutrophic
waters mainly due to decomposed unconsumed phytoplankton biomass [22,23]. The feeding mode of
microcrustaceans may also affect their distribution under different trophic conditions. Cladocerans
are known as efficient filter feeders, as they filter various particles in water such as phytoplankton,
bacterioplankton and heterotrophic flagellates as their food sources [24]. Most cladocerans are known
as herbivorous microcrustaceans. Therefore, the presence of high quality phytoplankton is extremely
important in microcrustacean growth. Perbiche-Neves et al. [25] reported that planktonic cladocerans
respond positively to increases in certain classes of phytoplankton, particularly high quality species.
However, copepods exhibit selective feeding behaviour due to chemical and mechanical sensors in
their antennae, which permit them to discriminate food types based on quality by detecting the size,
shape, and chemical composition of various food sources [26]. Therefore, cyanobacterial dominance in
eutrophic waters would affect copepod survival due to poor food quality in eutrophic conditions.

This study focuses on the assessment of planktonic microcrustacean populations in shallow
tropical lakes that are vulnerable to eutrophication. The microcrustacean response to eutrophication is
complex due to the interplay of environmental processes and certain traits of other aquatic organisms.
Therefore, the objective of this study is to evaluate the correlation between physical and chemical
factors associated with eutrophication in shaping the planktonic microcrustacean community structure
in three lakes of different trophic levels based on species composition and density. This information
is essential in understanding the succession of the planktonic microcrustacean community that is
linked to environmental changes due to eutrophication. Furthermore, this study would reveal the
dominant species that could be the indicator for eutrophication. This study hypothesized that different
levels of eutrophication would affect the planktonic microcrustacean community structure, where high
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density but low diversity of microcrustacean tends to occur in eutrophic lakes. In addition, eutrophic
lakes tend to be dominated by small-sized microcrustacean species, which could probably successfully
proliferate with the increased bacterial biomass associated with decomposed cyanobacteria.

2. Materials and Methods

2.1. Study Sites

This study was carried out at three man-made lakes, Sembrong, Putrajaya and Subang lakes
in Malaysia, and three stations were established in each lake (Figure 1). Detailed description and
morphometric characteristics of the study areas can be found in Umi et al. [27] and Table S1.
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(b) Putrajaya and (c) Subang lakes.

2.2. Rainfall Data, Field Sampling and Laboratory Analyses

Rainfall data for a one-year period (January 2015 to February 2016) were obtained from the nearby
National Climate Center, Malaysian Meteorological Department at Kluang station, Kuala Lumpur
International Airport (KLIA) Sepang station and Subang station for Sembrong, Putrajaya and Subang
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lakes, respectively. Field sampling and data collection were carried out every other month from
April 2015 to February 2016 to cover an annual cycle. In the tropics, seasonal changes are minimal,
and thus bimonthly samplings should be sufficient and representative to detect changes associated with
wet and dry seasons. At each sampling station, in-situ physical and chemical parameters, and water
samples for nutrient (total nitrogen, TN; total phosphorus, TP; total ammonium nitrogen, TAN; soluble
reactive phosphorus, SRP; nitrate-N and nitrite-N, NO3-N + NO2-N and chlorophyll a) analyses were
collected and measured according to standard methods [28–31]. Carlson’s trophic status index was
calculated according to Carlson [32]. Duplicate microcrustacean samples were collected from the same
stations as physical and chemical parameters, preserved and processed as described by Umi et al. [27].
Overall, 36 samples (n) were collected (6 months × 3 stations × 2 replicates = 36 samples) from each lake.
Zooplankton identification and enumeration were accomplished according to descriptions, taxonomic
keys and illustrations from previous studies [33–40].

2.3. Data Analyses

Spatial and temporal environmental data were assessed for normality by the Shapiro–Wilk test
and log (x + 1) transformed prior to one-way analysis of variance (ANOVA) using SPSS v. 25 (IBM SPSS
Statistical, Chicago, IL, USA) and illustration using Surfer 10 (Golden Software LLC, Street Golden,
CO, USA) as described by Umi et al. [27]. All environmental and microcrustacean data (fourth root
transformed to balance the common and rare species) were ordinated by the correlation-based principle
component analysis (PCA) using PRIMER software (Plymouth Routine in Multivariate Ecological
Research v. 7 PRIMER E-Ltd, Plymouth, UK) to identify the key factors contributing to variations and
patterns in datasets [27,41]. In addition, Shannon–Wiener diversity index (H’) calculation, dendrogram,
analysis of similarities (ANOSIM), the similarity percentage analysis (SIMPER), biotic-environmental
analysis (BIO-ENV) and canonical correspondence analysis (CCA) were performed to determine various
aspects of the microcrustacean community structure [27,41,42]. The occurrence of microcrustacean
species and the discriminant species in each lake was further illustrated by shade plot and bubble plot
to show clear distributions of each species in lakes with different trophic status.

