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Abstract: Island invasions may cause severe changes in biodiversity, but the factors that influence these
changes are not well understood. We established 120 plots in Cycas micronesica habitats throughout
Guam in 2005 following the invasion of the armored scale Aulacaspis yasumatsui, then observed
plant mortality through 2020. We used transects in Yap as benchmarks, as the Yap C. micronesica
population is not threatened. The initial Guam plots contained about 1600 seedlings, 1160 juveniles,
and 1240 mature plants per ha. Seedling mortality was 100% by 2006, juvenile mortality was 100%
by 2014, and the 2020 census revealed 96% mortality of the plant population. Localities in western
Guam and isolated forest fragments exhibited the greatest mortality, with 100% extirpation from
two fragmented western localities. The juvenile and mature trees in Yap were unchanged from
2010 to 2018, but the seedling count was heterogeneous among the years. Constrained recruitment
from seedlings to juveniles explained these dynamics. Yap transects contained about 6120 seedlings,
3400 juveniles, and 1250 mature plants per ha. Biological control of the invasive insects remains the
acute conservation action needed for the Guam population. Lessons learned may be useful in other
regions where invasions of non-native pests threaten biodiversity.
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1. Introduction

Invasions of non-native organisms alter biodiversity relationships and ecological processes [1–3].
The damage to biodiversity and ecosystem processes can be extreme following invasions of
non-native insects, especially when the insects are specialist herbivore and a native tree serves
as their host [4–12]. A well-studied case has unfolded on the island of Guam in which the native cycad
Cycas micronesica K.D. Hill has been threatened by several recent insect invasions. The armored scale
Aulacaspis yasumatsui Takagi, the specialist butterfly Chilades pandava Horsfield, and the microlepidoptera
Erechthias Meyrick sp. were first identified on Guam between 2003 and 2005 [13,14]. The native and
cultivated Cycas species were the only available hosts for these invasive pests. The combined damage
decreased the general health of the trees which caused an increase in herbivory by the native stem
borer Dihammus marianarum Aurivillius [13,15].

These herbivorous insects interact with plant phenology with disparate approaches. The specialist
butterfly C. pandava oviposits exclusively on young, expanding C. micronesica organs. The larvae
must reach pupation before the leaf tissue has finished expansion. The Erechthias leaf miner oviposits
exclusively on old, hardened C. micronesica leaves. The larvae tunnel within the mesophyll tissue in
a manner that does not kill the infested leaflet. The D. marianarum damage is restricted to trees that
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are in poor health. Damage from these three herbivores is highly erratic in space and time due to
these behaviors. The greatest chronic threat to C. micronesica is A. yasumatsui, which can infest the
surface of any soft tissue regardless of organ age. Moreover, this scale pest is the only C. micronesica
herbivore on Guam that can kill a large tree on its own. The introduction and release of the beetle
Rhyzobius lophanthae Blaisdell as a scale predator has been moderately successful in mitigating the
A. yasumatsui damage [14].

The unrelenting infestations of these insects generated numerous changes to the host plant
and habitat diversity. The intrinsic resistance to tropical cyclone damage for this arborescent cycad
species declined [16,17]. Chemistry of leaf litter was changed by the infestations, predicting long-term
alterations of biogeochemical cycling [18]. Decomposing infested C. micronesica leaf and stem tissues
resulted in phytotoxic compounds in soils that inhibited emergence and growth of seedlings of other
plant species [19,20]. For A. yasumatsui in particular, a depletion of non-structural carbohydrates in
vegetative organs preceded plant mortality [21]. A decline in C. micronesica stem carbon dioxide efflux
occurred in response to the decrease in stem carbohydrates [22].

The changes to C. micronesica demography and survival following the A. yasumatsui invasion have
been reported from a single northwest Guam locality [23]. Seedlings were killed the first year and
juveniles were killed within about three years after A. yasumatsui infestations were documented
in the habitat. The 2011 plant population exhibited 92% mortality when compared with the
pre-invasion population. There have been no more reports covering the C. micronesica population
responses since 2011, and there have been no reports that reveal if this single locality was representative
of other areas of occupancy throughout Guam. Indeed, many deficiencies in knowledge about the
manifold changes to Guam’s biodiversity and ecosystem processes have accumulated since 2003
because the volume of research was insufficient to monitor these changes [24].

We established permanent plots throughout various Guam habitats during 2005 as the armored
scale population expanded into every known cycad area of occupancy. Our objective was to employ
annual stem counts within the plots to determine the spatial patterns of plant survival throughout
the island. There were no un-infested habitats on Guam to use as benchmarks, so we used permanent
transects in Yap where the in situ C. micronesica population remains free of any threats as a comparison.

