
diversity

Article

Effects of Temperature Rise on Multi-Taxa
Distributions in Mountain Ecosystems

Ramona Viterbi 1, Cristiana Cerrato 1,* , Radames Bionda 2 and Antonello Provenzale 3

1 Biodiversity Monitoring Office, Gran Paradiso National Park, Via Pio VII 9, 10135 Turin, Italy;
ramona.viterbi@pngp.it

2 Management and Conservation of Natural Resources Office, Ossola Protected Areas, Viale Pieri 27,
28868 Varzo (VB), Italy; radames.bionda@areeprotetteossola.it

3 Institute of Geosciences and Earth Resources, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy;
antonello.provenzale@cnr.it

* Correspondence: cristiana.r.cerrato@gmail.com; Tel.: +39-011-860-6216

Received: 22 April 2020; Accepted: 21 May 2020; Published: 26 May 2020
����������
�������

Abstract: Mountain biodiversity is associated with rare and fragile biota that are highly sensitive
to climate change. To estimate the vulnerability of biodiversity to temperature rise, long-term field
data are crucial. Species distribution models are an essential tool, in particular for invertebrates,
for which detailed information on spatial and temporal distributions is largely missing. We applied
presence-only distribution models to field data obtained from a systematic survey of 5 taxa (birds,
butterflies, carabids, spiders, staphylinids), monitored in the northwestern Italian Alps. We estimated
the effects of a moderate temperature increase on the multi-taxa distributions. Only small changes
in the overall biodiversity patterns emerged, but we observed significant differences between
groups of species and along the altitudinal gradient. The effects of temperature increase could be
more pronounced for spiders and butterflies, and particularly detrimental for high-altitude species.
We observed significant changes in community composition and species richness, especially in
the alpine belt, but a clear separation between vegetation levels was retained also in the warming
scenarios. Our conservative approach suggests that even a moderate temperature increase (about
1 ◦C) could influence animal biodiversity in mountain ecosystems: only long-term field data can
provide the information to improve quantitative predictions, allowing us to readily identify the most
informative signals of forthcoming changes.
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1. Introduction

Climate change is driving community composition rearrangements and biodiversity losses
worldwide, currently representing a crucial theme in conservation biology (e.g., [1–3]). Understanding
and predicting global warming impacts on biodiversity is essential to develop effective conservation
strategies (e.g., [4,5]).

Not all ecosystems display the same degree of exposure, sensitivity, and vulnerability [3,6].
Mountain ecosystems host a high level of biodiversity and are especially threatened (e.g., [7]), owing
to the presence of species with small distribution areas, low dispersal ability, and high levels of
physiological and ecological specialization [8–10]. In the European Alps, a large number of endemic
species is present, and during the last decades, many habitat types and animal and plant populations
have undergone exceptional decline [11–13]. Many mountain ecosystems reported warming higher
than the global average [14–17]: in the Italian Alps, the measured air temperature rise was of the order
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of 0.2–0.4 ◦C per decade since 1950 [18,19]. For the Alps, climate projections suggest future warming of
0.5–0.7 ◦C per decade [20], again higher than the global average [21,22].

Alpine biodiversity has already responded to the temperature rise. For alpine flora, common
effects are upward displacements of high altitude plants, treeline advance, the decline of arctic-alpine
species, changes in community composition, and species richness (e.g., [11,13,23–25]). For alpine
fauna, similar responses have been measured, such as upward shifts of single species and changes at
assemblage level [26–29], but the number of studies is markedly lower.

Individual species are expected to respond differently to climate warming, and the most important
effects will presumably be at the community level [1,30]. Even though the temperature rise has
been reported to impact community composition, the number of long-term standardized datasets
with a sufficiently high temporal and spatial resolution is still limited, in particular for multi-taxa
analyses [31–33].

Understanding how multiple species and communities will respond to climate change is essential
for management, from global to local scale [34,35]. Indeed, the effectiveness of protected areas and
of the Natura 2000 network under climate change has been questioned (e.g., [3,36,37]). It has been
argued that nature reserves should improve their role from pure conservation to the stewardship of
the changes, representing key sites for the study of climate change responses [38,39]. Conservation
actions should consequently include the management of “smoother transitions” to new conditions,
which necessarily requires the understanding of current dynamics and future states [39].

Species distribution models (SDM) are simple tools to estimate taxa response to climate warming,
assessing the potential vulnerability of individual species and communities as a whole [40–43].
SDM could have large uncertainties in their outcomes, as they use a correlative approach based
on the observed, realized species niche. SDM usually assume niche conservatism and the absence
of evolutionary processes, ignoring biological interactions and physiological mechanisms [44,45].
More sophisticated, mechanistic models are currently available, but they have high data demands and
thus cannot be used for any of the studied taxa, owing to the lack of data (e.g., [46,47]). Consequently,
simple SDM are often considered as the main tool to estimate species and community vulnerability to
climate change [40,48] and fill knowledge gaps in understudied taxa and habitats (e.g., invertebrates, [31,49];
altitudinal gradients and mountain ecosystems, [50,51]). SDM allows us to explore different scenarios
and quantify biodiversity changes for a wide range of species at the same time, obtaining useful
indications for protected areas’ management [5,39,40].