3. Results

3.1. Rainfall, Physical and Chemical Parameters and Lake Trophic Status

Dry and wet seasons in Peninsular Malaysia were delineated based on the rainfall amount
where April 2015, June 2015, and February 2016 were categorized as dry months (Range: Sembrong
lake = 102 mm to 148 mm, Putrajaya lake = 65 mm to 156 mm, Subang lake = 102 mm to 150 mm), while,
August 2015, October 2015 and December 2015 were categorized as wet months (Range: Sembrong lake
= 270 mm to 350 mm, Putrajaya lake = 260 mm to 320 mm, Subang lake = 380 mm to 430 mm) (Figure S1).
For all lakes, rainfall amount reached the maximum level (p < 0.05) in December 2015 and decreased
dramatically and reached the minimum level in February 2016, which was attributed to the El-Nino
phenomenon in Malaysia, which started from early in the year [43]. Water temperature and dissolved
oxygen profiles showed that these shallow lakes were relatively well mixed throughout the year,
except Subang lake, which showed slight thermal stratification with relatively low dissolved oxygen
levels in the hypolimnion, especially during the dry season (Table 1 and Figure 2). The significantly
deeper Subang lake, compared to the other two lakes, was nestled in a hilly and forested area, and
was not exposed to wind and turbulence that could help to mix water columns like in Sembrong and
Putrajaya lakes.
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Table 1. Means and ranges of physical and chemical parameters in Sembrong, Putrajaya and Subang lakes. Mean values with different letters indicate significant
difference at p < 0.05. Mean value = mean ± SE (n = 72).

Parameters
Sembrong Lake Putrajaya Lake Subang Lake

Mean ± SE Range Mean ± SE Range Mean ± SE Range

Water temperature (◦C) 29.70 ± 0.31 b 28.42–30.48 30.53 ± 0.22 a 30.05–31.44 28.78 ± 0.22 b 28.10–29.32
Dissolved oxygen (mg L−1) 5.27 ± 0.44 b 3.19–6.27 7.50 ± 0.37 a 6.87–9.22 4.08 ± 0.17 b 3.16–4.63

pH 7.52 ± 0.22 a 6.81–8.33 6.81 ± 0.28 a 5.53–7.31 5.10 ± 0.15 b 4.57–5.55
Turbidity (NTU) 28.42 ± 2.90 a 18.36–36.63 13.16 ± 0.75 b 10.58–14.86 4.61 ± 0.45 c 2.89–6.30

Total dissolved solid (mg L−1) 116.10 ± 8.65 a 95.42–151.27 59.53 ± 1.97 b 54.02–67.44 25.40 ± 3.41 c 19.65–41.98
Conductivity (µS cm−1) 179.03 ± 13.35 a 147.08–232.73 98.97 ± 3.28 b 89.23–109.25 33.63 ± 1.73 c 27.62–40.01

Water transparency (cm) 30.8 ± 0.9 b 24.3–36.8 106.4 ± 1.2 a 95.8–110.0 116.6 ± 5.05 a 95.2–152.7
Total phosphorus (µg L−1) 140.23 ± 8.51 a 90.18–180.89 30.19 ± 15.9 b 17.90–39.50 24.16 ± 9.41 b 14.90–40.65

Soluble reactive phosphorus (µg L−1) 40.06 ± 10.7 a 10.90–100.45 20.83 ± 0.90 b 10.88–20.66 40.22 ± 5.18 a 10.65–70.15
Total nitrogen (µg L−1) 226.08 ± 76.4 a 192.15–274.60 117.80 ± 28.8 b 40.66–218.90 126.56 ± 45.20 b 94.50–171.88