2. Materials and Methods

We monitored the expansion of the A. yasumatsui population from the initial 2003 outbreak site
in the urban landscape on the west coast of Guam into the in situ C. micronesica habitats throughout
the island. This stochastic process occurred during 2005 and the pattern was erratic, especially in
fragmented forest localities. Prior to any observed plant mortality, we selected 12 localities in which
we established 10 permanent 20 × 20 m plots (Figure 1). These plots were purposefully positioned
with a bias toward high density pockets of C. micronesica, as our objective was restricted to long-term
monitoring of host mortality. Therefore, the initial population data were over-estimations of actual
C. micronesica density within each locality.

Stem counts were conducted when each plot was established, and the data were recorded in three
size categories. All plants with stems less than 10 cm in height were counted as seedlings. All plants
with stems between 10 and 100 cm in height were counted as juveniles. Our formal cycad research on
Guam began in 1997, and throughout 23 years of observations we have not seen any strobili on in situ
C. micronesica plants less than 100 cm in height. All stems greater than 100 cm in height were counted
as adults. We visited each of the 120 plots one time within each calendar year until January 2020 to
provide 15 years of data. The stem counts occurred in synchrony (within one week) for each year but
at different times among the years.

In order to assess the long-term trends in survival, a repeated measures analysis of variance was
used (PROC MIXED, SAS Institute, Cary, NC, USA). Each site was treated as a replication for this
analysis, so there were 12 replications per year. We used the heterogeneous first-order autoregressive
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mode (ARH(1)) with unequal variances for each year. We used a Bonferroni correction factor to
compare means among years.

The demography results did not conform to requirements for an analysis of variance because the
stem counts for seedlings and juveniles were zero for many of the years. We used scatter plots to depict
the survival trends with mean ± SE for each demographic group
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Figure 1. Location of 12 permanent localities on Guam in which the. Cycas micronesica population was
observed from 2005–2020.

The role of geographic location on plant mortality for 15 years post-invasion was assessed with a
two-way analysis of variance of data from 2005 and 2020, with longitude as one factor and latitude
as a second factor. Numerous plots in 2020 contained no live plants, so we calculated a single
response variable as (1 − 2020/2005) × 100 for each plot in order to enable analysis of variance (PROC
MIXED, SAS). Means separation for significant factors was conducted by Tukey’s honestly significant
difference (HSD) test.

We reconnoitered the island of Yap in 2008 to locate three disjunct C. micronesica areas of occupancy.
These habitats were used for our Guam benchmark by establishing three belt transects in each area
of occupancy in June 2010. The transects were 4 × 50 m and were not positioned with any bias so
that they represented a random assessment of the forest trees. Therefore, the data estimated the true
C. micronesica population in the three areas of occupancy. Demographic data were recorded for each
plant within each transect, including stem height and diameter. In order to standardize the data to
conform to our Guam methods, we separated the stem counts into the three size categories described
for Guam’s seedlings, juveniles, and adults. The stem count and demographic data were obtained
from the permanent transects in 2010, 2011, 2015, 2016, and 2018. The data were presented as a scatter
plot with mean ± SE for each demographic group and each year of counts.
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3. Results

3.1. Guam Survival

The stem counts differed among the years between 2005 and 2020 (F = 25.73, p < 0.001). The stem
count differed between each successive year from 2005 and 2011 (Figure 2). The means were not
different between 2011 and 2012, and between 2013 and 2015. Stem count differences were again
significant between each successive year from 2015 and 2020.

There were two clear inflection points in the survival curve at which the rate of mortality abruptly
decreased. The first inflection occurred in 2008 after three years of pressure from the non-native insects
(Figure 2). A second inflection occurred in 2011 (Figure 2 insert). Guam’s population of C. micronesica
experienced mortality of more than 1100 stems per ha per year from 2005–2008, and 70 stems per ha
per year from 2008–2011. A relatively stable loss of 14 stems per ha per year occurred from 2011–2020.
The 2020 census indicated a mean of 96% mortality of Guam’s pre-invasion C. micronesica population.
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Figure 2. The number of Cycas micronesica stems per ha (all size categories) among 12 Guam habitats
from 2005 until 2020. The inset shows results from 2008 until 2020 with smaller vertical axis range.
Markers with the same letter are not different according to Bonferroni comparisons.

3.2. Guam Demography

The entire seedling population was killed between 2005 and 2006 (Figure 3). No adult trees were
killed during this period, and only 9% of the juveniles were killed. The juvenile population was
decimated between 2006 and 2008 when they died at a rate of 550 stems per ha per year. Less than 5
juveniles per ha persisted until 2014 when 100% mortality occurred. The fastest rate of mortality for
the adults also occurred between 2006 and 2008 when they died at a rate of 390 stems per ha per year.
The curve for adults (Figure 3) mirrored the curve for the entire population (Figure 2) from 2014 until
2020 because no seedlings or juveniles persisted. Our annual interval between plot visits did not
allow us to determine if there were ephemeral seedling additions that emerged and died between two
successive visits.
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3.3. Guam Spatial Relations

Mortality of C. micronesica did not vary by latitude (F = 2.15, p = 0.089), but did vary by longitude
(F = 70.57, p < 0.001), where mortality was ≈ 4% greater in the west sites than in the east sites. Moreover,
the east-west gradient in mortality was exacerbated in southern sites as evidenced by a significant
interaction between latitude and longitude (F = 3.66, p = 0.012). Mortality ranged from 93.1% for E5 to
100% for W4 and W6 (Figure 4). There were no differences among the east habitats, and four partially
overlapping groups occurred among the west coast habitats.
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(upper number for each site) and the percent mortality between 2005 and 2020 (lower number for
each site). Mortality means with same letter are not different according to Tukey’s honestly significant
difference, n = 10.