To obtain quantitative information on biodiversity along altitudinal gradients on spatial and
temporal scales suitable for site management, a multi-taxa monitoring project was started in 2007
in the northwestern Italian Alps [52]. Five taxa (Coleoptera Carabidae, Coleoptera Staphylinidae,
Araneae, Lepidoptera Papilionoidea and Hesperiioidea, Aves) representing a wide array of ecological
and evolutionary traits, have been monitored in three separated mountain protected areas. Climatic
and vegetation data were collected on the same spatial scales. The results of the analyses have shown
that invertebrate species’ richness and community composition are related to temperature and altitude,
highlighting the potential vulnerability of the alpine communities to climate change [52,53].

The present work uses the above dataset to assess the risk of short-term changes in Alpine animal
biodiversity under climate warming. The coarse spatial resolution of current (global and regional)
climate projections, however, does not allow to assess the response of mountain ecosystems, that are
characterized by high topographic heterogeneity and small-scale microhabitat and microclimate
variability [54,55]. Short-term, fine-grained climate predictions would certainly be needed by site
managers [56], but there is still a generalized paucity of climate information for mountain areas [57].

On the other hand, it is important to provide informative projections, even within simplified
modeling exercises, to investigate the relationships between land-use and climate change [58,59].
Our study, based on local-scale biodiversity and environmental data, is a contribution to address
the challenge of estimating the response of multi-taxa distributions. We applied “what if” scenarios,
increasing the maximum, minimum, and mean temperatures with respect to the increase observed in
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the Alps during the last decades. To assess the potential role of land cover, we compared projections
with and without vegetation constraints.

Many works indicate differences in the ability of different taxa to adapt to climate change,
but most of the studies are based on meta-analysis or data coming from independent studies [33,56,60].
Our approach compared data coming from different taxa collected with the same methodologies and
in the same monitoring framework. Our main objective was thus to estimate patterns of congruence in
multi-taxa response to climate warming. In particular, we asked whether: (i) the number of species
changing their distribution differs among taxa, degree of vulnerability and scenarios and (ii) species
richness and community composition significantly change along the altitudinal gradient. This allowed
us to obtain indications on both indicator selection and habitat protection priorities.

2. Materials and Methods

2.1. Biodiversity Inventory in the Northwestern Italian Alps: Data Sources

In 2007, 3 protected areas in the NW Italian Alps (Gran Paradiso National Park, Orsiera Rocciavré
Natural Park, Veglia Devero Natural Park) started monitoring animal biodiversity along altitudinal
gradients. Twelve altitudinal transects have been identified (overall covered elevational range
550–2700 m), each characterized by 5–7 sampling units spaced apart by an altitudinal range of 200 m,
for a total of 69 plots (circular areas with 100 m radius). Plot characteristics and their spatial locations
are detailed in the Supplementary Material (Table S1).

Five taxa have been monitored in 2007, using semi-quantitative methods. Carabids (Coleoptera
Carabidae), staphylinids (Coleoptera Staphylinidae), and spiders (Arachnida Araneae) were monitored
through pitfall traps (5 per plot, filled by 10 cc of white vinegar, checked every 15 days from May to
September). Butterflies (Lepidoptera Papilionoidea and Hesperiioidea) were monitored through linear
transects (200 m along one of the diameters of each plot, once per month from May to September).
Birds (Aves) were monitored through point counts (lasting 20 min, twice per plot between April and
July, choosing the most appropriate period depending on altitude). We refer to [52] for a detailed
description of the sampling methodology. Butterflies were mainly identified in the field, and only a
few specimens were collected for subsequent identification in the laboratory. Epigeic invertebrates
(Carabidae, Staphylinidae, Araneae) were identified in the laboratory by expert taxonomists and are
currently stored at the park’s headquarters.

These taxa were selected because they are good candidates for estimating biodiversity patterns
along altitudinal gradients [61–64]. In particular, they are: (i) well represented in mountain ecosystems,
both in terms of species richness and number of individuals, and (ii) characterized by species with
different ecological needs and different levels of specialization. Altogether, the selected taxa include
different trophic levels and different taxonomic relatedness. Moreover, they can all be sampled
using easy-to-apply, cheap, standardized, and well-established techniques, that allow monitoring
repeatability through space and time.

To characterize microclimatic conditions at the plot scale, we installed one data-logger (iButton,
DS1922, Maxim, Sunnyvale, CA, USA) at the center of each plot, at about 1 m above ground, recording
hourly air temperature from June to September. We calculated mean, maximum, minimum, and
standard deviation of daily temperature at each plot and averaged them to obtain seasonal values.
Each plot was described by: (i) mean altitude; (ii) geographic position (a categorical variable indicating
which protected area they belong to); (iii) vegetation belt (Montane, Subalpine, Alpine, indicating
altitudinal sections characterized by given vegetation and climate, [65,66]); (iv) structural diversity.
To obtain structural diversity, we empirically estimated during field surveys, using 5% classes and
checking vegetation maps, the percentage of ground covered by different structural layers (herbaceous
layer, low shrubs < 1 m, tall shrubs between 1–5 m, trees, stone, and bare ground cover). We then
calculated structural diversity as the Shannon index of the herbaceous layer, shrub, and tree cover.
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This index quantifies microhabitat heterogeneity, and it is often adopted in conservation studies
(e.g., [52,67,68]).