Nitrate-N + Nitrite-N (µg L−1) 43.33 ± 10.91 a 20.22–66.54 32.12 ± 19.13 b 28.08–44.15 26.28 ± 18.56 b 19.05–40.05
Total ammonium nitrogen (µg L−1) 80.19 ± 31.42 b 13.42–144.20 35.64 ± 10.55 c 25.10–56.22 160.28 ± 33.40 a 97.22–260.82

Chlorophyll a (µg L−1) 97.19 ± 4.70 a 64.94–142.61 5.53 ± 0.65 b 1.10–9.96 4.64 ± 1.12 b 1.15–7.57
Rainfall (mm) 178.87 ± 20.12 b 107.80–328.20 139.90 ± 15.87 b 48.60–261.80 301.27 ± 32.09 a 68.80–427.80

Depth (m) 3.90 ± 0.14 b 2.90–5.10 3.30 ± 0.20 b 2.00–5.00 7.04 ± 0.29 a 5.50–9.10

Different superscript letters (a–c) indicate significant difference (p < 0.05). Bold fonts indicate variables that were used to calculate the trophic status index.



Diversity 2020, 12, 322 6 of 19
Diversity 2020, 12, x FOR PEER REVIEW 6 of 19 

 

 
Figure 2. Vertical profiles of (a) water temperature, (b) dissolved oxygen, (c) pH, (d) turbidity, (e) 
total nitrogen, (f) total phosphorus and (g) chlorophyll a in different lakes. Arrows represent water 
depth (m) of lakes. Rectangular boxes indicate months with high rainfall (wet season). 

Development of stratified layers in Subang lake resulted in different profiles of physical and 
chemical parameters that could influence the lake’s primary productivity and microcrustacean 
distribution. In addition, Subang lake had significantly (p < 0.05) lower pH, turbidity, dissolved solids 
and conductivity, but significantly higher total ammonium nitrogen (TAN) compared to Sembrong 
and Putrajaya lakes (Table 1). Agricultural activities, especially palm oil plantation, modern 
agriculture and livestock husbandry, in the surrounding area of Sembrong lake resulted in 
significantly higher (p < 0.05) nutrient concentrations, both total phosphorus (140.23 ± 8.51 µg L−1) and 
total nitrogen (226.08 ± 76.4 µg L−1), compared to Putrajaya and Subang lakes (Table 1 and Figure 2). 
Similarly, chlorophyll a concentrations were significantly higher (p < 0.05) in Sembrong lake (97.19 ± 
4.70 µg L−1) compared to Putrajaya (5.53 ± 0.65 µg L−1) and Subang lakes (4.64 ± 1.12 µg L−1) (Table 1 
and Figure 2). Based on the Carlson trophic status index (CTSI), Sembrong lake could be categorized 
as a hypereutrophic lake with a CTSI value of 71.11 (Table 2). With a CTSI value of 53.34, Putrajaya 
lake was categorized as a meso-eutrophic lake, whereas Subang lake was categorized as an acidic-
mesotrophic lake with a CTSI value of 47.67. 
  

Figure 2. Vertical profiles of (a) water temperature, (b) dissolved oxygen, (c) pH, (d) turbidity, (e) total
nitrogen, (f) total phosphorus and (g) chlorophyll a in different lakes. Arrows represent water depth
(m) of lakes. Rectangular boxes indicate months with high rainfall (wet season).

Development of stratified layers in Subang lake resulted in different profiles of physical and
chemical parameters that could influence the lake’s primary productivity and microcrustacean
distribution. In addition, Subang lake had significantly (p < 0.05) lower pH, turbidity, dissolved solids
and conductivity, but significantly higher total ammonium nitrogen (TAN) compared to Sembrong and
Putrajaya lakes (Table 1). Agricultural activities, especially palm oil plantation, modern agriculture
and livestock husbandry, in the surrounding area of Sembrong lake resulted in significantly higher
(p < 0.05) nutrient concentrations, both total phosphorus (140.23 ± 8.51 µg L−1) and total nitrogen
(226.08 ± 76.4 µg L−1), compared to Putrajaya and Subang lakes (Table 1 and Figure 2). Similarly,
chlorophyll a concentrations were significantly higher (p < 0.05) in Sembrong lake (97.19 ± 4.70 µg L−1)
compared to Putrajaya (5.53 ± 0.65 µg L−1) and Subang lakes (4.64 ± 1.12 µg L−1) (Table 1 and
Figure 2). Based on the Carlson trophic status index (CTSI), Sembrong lake could be categorized as a
hypereutrophic lake with a CTSI value of 71.11 (Table 2). With a CTSI value of 53.34, Putrajaya lake was
categorized as a meso-eutrophic lake, whereas Subang lake was categorized as an acidic-mesotrophic
lake with a CTSI value of 47.67.
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Table 2. Carlson trophic status index (CTSI) (Range: <30–40 = Oligotrophic; 40–50 = Mesotrophic;
50–70 = Eutrophic; 70–100+ = Hypereutrophic) of lakes [24] based on water transparency,
total phosphorus and chlorophyll a.