2.2. Model Simulation: Current Conditions and Temperature Change Scenarios

We applied Species Distribution Models to 304 species (45 carabids, 40 staphylinids, 99 spiders,
80 butterflies, 40 birds), using distribution data coming from 62 plots. Indeed, 7 plots have been
discarded owing to missing temperature records and 359 species were present in less than 4 plots
(selected as a threshold for presence accuracy). Each of the 304 species, as shown in Table S2a,
was characterized by: (i) the taxon they belong to; (ii) the degree of vulnerability (a dichotomous
variable indicating if the species is restricted to high altitude); (iii) the level of endemism (a dichotomous
variable indicating if the species is endemic of the Alpine biogeographical region).

We modeled each species individually and subsequently estimated species richness and community
metrics on model outputs that were converted to presence/absence data, following the approach
“predict-first, assemble later”, or stacked species distribution models [34]. This approach implies
unsaturation at the community level, which is currently considered a very likely assumption [69],
and allowed us to create unconstrained species richness and community composition maps.

To create species distribution models, we used Maxent, a machine-learning approach based on
maximum entropy (Maxent software 3.3), developed by S. Phillips and colleagues ([70], freely available
at http://www.cs.princeton.edu/~{}schapire/maxent).

We selected Maxent because it is a high-performing and robust bioclimatic approach, widely used
in recent years [71–73]. In particular, Maxent (i) can be run with both continuous and categorical
variables [71]; (ii) it is stable also with correlated predictors [71], and consequently we were allowed to
simultaneously model the effects of temperature and altitude; and (iii) it is highly trustworthy with
a reduced number of presences [74–76], consequently allowing modeling also of rare and endemic
species [77–79].

The species distribution is modeled by comparing environmental conditions at plots where the
species is present with the conditions encountered across the study area. These latter are defined by a
set of background points that identify the available environment. For each plot, Maxent estimates the
probability distribution that best fits the environmental conditions at the plot, remaining as close as
possible to a uniform distribution (maximum entropy principle). For each plot, a logistic output is then
generated. This can be interpreted as an estimate of the presence probability, given the environment,
with values ranging from 0 (lowest probability) to 1 (highest probability) (see [70,71,80] for a detailed
explanation of methodology). We used the default parameterization of Maxent regarding feature types,
regularization, and prevalence [74,81].

We selected for both the sample plots and the background points the same 62 monitored plots,
to limit our predictions to a set of sampling units for which all data were collected at the same scale.
Several works indicate in fact that macro- (coarse-scale air conditions) and micro-climate (experienced
by organisms) can be significantly different, in particular in mountain ecosystems. Consequently, it is
microclimate that should be used in SDM [82,83]. The role of microhabitat associations in determining
current and future distributions of living organisms has also been emphasized [84]. As environmental
predictors, we thus chose the variables measured in each plot that define local microclimate, altitude,
geographical location, and vegetation cover (microhabitat).

We combined the environmental predictors in different ways, obtaining three model classes with
an increasing number of environmental constraints (Figure 1):

• Temperature (T), which considers only temperature-derived variables (seasonal mean, maximum,
minimum temperature, and standard deviation, in ◦C) and altitude to model species distribution;

• Temperature+Region (TR), which considers temperature-derived variables, altitude, and
geographical location;

• Temperature+Region+Vegetation Structure (TRV), which considers temperature-derived variables,
altitude, geographical location, and vegetation cover.

http://www.cs.princeton.edu/~{}schapire/maxent
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To project species distributions for each model class (T, TR, TRV), we applied three different
“what if ” scenarios of temperature change:

• 1Degree (d), in which minimum, mean, and maximum temperature are all equally increased by
1 ◦C;

• 1.5Min (min), in which minimum temperature is increased by 1.5 ◦C, mean temperature by 1 ◦C,
maximum temperature by 0.5 ◦C;

• 1.5Max (max), in which minimum temperature is increased by 0.5 ◦C, mean temperature by 1 ◦C,
maximum temperature by 1.5 ◦C.

We based our choices on results from the analysis of temperature trends in the Alps, especially
on [14] and [85], which reported a larger increase for minimum and maximum temperature respectively,
and on [20] for future scenarios. Elevation-dependent warming is of relevance for most mountain
regions [17], but the temperature increase can be taken as relatively homogeneous in the range of
elevations considered here, even in the case of the Alpine belt [86]. “What-if” scenarios based on
assuming a given temperature (and precipitation) change are a relatively recent way to look at climate
change impacts (e.g., [87,88]). This approach is adopted here, in a simplified form, owing to the
difficulty of regional climate models to properly represent future climatic changes in mountain areas of
a limited extent [89].

We determined model accuracy by evaluating the area under the receiver operating characteristics
curve (AUC), using the same dataset employed for training. This provided an optimistic measure
of prediction success [90], which was anyway useful to assess warming effects on small datasets.
Few species had an AUC < 0.6 (Table S2a–c; Figure S1) and we considered them to be stable under
warming scenarios.
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Figure 1. Conceptual framework of the modeling approach. Data on species presence and environmental
variables were derived from the monitoring project started in 2007. Environmental variables were
combined to obtain 3 model classes, with an increasing number of constraints. Each of them, through
Maxent simulations, produced the corresponding modeled current conditions, to which three different
climate change scenarios were then applied. The results for the various climate change scenarios were
compared to the Maxent current species data.
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2.3. Analysis of Model Outputs

We transformed the model output into binary maps (presence/absence), using as threshold the
minimum predicted value for the training sites, also termed “lowest presence threshold” [70,91].

This threshold identified as “species presence sites” all sites that are at least as suitable as those
where the species is known to occur. After running the models for each individual species, thus allowing
for different responses of different species, we calculated the α- and ß- diversity parameters to estimate
changes from the current situation (defined as Maxent modelization before temperature increase
scenarios), following the recommendations of [92].

2.3.1. Species Distribution

For each model class, we compared each warming scenario with the current distribution in terms
of the number of occupied plots for each species.

We identified the species that significantly changed their distribution under warming
(varying species), using a two-tailed binomial test. The number of successes was estimated from
the number of occupied plots following the temperature increase, which was then compared to the
number of plots currently occupied. To verify whether the three scenarios and the three model
classes significantly differed in the number of varying species, we calculated the χ2 statistics on the
contingency tables.

2.3.2. Species Richness

For each model class, we compared the distribution obtained in each warming scenario with the
current distribution, in terms of species richness per plot. The differences were tested using the t-test
for paired samples (significance level assessed after 999 randomizations, following [93]).

We quantified the changes in species richness per plot, for each model class and warming
scenario, as:

ES = (Sc − Sp)/(0.5 * (Sc + Sp)) (1)

where ES is the effect size, Sc is the current species richness, and Sp is the projected species richness.
The increases and decreases of ES are symmetrical and range from −2 to +2 [94].

To identify taxa that are more sensitive to the temperature increase, we analyzed the effect size
as a function of the taxonomic group (considering as baseline the ensemble of all taxa). To this end,
we used linear mixed-effects models with plot identity as a random effect.

We carried out an exploratory analysis using model classes, scenarios, and taxa and their
interactions as explanatory variables. We selected the best model based on the Akaike’s Information
Criterion corrected for small samples (AICc), computed with the “MuMIn” package [95]. Since the best
model included no effects of warming scenarios, identifying instead a significant interaction of taxa
and model class (Table S3), we then applied the linear mixed-effects models to each taxon separately,
with the model class as an explanatory variable.

To understand how effect size changed as a function of elevation, we first graphically analyzed its
variation along the altitudinal gradient and then focused on the differences between vegetation belts
using again the linear-mixed effects models (with plot identity as a random effect).

Linear mixed-effects models have been implemented with the “lme4” package [96].

2.3.3. Community Composition

We represented changes in assemblage composition under warming scenarios by applying
correspondence analysis (CA) to each taxon and model class. We focused on the first two CA-axes,
whose explained variances were always significant (based on 999 randomizations obtained by changing
species presence across plots while keeping prevalence constant). The cumulative explained variances
ranged from 32.26 to 63.80 (Table S4a). The first axis was determined by altitude, minimum, and
average daily temperature, while for the second axis we did not identify a clear pattern (Table S4b).
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To understand whether warming changed community composition as a whole and across vegetation
belts, we applied the Wilcoxon Rank Sum Test on plot scores of current and projected distributions and
compared the shift in plot scores between vegetation belts, using the Kruskal Wallis Test. Community
homogenization under temperature increase was tested, comparing the distance from the distribution
centroid for current and projected assemblages. Significance was assessed by the t-test for paired
samples (using 999 randomizations [93]).

The variation in community composition of single plots under climate warming scenarios was
quantified by the Jaccard Index and compared across model classes, scenarios, and taxa by the
Friedman Test [97]. We also partitioned the overall dissimilarity in its turnover (βsim) and nestedness
(βsne) components, calculated using the betapart package [98]. This allowed us to quantify whether
communities exposed to temperature increase were characterized by the substitution of some species
by others (turnover) or whether one of the two assemblages was a subset of the other (nestedness).

In the following, all values are represented as mean ± standard error; statistical analyses were
performed using R 3. 5.2 [99].

3. Results

3.1. Species Distribution

The comparison between the results provided by each scenario and the corresponding baseline
showed high variability in the species response to the temperature increase.

The majority of species showed no variation (42.1 ± 1.0%), some others displayed an increase
(30.7 ± 0.7%), and others a decrease in the number of occupied plots (27.1 ± 0.9%). Considering only
endemic and vulnerable species, the percentage of species with decreasing occupancy was higher
(39.8 ± 1.1% for endemics; 57.4 ± 2.5% for vulnerable species) and in the case of the vulnerable species,
the percentage of increasing species also became lower (7.5 ± 0.7%). Considering only varying species,
both the endemic and the vulnerable species showed a higher percentage of decreasing occupancies
and a lower percentage of increasing species, when compared to the whole set of species (Figure 2).

Diversity 2020, 12, x FOR PEER REVIEW 7 of 20 

 

Friedman Test [97]. We also partitioned the overall dissimilarity in its turnover (βsim) and nested-
ness (βsne) components, calculated using the betapart package [98]. This allowed us to quantify 
whether communities exposed to temperature increase were characterized by the substitution of 
some species by others (turnover) or whether one of the two assemblages was a subset of the other 
(nestedness). 

In the following, all values are represented as mean ± standard error; statistical analyses were 
performed using R 3. 5.2 [99]. 

3. Results 

3.1. Species Distribution 

The comparison between the results provided by each scenario and the corresponding baseline 
showed high variability in the species response to the temperature increase. 