Indices Sembrong Lake Putrajaya Lake Subang Lake

TSI Water transparency 77.10 59.12 47.73
TSI Total phosphorus 74.35 51.77 49.61

TSI Chlorophyll a 75.50 47.57 45.65
CTSI 71.11 53.34 47.67

Classification Hypereutrophic Meso-eutrophic Mesotrophic

A principle component analysis (PCA) showed that four principal components explained 85.10%
of the total variance (Table 3 and Figure 3). In PC1 water transparency, total dissolved solids, pH,
conductivity, total phosphorus (TP), chlorophyll a and turbidity were the main parameters contributing
to 49.4% of the total variance (Table 3). High levels of total dissolved solid (TDS), conductivity, TP and
chlorophyll a showed that Sembrong lake was eutrophic due to high nutrient loading from agriculture
sites in the catchment area. Dissolved oxygen, water temperature and total ammonium nitrogen were
the main parameters in PC2 contributing to 20.9% of the total variance. In addition, PC2 showed
the relationship of ammonium nitrogen and dissolved oxygen (DO) with the lake trophic status,
especially the Putrajaya lake (Figure 3). The inorganic nutrients, soluble reactive phosphorus (SRP)
and nitrate-N+nitrite-N contributed to the rest of the cumulative variation in PC3 and PC4 (Table 3).

Table 3. Eigenvector, eigenvalue and % variations derived from the principle component analysis
(PCA) of 13 physical and chemical parameters in the hypereutrophic Sembrong, the meso-eutrophic
Putrajaya and the acidic-mesotrophic Subang lakes that explained 85.10% of the total variance.

Variables PC1 PC2 PC3 PC4

Water temperature 0.06 0.52 −0.06 0.12
Dissolved oxygen (DO) −0.01 0.56 −0.19 −0.12

pH 0.36 0.02 0.02 −0.23
Turbidity 0.32 0.22 −0.01 −0.16

Total dissolved solid (TDS) 0.37 0.01 0.01 −0.17
Conductivity 0.35 0.01 0.32 0.01

Water transparency −0.38 0.03 0.06 −0.16
Total phosphorus (TP) 0.34 −0.13 0.07 0.16

Soluble reactive phosphorus (SRP) 0.03 −0.21 −0.84 −0.32
Total nitrogen (TN) 0.28 −0.24 0.01 −0.33

Nitrate-N + Nitrite-N (NO3-N + NO2-N) −0.22 −0.02 0.38 −0.76
Total ammonium nitrogen (TAN) −0.07 −0.50 0.05 0.19

Chlorophyll a 0.35 −0.05 −0.02 0.04
Eigenvalues 6.43 2.72 1.08 0.84
% Variation 49.40 20.90 8.30 6.50

Cum. % Variation 49.40 70.30 78.6 85.10

Bold fonts indicate major variables that contributed to principle components (PC).
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3.2. Microcrustacean Species Composition, Density and Biodiversity

All the three lakes with different trophic status showed distinct microcrustacaen densities, as shown
by the dendrogram (Figure 4), where the dissimilarity between groups was 50.0%. The dendrogram
showed that microcrustacean densities were clustered in three different groups corresponding to
the three lakes. Two-Way ANOSIM of the overall combination of microcrustacean densities in all
lakes revealed that microcrustacean densities in the hypereutrophic Sembrong, the meso-eutrophic
Putrajaya and the acidic mesotrophic Subang lake were significantly different (p < 0.05) with a high
range value of (R = 0.85) for the global test (Table 4). High range values of R for Sembrong lake
v Putrajaya lake (R = 0.88), Putrajaya lake v Subang lake (R = 0.89) and Sembrong lake v Subang
lake (R = 0.87) indicated that microcrustacean densities in lakes with different trophic status were
significantly different (p < 0.05).

Among the lakes, the highest (p < 0.05) microcrustacean density (294.6± 6.1 ind. L−1) was observed
in the hypereutrophic Sembrong lake and the lowest microcrustacean density (28.6 ± 7.8 ind. L−1) was
found in the acidic mesotrophic Subang lake (Table S2A). A seasonal pattern for microcrustacean density
was observed in all lakes where significantly higher (p < 0.05) microcrustacean density occurred during
the dry season, especially February 2016, and significantly lower (p < 0.05) microcrustacean density
was recorded in the wet season (Figure 5). Adult cladocerans were significantly higher (p < 0.05) in
both Sembrong (76.8%) and Putrajaya (72.0%) lakes compared to adult copepods. However, in Subang
lake, adult copepods were dominant in this lake with 89.2% of total adult microcrustaceans (Table S2B).
In general, copepod nauplii contributed to more than 70% of the total copepods in all lakes (Table S2C).
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Table 4. Pairwise R-statistical values and significant levels (p) for two-way analysis of similarities
(ANOSIM) test on microcrustacean densities in different lakes with Global R = 0.85.

Group (Lakes) R Significance Level (%) p (%)

Sembrong lake, Putrajaya lake 0.88 0.1
Putrajaya lake, Subang lake 0.89 0.1
Sembrong lake, Subang lake 0.87 0.1

A total of nine microcrustacean species consisting of six species of cladocerans and three species
of copepods from seven different families were recorded throughout the sampling period (Table S3).
In the hypereutrophic Sembrong lake, seven species of microcrustacean consisting of four species
of cladocerans and three species of copepods were recorded. Putrajaya lake had a significantly
(p < 0.05) higher number of microcrustacean species compared to the hypereutrophic Sembrong
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and acidic-stratified Subang lake (Table S3). In addition, Shannon–Wiener species diversity for
microcrustcean communities in Putrajaya lake (H’ = 1.3 ± 0.0) was significantly higher than those
in Sembrong lake (H’ = 0.9 ± 0.0) and Subang lake (H’ = 0.6 ± 0.1) (Table S3). In fact, different
lakes showed different dominant microcrustacean species. Ceriodaphnia cornuta represented 74.0%
of the total microcrustacean density in the hypereutrophic Sembrong lake and its density was the
highest during the dry season (Table S3, Figure 6 and Figure S2). In the meso-eutrophic Putrajaya
lake, Bosmina longirostris and C. cornuta contributed to 46.9% and 20.0%, respectively, of the total
microcrustacean density throughout the sampling periods and two cladoceran species, Anthalona harti
and Moina micrura were only found in this lake but with low density (Table S3, Figure 6 and Figure
S2). Meanwhile, acidic mesotrophic Subang lake was dominated by copepods where the highest
contribution was by Mesocyclops thermocyclopoides, at 55.6% of the total microcrustacean density in this
lake. Results from SIMPER analysis suggested that in the hypereutrophic Sembrong lake (within-group
similarities based on density), Ceriodaphnia cornuta was the most discriminating species. On the other
hand, Bosmina longirostris was the discriminating species in the meso-eutrophic Putrajaya lake and the
discriminant species in the acidic-mesotrophic Subang lake was Mesocyclops thermocyclopoides (Table 5,
Figures 6 and S2).
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Table 5. Percentage contribution (%) of major microcrustacean species (>70%) for each
lake based on similarity percentage (SIMPER) analysis. Av. Sim = average similarities,
Contrib % = contribution percentages.

Species
Sembrong Lake Putrajaya Lake Subang Lake

Av. Sim Contrib % Av. Sim Contrib % Av. Sim Contrib %

Bosmina longirostris 18.20 22.03
Ceriodaphnia cornuta 25.74 30.67 15.39 18.63

Mesocyclops
thermocyclopoides 18.20 21.69 13.57 16.43 29.39 40.22

Mongolodiaptomus
malaindosinensis 17.42 20.76 13.35 16.16

Thermocyclops crassus 22.66 31.02
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3.3. Relationship between Microcrustacean and Physical and Chemical Parameters