The majority of species showed no variation (42.1 ± 1.0 %), some others displayed an increase 
(30.7 ± 0.7 %), and others a decrease in the number of occupied plots (27.1 ± 0.9 %). Considering on-
ly endemic and vulnerable species, the percentage of species with decreasing occupancy was higher 
(39.8 ± 1.1 % for endemics; 57.4 ± 2.5 % for vulnerable species) and in the case of the vulnerable spe-
cies, the percentage of increasing species also became lower (7.5 ± 0.7 %). Considering only varying 
species, both the endemic and the vulnerable species showed a higher percentage of decreasing oc-
cupancies and a lower percentage of increasing species, when compared to the whole set of species 
(Figure 2). 

For the species that showed a variation, the amount of change was usually low (1st quartile = -
4, median = 1, 3rd quartile = +4), even if the values ranged between –28 and +21 plots. 

Comparing the three model classes, we found that the number of species with changing distri-
butions was lower with a larger number of environmental constraints. Indeed, varying species in 
each scenario significantly differed between model classes (TRV = 25.7 ± 4.4, TR = 43.7 ± 4.4, T = 67.7 

± 8.4; 20.64 < χ2 < 27.82, p < 0.001). 
Comparing the three scenarios, we observed a higher number of varying species in the Min sce-

nario (Max = 37.3 ± 10.7, Min = 56.7 ± 14.6, D = 43.0 ± 11.3) in each model class, but the differences 
were significant only in the T model class (χ2 = 8.56, p = 0.02). 

 
Figure 2. Effect of temperature increase on species distribution. Percentage of species that showed 
a decrease, an increase, or no variation (stable) of the number of occupied plots. Dash-dotted lines 
represent the results with the binomial test. Bar charts represent mean values, error bars are the 
standard errors over model classes and scenarios. 
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Figure 2. Effect of temperature increase on species distribution. Percentage of species that showed
a decrease, an increase, or no variation (stable) of the number of occupied plots. Dash-dotted lines
represent the results with the binomial test. Bar charts represent mean values, error bars are the
standard errors over model classes and scenarios.

For the species that showed a variation, the amount of change was usually low (1st quartile = −4,
median = 1, 3rd quartile = +4), even if the values ranged between −28 and +21 plots.
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Comparing the three model classes, we found that the number of species with changing
distributions was lower with a larger number of environmental constraints. Indeed, varying species
in each scenario significantly differed between model classes (TRV = 25.7 ± 4.4, TR = 43.7 ± 4.4,
T = 67.7 ± 8.4; 20.64 < χ2 < 27.82, p < 0.001).

Comparing the three scenarios, we observed a higher number of varying species in the Min scenario
(Max = 37.3 ± 10.7, Min = 56.7 ± 14.6, D = 43.0 ± 11.3) in each model class, but the differences were
significant only in the T model class (χ2 = 8.56, p = 0.02).

3.2. Species Richness

Changes in species richness showed considerable variations across taxonomic groups, warming
scenarios, and vegetation belts, even if the amount of change was generally low, as exemplified by the
effect size, ranging from −0.4 to 0.3 (Figure 3).
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Figure 3. Changes in species richness across taxa, models, and warming scenarios. Boxplot of the
effect size for each model and warming scenario, for all taxa pooled together (a) and for each taxon
separately (b–f). The box shows median values and the first and third quartiles, whiskers indicate
the minimum and maximum values, and outliers are plotted as circles. Significant changes in species
richness (p < 0.05), from the t-test for paired samples, are highlighted by red boxes. Nearly significant
changes are represented by red dashed boxes (0.10 < p < 0.05). For significant and nearly significant
results, the mean change in species richness (m), the t-value (t), and the p-value (p) are indicated.
An upward red arrow indicates an increase in species richness, a downward arrow indicates a decrease.
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Butterflies displayed an increase in species richness per plot for almost all models and warming
scenarios (Figure 3e); the impact of temperature increase is significantly stronger on this taxon than for
all taxa pooled together (Table 1).

Table 1. Response of different taxa. Results of effect size analysis across taxa by linear mixed effect
models (DF = 3281, the plot identity is taken as a random effect). The baseline is provided by all taxa
pooled together. The estimates (and the standard errors) of the fixed effects are reported, followed by
t-values and p-values. The ANOVA test of the global effect of the factor variable “taxon” is significant
(F = 7.768, p < 0.0001). Significant differences of single taxa are shown in bold.

Response of Different Taxa Estimate t-Value p-Value

Intercept 0.004 (0.005) 0.926 0.354
Birds 0.008 (0.003) 2.292 0.022

Butterflies 0.027 (0.003) 7.778 0.000
Carabids −0.001 (0.003) −0.201 0.841
Spiders −0.028 (0.003) −7.965 0.000

Staphylinids 0.005 (0.003) 1.420 0.156

In the case of spiders, the results showed the opposite trend, with a decrease in species richness
in all cases (Figure 3d) and significantly lower effect size than for all taxa pooled together (Table 1).
Carabids showed no significant differences in any of the scenarios (Figure 3b). Staphylinids (Figure 3c)
and birds (Figure 3f) showed slightly different results when considering different model classes.

The overall species richness showed a significant increase considering only the TRV model class.
For all taxa except carabids, we observed significant differences in the species richness changes

predicted by the different model classes (Table 2). For butterflies, T models indicate an increase in
species richness, which is less pronounced for TR and TRV models. For spiders, T models indicate
a more pronounced decrease in species richness than TRV models. For all taxa pooled together,
staphylinids and birds, TRV models indicate a significantly larger effect than T and TR models.

Table 2. Differences across model classes. Results of effect size analysis across model classes by linear
mixed effect models, for all taxa pooled together and for each taxon separately (DF = 494, plot identity
as a random effect). The baseline is the T model. The estimates (and the standard errors) of the fixed
effects are reported, followed by t-values and p-values. The ANOVA test of the global effect of the factor
variable “model class” is reported in the lower two rows (F-value and p-value). Significant values are
indicated in bold.

Differences
Across Model

Classes
All Taxa Carabids Staphylinids Spiders Butterflies Birds

Intercept 0.003 (0.004) 0.012 (0.008) 0.000 (0.007) −0.030 (0.005) 0.047 (0.007) −0.009 (0.007)
t-value 0.673 1.5 0.082 −5.750 6.299 −1.291
p-value 0.501 0.134 0.935 <0.0001 <0.0001 0.197

TR −0.004 (0.002) −0.012 (0.007) −0.000 (0.006) 0.006 (0.003) −0.033 (0.005) 0.024 (0.005)
t-value −1.768 −1.629 −0.023 1.729 −6.865 4.723
p-value 0.078 0.104 0.981 0.084 <0.0001 <0.0001

TRV 0.009 (0.002) −0.013 (0.007) 0.026 (0.006) 0.012 (0.003) −0.014 (0.005) 0.039 (0.005)
t-value 3.622 −1.736 4.429 3.213 −3.009 7.573
p-value 0.0003 0.083 <0.0001 0.001 0.003 <0.0001

F-value 15.099 1.893 13.15 5.173 23.684 29.259
p-value <0.0001 0.152 <0.0001 0.006 <0.0001 <0.0001

The analysis of changes in species richness along the altitudinal gradient indicated a more
pronounced effect at higher altitude, in particular above 2000 m (Figure 4). In the Alpine belt,
we observed a significant effect for all taxa pooled together, for butterflies, for birds and for spiders
(Table 3). In the case of spiders, this implies that the decrease in species richness observed in the
montane and the subalpine belt is less pronounced at higher altitudes (Figure 4; Table 3).
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Figure 4. Changes in species richness along the altitudinal gradient. Scatterplot of the effect size
(index) as a function of elevation (m a.s.l.), for all taxa pooled together and for each taxon separately.
The colored lines represent LOESS smoothing and the grey bands indicate confidence intervals.

Table 3. Differences across vegetation belts. Results of the analysis of effect size across vegetation belts
by linear mixed effect models, for all taxa pooled together and for each taxon separately (DF = 496/59/59,
plot identity included as a random effect). The baseline is the montane belt. The estimates (and the
standard errors) of the fixed effects are reported, followed by t-values and p-values. The ANOVA test
of the global effect of the variable “model class” is also reported in the lower two rows (F-value and
p-value). Significant values are indicated in bold.

Differences
Across

Vegetation Belts
All taxa Carabids Staphylinids Spiders Butterflies Birds

Intercept −0.007 (0.006) 0.008 (0.012) −0.001 (0.010) −0.031 (0.008) 0.007 (0.010) −0.007 (0.011)
t-value −1.076 0.682 −0.139 −3.862 0.661 −0.701
p-value 0.283 0.496 0.890 0.0001 0.509 0.484

Subalpine −0.003 (0.009) −0.021 (0.017) 0.008 (0.015) −0.007 (0.011) −0.002 (0.015) 0.018 (0.015)
t-value −0.292 −1.212 0.555 −0.649 −0.128 1.172
p-value 0.771 0.230 0.581 0.519 0.899 0.246

Alpine 0.029 (0.008) 0.004 (0.016) 0.020 (0.014) 0.023 (0.011) 0.062 (0.014) 0.036 (0.014)
t-value 3.503 0.228 1.505 2.224 4.428 2.564
p-value 0.001 0.821 0.138 0.030 <0.0001 0.013

F-value 9.285 1.252 1.170 4.759 13.972 3.308
p-value 0.0003 0.293 0.317 0.012 <0.0001 0.043

3.3. Community Composition

In almost all cases, warming scenarios determined significant changes in community composition
along the first CA axis. The Wilcoxon test was applied to assess changes in plot scores from current to
warmer conditions; it is significant in 53 over 54 cases, p < 0.01, the only exception are staphylinids in
the TRV model class, max scenario. The pattern along the second axis is less coherent (Wilcoxon test
with p < 0.01 in 35 cases over 54).

For both the current conditions and the warming scenarios, plot community composition
significantly changed from the montane to the alpine belt (Figure 5a; current, KW Test, df = 2,
all p < 0.0001, Figure 5b; projected, KW Test, df = 2, all p < 0.0001; Figure 5c).
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Figure 5. Changes in community composition across vegetation belts. (a) Correspondence analysis
(CA) for the TR model in the Min scenario for all taxa pooled together. Open circles indicate the
current situation and filled squares the warming scenario. Arrows indicate the shift of each plot.
Different colours indicate different vegetation belts (blue = alpine, red = subalpine, black = montane).
The first axis is positively correlated with altitude and negatively correlated with minimum temperature.
(b–d) Analysis of plot scores along the first axis, obtained from CA of all taxonomic groups pooled
together with the TRV model in the Min scenario. Plots are grouped based on the vegetation belt.
Values for plot scores are represented separately for the current situation (b) and the warming scenario
(c). Differences between current and projected scores show differences in the rate of change across belts
(d). The box shows median values and the first and third quartiles, whiskers indicate the minimum
and maximum values, and outliers are plotted as circles.