Further analysis was performed to find the correlation of microcrustacean and physical and
chemical parameters using biotic-environmental (BIO-ENV) analysis. The global test from BIO-ENV
showed that microcrustacean density was significantly (p < 0.05) correlated with physical and chemical
parameters (Table S4). From the BIO-ENV analysis, chlorophyll a, transparency and total phosphorus
were best correlated to microcrustaceans with ρ = 0.506. The correlation between microcrustacean
species and physical and chemical parameters using canonical correspondence analysis (CCA) showed
that environmental variables collectively explained 86.7% of the total variance in the weighted means
of the species in relation to the 13 parameters (Figure 7).Diversity 2020, 12, x FOR PEER REVIEW 12 of 19 
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Figure 7. Bi-plots of the canonical correspondence analysis (CCA) for microcrustacean species
and physical and chemical parameters showing the distribution of microcrustacean in relation to
environmental conditions in different lakes. TP = total phosphorus, TDS = total dissolved solid,
DO = dissolved oxygen, TAN = total ammonium nitrogen, SRP = soluble reactive phosphorus,
TN = total nitrogen, NO3-N + NO2-N = nitrate-N + nitrite-N, Chl. a = chlorophyll a, Cond.
= conductivity, Turb. = turbidity, Temp. = water temperature, Transp. = transparency,
Cc = Ceriodaphnia cornuta, Bl = Bosmina longirostris, Bd = Bosminopsis dietersi, De = Diaphanosoma
exsicum, Mmic = Moina micrura, Ah = Anthalona harti, Tc = Thermocyclops crassus, Mm = Mongolodiaptomus
malaindosinensis, Mt = Mesocyclops thermocyclopoides.

Axis 1, which accounted for a total variance of 68.16%, was positively correlated with total
phosphorus, chlorophyll a, total dissolved solid, turbidity and conductivity and negatively correlated
with water transparency. From the biplot, Ceriodaphnia cornuta, which was found in high densities in
the hypereutrophic Sembrong lake, was positively influenced by axis 1, marked by high nutrient and
chlorophyll a concentrations (Figure 7). Meanwhile, Bosmina longirostris, which was abundantly found
in the meso-eutrophic Putrajaya lake, had positive loading of temperature and dissolved oxygen on
axis 2, which accounted for a total variance of 18.57%. Both BIO-ENV and CCA analyses revealed
that the distribution of microcrustacean community, especially small-sized microcrustaceans such as
C. cornuta and B. longirostris, was significantly influenced by environmental conditions associated with
trophic conditions such as in the hypereutrophic Sembrong and the meso-eutrophic Putrajaya lake
(Figure 7).
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4. Discussion

Peninsular Malaysia experiences two pronounced seasons, namely the wet northeast monsoon
(November to February) and a relatively drier southwest monsoon (May to August), separated by
transitional monsoon seasons (March to April and September to October). However, nowadays,
local climate seems to deviate from this normal pattern, probably due to climate change phenomenon,
resulting in shifts of rainfall pattern from the conventional monsoonal months, as shown in this
study. Precipitation amount can affect the physiochemical characteristics of all aquatic ecosystems.
Productivity of aquatic ecosystems is mainly influenced by nutrient concentrations in water bodies.
In this study, the hypereutrophic condition of Sembrong lake was due to high concentration of
nutrients, mainly phosphorous and nitrogen, brought by surface runoff especially during the wet
season from the surrounding agriculture farms, including oil palm plantations, fruit orchards and
livestock husbandry [44]. A seasonal effect on chlorophyll a concentration was also observed where high
chlorophyll a concentrations were recorded in the wet season due to the increase in nutrient inflow into
the lake, which accelerated the phytoplankton growth [45]. Continuous nutrient loadings to this lake
promoted the growth of phytoplankton, resulting in increased chlorophyll a (phytoplankton biomass)
concentrations and reduced water transparency [46]. Therefore, a strong relationship among nutrient
concentrations (total phosphorus), chlorophyll a and water transparency indicated the responses of this
lake to the increased nutrients in the lake water, which could be related to activities in the surrounding
lake area.

The number of microcrustacean species in this study was low but showed significant differences
(p < 0.05) among the lakes. Generally, the number of planktonic microcrustaceans in lakes and reservoirs
in Malaysia is usually low. A low proportion of planktonic cladoceran species (approximately 10%)
was also reported in the northern part of Borneo Island [39]. This was consistent with previous
findings on microcrustacean distribution in Malaysian lakes and reservoirs, where only 11 species
of microcrustaceans consisting of nine species of cladocerans and two species of copepods were
recorded in both Chenderoh Reservoir and Pedu Reservoir, respectively [47,48]. Besides, only four
microcrustacean species consisting of two species of cladocerans and two species of copepods were
recorded in Bakun Reservoir in the East Malaysia, Sarawak [49]. In addition, Idris [36] reported that
lakes and reservoirs contain the lowest number of cladoceran taxa in Malaysia in comparison to rice
fields and ponds as shallow and weedy areas provide more niches for plankton population growth
and development. The common species reported by previous studies including cladocerans such
as Ceriodaphnia cornuta, Bosminopsis dietersi, Diaphanosoma sp., calanoids and cyclopoids were also
observed in this study [50].

Although the number of species found was low, microcrustacean densities significantly differed
(p < 0.05) among lakes with varying trophic status. Pinto-Coelho et al. [51] also revealed that cladocerans
and cyclopoids were more abundant in eutrophic lakes and reservoirs compared to nutrient-poor
lakes. In addition, higher microcrustacean density in the dry season compared to the wet season as
observed in this study might be due to reduction in water level and water stagnation, which help in
concentrating nutrients to support more phytoplankton growth. However, the mechanical force of the
water flow during the wet season modified the water chemical characteristics and reduced nutrient
concentrations due to the dilution effect. This contention was supported by Dejen et al. [52] and
Okogwu et al. [53], who noted that microcrustacean density was higher in the dry season compared to
the wet period.

Basically, food availability could be one of the factors that determine the success of microcrustacean
populations in aquatic ecosystems [54,55]. The high density of microcrustaceans in eutrophic conditions,
as in the hypereutrophic Sembrong lake and the meso-eutrophic Putrajaya lake, was probably
due to high nutrient concentrations that favour the growth of phytoplankton as a food source for
them. This scenario is in accordance with Offem et al. [56], who reported that microcrustacean
abundance increased in nutrient-enriched lakes due to food resource availability. In addition, a high
microcrustacean density in Sembrong lake was probably influenced by their ability to exploit additional
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food resources such as bacterioplankton and heterotrophic flagellates. In the hypereutrophic Sembrong
lake, high nutrient concentrations favoured the growth of the inedible filamentous blue green algae
(cyanobacteria), Planktothrix agardhii, which formed more than 90% of the phytoplankton density in
this lake. Even though this species is not a suitable food item for microcrustaceans, the decomposition
of P. agardhii involved many bacteria, which could serve as food sources for microcrustaceans in that
area [57]. Bacteria and detrital particles from decomposed cyanobacteria could represent important
sources of food for cladocerans [58,59]. According to previous studies, cladocerans were found to be
more dependent on the carbon resource of bacteria and these microbes were more easily digested
compared to blue-green microalgae [60,61]. Therefore, the eutrophic condition that is usually associated
with high abundance of bacteria could support high microcrustacean densities as long as these species
could tolerate the adverse environmental conditions associated with poor water quality, as depicted by
the high C. cornuta population in the hypereutrophic Sembrong lake.

Microcrustaceans in Sembrong lake showed a typical community structure of a eutrophic ecosystem
with high abundance of a tolerant species, but low species diversity due to a low number of species
and high dominance of a single species C. cornuta (74.0% of total microcrustaeans). This finding
was consistent with that reported by Starling [62], who found high microcrustacean density but low
diversity in eutrophic reservoirs. Previous studies also reported that with increasing eutrophication,
the predominance of tolerant microcrustacean species resulted in community changes from one
dominated by large herbivores such as calanoid copepods and large cladocerans to small-sized
consumers such as small cladocerans (Ceriodaphnia, Bosmina, and Moina) and cyclopoid copepods [63–65].
The dominance of small-sized cladoceran, C. cornuta and Bosmina longirostris in both Sembrong and
Putrajaya lakes could be explained by their inducible defenses and their tolerance to the toxic and
filamentous cyanobacteria. Previous studies also reported that cladocerans are susceptible to the
harmful effects of cyanobacteria [66–71]. In eutrophic lakes, the filter feeding apparatus of large
cladocerans (Diaphanosoma sp.) could be damaged from clogging by cyanobacterial filaments or by
the sticky mucilage of large cyanobacterial colonies [72]. In fact, the large carapace opening of large
cladocerans enabled more colonies and filamentous forms of cyanobacteria to enter the filter chamber
apparatus, resulting in mechanical or chemical inhibition of the thoracic appendage movements by
toxins [73]. A decrease in filtration rates resulted in reduced energy for growth and reproduction in
cladoceran species. In contrast, smaller species of cladocerans such as C. cornuta have small openings
of their carapaces that could prevent large cyanobacterial colonies from being filtered and provide
them competitive advantages in comparison to the large-bodied cladocerans [74].