Plot scores were significantly correlated in all cases (Spearman’s rank correlation; first axis,
0.978 < % < 0.998; second axis, 0.894 < % < 0.997), indicating that species composition changed gradually
and coherently along the altitudinal gradient, retaining similar patterns of species dissimilarity.

Differences in the first axis between pairs of plots (current minus projected), if significant, showed
that the amount of change in community composition was more pronounced for the montane belt
compared to the others (Figure 5d). Interestingly, we observed significant differences for all taxa
pooled together (for all model classes and scenarios), and in many cases also for carabids (T and TR,
all scenarios), staphylinids (only T, Min and D scenarios), and butterflies (T, all scenarios; TR, Min and
D scenarios; TRV, Max scenario), always showing the lowest values (around 0) for the montane belt.

As an estimate of community homogenization, we estimated the mean Euclidean distance from
the distribution centroid for current conditions and for warming scenarios, showing always lower
values in the warming case (which were also significant in 29 to 54 cases, p < 0.05).
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The Jaccard Index values were close to zero for all model classes and scenarios. Considering all
taxa pooled together, we observed significant differences across scenarios (p < 0.0001), with the lowest
values in Max, and across model classes (p < 0.0001), with the highest values in T.

For all taxa pooled together (Figure 6a), the variation in community composition in the warming
scenarios is dominated by turnover (βsim = 0.066 ± 0.005). The nestedness component is lower
(βsne = 0.026 ± 0.002), indicating no clear pattern of species loss or gain. This global pattern has
been observed also for carabids and spiders (Figure 6b,d), while in the case of butterflies and birds,
differences are less pronounced and there is a tendency toward higher values of nestedness (Figure 6e,f).
Staphylinids show no clear pattern (Figure 6c).Diversity 2020, 12, x FOR PEER REVIEW 12 of 20 
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Figure 6. Temporal dissimilarity. The panels show the two components of the Jaccard index, namely
turnover (βsim in grey) and nestedness (βsne in white), for all taxa pooled together (a) and for each
taxon separately (b–f). Bar charts indicate mean values and error bars are the standard error across
model classes and scenarios.

4. Discussion

Disentangling the role of temperature increase in shaping biodiversity patterns, especially in
mountain ecosystems, is a fundamental challenge of conservation biology [2,3,8]. Species respond
at individual level [1,2] and there is a current knowledge gap for many taxonomic groups [31–33,49].
Projections of potential future species distributions along elevational gradients need high-resolution
spatial data [83,100]. In our work, the Maxent approach allowed to analyze data collected at a fine
spatial scale (plots with 100 m radius) and to take into account the response of rare and localized
species. Reliable projections should also consider that ecotypes from different geographical origins can
have different responses to the same climatic variations (e.g., [101]). Our approach reduced this bias in
two ways. First, we used the same set of plots to derive the empirical relationships between species
and climatic/environmental variables and to project future potential distributions. Second, the limited
geographic extent (northwestern Italian Alps) of the sampled plots assures that different populations
of the same species will respond coherently.

In general, our simulations indicated that even for a moderate temperature increase, species
richness and community composition can display subtle but significant alterations. Since different
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studies suggested different roles of minimum and maximum temperature increase [14,85], we simulated
three scenarios having different relative importance of the minimum and maximum daily temperature
rise. We also adopted three different empirical biodiversity model classes, characterized by the presence
of temperature alone or of other environmental variables (vegetation and geographical location) in
addition to temperature. Differences between scenarios were not as marked as those emerging from
the different model classes.

We detected a high variability in the response of the different species, depending on the position
and breadth of the climatic niche and the species range. The majority of modeled species did not show
much response to the temperature increase. On the other hand, high-altitude species were the most
affected, consistently with the fact that habitat specialists are negatively influenced by environmental
change (e.g., [7]). The probability of extinction under climate change reflects the species ability to shift
with suitable habitats; a scarce ability to withstand climate change impacts could depend also on a
reduced niche breadth [7,102,103].

In our analysis, endemic species appeared as less affected than vulnerable ones. In the altitudinal
gradient explored here, the spatial distribution of endemic species is spread over the whole altitudinal
and temperature range, owing to the presence of species that are characteristic of the montane belt.
Our results indicate that many of the endemic species studied here are not restricted to high altitudes
and can shift their occupancy area along the altitudinal gradient. These results are not in disagreement
with the general vulnerability of endemic species to climate change (e.g., [7,104]): thanks to the small
scale of the analysis, our study indicates how local altitudinal gradients can offer a possibility of
survival for otherwise declining species.

Significant differences between taxonomic groups were also observed.
Carabids did not show any relationship with temperature [52] and, as a consequence, they did

not display any significant change in species richness under temperature increase scenarios. On the
other hand, they displayed the highest “temporal dissimilarity” in community composition (even if
always low, with an overall Jaccard index < 0.15). This behavior was mainly determined by turnover,
i.e., by the substitution of groups of species under climate warming.