Cyclopoids (Thermocyclops and Mesocyclops) and calanoids are considered as ubiquitous and thus
were found in most lakes [75]. However, in this study, the high copepod density recorded was mainly
due to the significantly higher (p < 0.05) contribution of the nauplius development stage, compared to
the copepodite and adult stages. The domination of immature forms over adult copepods could be due
to continuous reproduction as indicated by the constant presence of different copepod developmental
stages [47]. Besides, the abundance of copepod nauplii indicated that copepods have high reproductive
rates but low survival rates, resulting in low adult density, probably due to the higher predation rate
on the larger adult forms [76]. Moreover, copepod nauplii and early copepodites stages were capable
of surviving in eutrophic waters because their filter feeding mode is able to utilize bacteria and detrital
particles in the nutrient-enriched waters [77].

Based on BIO-ENV and CCA analyses, physical and chemical parameters, especially those
related to trophic status (nutrients and chlorophyll a concentrations), significantly influenced the
microcrustacean community. Eutrophic conditions associated with high nutrients such as those
found in Sembrong and Putrajaya lakes favoured the growth of small-bodied microcrustaceans by
providing sufficient food sources for them. Even though the acidic-mesotrophic Subang lake had
intermediate trophic conditions, the microcrustacean abundance and biodiversity values were low,
probably due to adverse environmental conditions such as low pH, dissolved oxygen and chlorophyll
a. Most microcrustaceans are pH-sensitive and may disappear due to acidification [9]. Waters with
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low pH cause the solubility of heavy metals such as aluminum, lead and copper, which are released
into the water and limit the growth and reproduction of aquatic organisms [78]. Generally, extreme
pH values below 5.5–6.0 or above 10.5 could negatively impact microcrustacean communities [79].
This observation was in line with previous studies, where microcrustacean species richness decreased
when the lake water pH was below 7 and above 8.1–8.2, making the environment unsuitable for
planktonic populations to proliferate [80–82]. The development of stratified layers in Subang lake
caused low dissolved oxygen (DO), resulting in low microcrustacean occurrence in this lake. Low DO
could be one of the major factors in the decrease in microcrustacean species composition and density
in a habitat [83–85]. Low chlorophyll a concentrations in Subang lake indicated that this lake has low
phytoplankton production. This condition indirectly affected microcrutacean population due to low
food source availability. High microcrustacean density found in eutrophic waters was also correlated
with turbidity as turbid water may favour the survival of microcrustaceans due to the lower predation
pressure from visually-dependent predators [86,87].

5. Conclusions

Variables related to lake trophic status, especially nutrient concentrations, chlorophyll a and water
transparency, were the main drivers influencing the distribution of microcrustacean species. The
small-sized cladoceran, Ceriodaphnia cornuta (74.0% dominance) was the most discriminating species in
productive lakes with high nutrient and chlorophyll a concentrations as well as low water transparency,
as could be found in the hypereutrophic Sembrong lake. On the other hand, the less enriched
Putrajaya lake was dominated by Bosmina longirostris (46.9%) and C. cornuta (20.0%). High dominance
of the microcrustacean community by a single species (C. cornuta) resulted in a significantly lower
biodiversity in Sembrong lake compared to Putrajaya lake. Thus, environmentally stressed conditions
in the hypereutrophic Sembrong lake resulted in low species diversity with high abundance of
stress-tolerant species, C. cornuta. Meanwhile, significantly lower density and diversity in Subang
lake could be attributed to the adverse environmental characteristics of the lake water that hampered
a healthy microcrustacean population growth. This study illustrated that microcrustacean species
composition, abundance and diversity were significantly correlated with environmental variables
associated with lake trophic status.
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lakes, Table S4: Summary of physical and chemical parameters that explain the microcrustacean community
in the study area, showing spearman rank correlation (%) obtained by BIO-ENV analysis. Figure S1: Monthly
total rainfall in Sembrong, Putrajaya and Subang lakes from January 2015 to February 2016. Rectangular box
(with dashed lines) indicates the wet season which occurred between August to December 2015, Figure S2:
Non-metric multidimensional scaling (nMDS) of major microcrustacean species distribution in different lakes.
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