In the case of staphylinids, the pattern of change was also not marked: few significant differences
were observed, and they were not coherent across model classes and scenarios, hampering the
possibility of drawing general considerations.

Butterflies are heliothermic and can be considered climatically sensitive [33,105]. In our analysis,
for many species the distribution was mainly determined by temperature. This taxon displayed
the highest increase in species richness under temperature increase. This pattern is exacerbated by
the model classes using temperature only as a constraint, and it is particularly strong in the alpine
belt. These results indicate that butterflies can respond quickly to warming, determining new species
assemblages, in particular at high altitudes and that the vegetation structure has the potential to
buffer this response. Similar results were found analyzing observed temporal changes in butterfly
distribution and community composition [106,107], also during a short time frame [108] and in the
same mountain ranges considered here [53].

On the opposite side, spiders strongly suffered in temperature increase scenarios, showing a
decrease in species richness. In our monitoring program, spiders were highly localized and many
species were present only in a small number of plots. Therefore, variations of microclimatic conditions
can effectively reduce their areas of occurrence, determining a general decrease in species richness.
Models using only temperature provide the most marked changes, indicating again that the vegetation
structure can buffer the effects of warming. For spiders, the highest decrease in species richness was
observed in the montane belt. Our results suggest that the montane belt will become too warm for
many species. Indeed, spider species are usually influenced by the small-scale vegetation structure
and are adapted to the local environmental conditions [109,110]. This leads to a high level of turnover
along altitudinal gradients and consequently to assemblages that are sensitive to small changes in local
climatic conditions, as observed here.
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Birds display a significant increase in species richness for many of the tested models and scenarios
and a general positive effect of warming. Temporal analysis of bird and butterfly communities showed
that both taxa respond to warming, with a faster response of butterflies [106]. For birds, changes in
community composition were dominated by the nestedness component, indicating that species losses
and gains represent the principal pattern of change.

Considering “temporal” dissimilarity as a whole, we observed significant changes for all cases
(model classes, scenarios, taxa). Plot assemblage composition coherently changed in warming scenarios,
showing a tendency to homogenization as observed in other studies [111–113].

As in other studies focused on plants [11], our warming scenarios indicated an upward shift
from the lower to the higher belts, implying an increase in species richness at the highest altitude.
Alpine meadows had a high probability of experiencing the largest modifications in community
composition, as we coherently observed for almost all taxa. Such changes in richness and composition,
if effectively realized, will probably be detrimental to biodiversity: the colonization of the alpine
belt by species from lower altitudes could increase competition, with negative effects for localized
and specialized taxa [13,114,115]. Consequently, the increase in species richness could be transitory,
followed by a decline of strictly alpine species stressed by the growing competition and on the verge of
going beyond their tolerance breadth [24,116].

The montane belt, on the opposite, is the lower limit of the altitudinal gradient considered here and
we cannot account for the colonization of species coming from still lower elevations. We classified plots
along the vegetation belts considering both altitude and potential vegetation [65,66]: consequently,
some montane plots display temperature values that are lower than for subalpine ones, allowing for a
partial increase in species richness under climate warming. In any case, the montane belt community
composition was the most stable, showing lower dissimilarity than the upper two belts.

Among the different warming scenarios, the one with a larger increase of minimum temperature
displayed the largest number of varying species, indicating that the minimum daily temperature
can be an important limiting factor for species distribution [65,66]. Considering that the minimum
temperature has increased at a faster rate than the maximum temperature during the latter half of the
20th century [117], variations in biodiversity patterns larger than the ones simulated here could occur.

Even if uncertainty is the rule in species distribution models [40,45], projections are useful to
explore biodiversity patterns, identifying specific areas or groups of species that should be monitored.
In this regard, the different responses displayed by different taxa confirm the importance of using
a multi-taxa approach to estimate climate change effects on animal biodiversity. It is important to
include taxa with potentially opposite responses to climate warming, such as butterflies and spiders.
Targeted long-term field data are then essential to revisit and fine-tune estimates of biodiversity
responses, comparing them with real changes in species responses, and adopting timely conservation
strategies [118].

Even if the alpine belt displayed the highest projected change in species richness, monitoring
focused only on high altitudes could miss some of the important changes along the altitude gradient.
The high level of turnover due to species shifts from the montane and to the alpine belts could happen
also in the subalpine belt, and the montane belt can be influenced by the arrival of species from the
surrounding lowlands.

In conclusion, our analysis suggested that moderate warming has the potential to change
biodiversity patterns in mountain ecosystems, with significant differences between taxa and along the
altitudinal gradient. Such changes could determine new ecological relationships, which could in turn
influence ecosystem processes in an unpredictable way.

Supplementary Materials: The following material is available online at http://www.mdpi.com/1424-2818/12/
6/210/s1. Table S1. Plot characteristics. Table S2a. Species used in the modeling approach. Table S2b. AUC
thresholds. Table S2c. Species richness correlations. Figure S1. AUC values. Table S3. Explorative model selection.
Table S4a. Explained variances of CA axes. Table S4b. Correlation of CA axes with environmental variables.

http://www.mdpi.com/1424-2818/12/6/210/s1
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