3.4. Yap Demography

The plant size category exerted a strong influence on C. micronesica population dynamics in Yap.
The number of juvenile (3400 per ha) and adult (1251 per ha) stems did not change between 2010 and
2018 (Figure 5). In contrast, the number of seedlings was highly erratic among the years. The successive
counts in which increases in seedlings occurred were a result of synchronized seed maturation,
dispersal, and germination events. The successive counts in which decreases in seedlings occurred
were a result of widespread seedling mortality. This amounted to loss of 1980 seedlings per ha from
2010 to 2011 and 1470 seedlings per ha from 2015 to 2016.
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4. Discussion

The damage from invasive species is a leading cause of declines in biodiversity, and may be a
prominent component of the threats that lead to the addition of species to the United States Endangered
Species Act (ESA) [25]. Our case study is an archetypal example of a culturally and ecologically
important island tree species that served as a foundation species with no threats prior to 2003. Thereafter,
insect invasions to several islands within its indigenous range lead to its addition as Threatened to the
ESA and as Endangered to the International Union for Conservation of Nature Red List [26,27].

4.1. The Islands

The C. micronesica areas of occupancy in Yap are homogeneous and are supported by soils which
were formed in residuum and derived from green, chlorite, and talc schist of basalt origin [28]. The areas
of occupancy in Guam are heterogeneous and are supported by several soil series. Most of these soils
are coralline and include karst soils formed in slope alluvium overlying limestone, clay soils formed
from sediment overlying limestone on uplifted plateaus, and sands formed in water-deposited coral
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sand [29]. In addition to these alkaline soils, some areas of occupancy occur on acidic volcanic soils
formed in residuum derived from tuff [29]. The emergent canopy of Yap forests is taller than that of
Guam forests because of the differences in frequency of damaging tropical cyclones. Research and
conservation activities are efficacious and simple in Yap because permission from the landowners
is more positive and less cumbersome than in Guam. Much of the cycad habitat in Guam occurs
within federal properties, and the prerequisites for gaining access to and research within these habitats
is inhibitory.

4.2. Longitude and Fragmentation

The first island to experience the A. yasumatsui invasion was Guam, and we have shown that the
infested C. micronesica plants within habitats on the west of Guam have died at a greater percentage
between 2005 and 2020 than plants within habitats on the east of the island. In the early years of
mortality this may have been due to the timing of initial entry of A. yasumatsui into each area of
occupancy. The initial urban outbreak site was on the west coast, and on average the west coast in
situ habitats experienced A. yasumatsui infestations much earlier than east coast habitats. The beetle
predator R. lophanthae was released by a team of island biologists in each habitat as the A. yasumatsui
population spread throughout the island [30]. Due to the moderately effective predator control, we do
not believe the earlier timing of initial scale infestations in west coast habitats caused the long-term
increase in plant mortality for these habitats. Movement of A. yasumatsui crawlers occurs by way of
wind and hitchhiking on humans and other animals [31], and both of these means of dispersal likely
influenced the movement throughout Guam. First, Guam’s trade winds occur from the east for most
days of the year. We believe these winds delivered sustained incoming scale crawlers to the west coast
habitats which caused the predator control to be less effective than on the east coast habitats where new
wind-vectored scale crawlers were less likely to occur. Second, the west coast is characterized by coastal
roads or numerous corridors of large-scale human movement that extend to the coast. These corridors
are frequented by human activity for commerce or leisure activities. In contrast, large expanses of the
east coast are devoid of coastal roads or any type of corridor, limiting human movement within large
areas of forest habitat. Therefore, we believe the predator population was able to expand at a rate that
kept pace with the early years of expansion of the scale population in the east coast habitats, and the
more efficacious biological control that resulted explained the lower percentage of plant mortality in
the east coast habitats.

Most of the C. micronesica plants in the northern portion of Guam occurred in large areas
of occupancy. For example, the plants from the W2 habitat were contiguous with coastal cycad habitat
that extended up the west coast to the northern point of the island then down the east coast to the
E3 habitat. In sharp contrast, the W4, W5, and W6 habitats were located within disjunct forest fragments
of various sizes. The combination of fragmentation and location on the west of the island led to the
greatest level of mortality, with two of the southwest habitats experiencing 100% mortality within all
10 plots. We introduced R. lophanthae into each of these habitats when the A. yasumatsui population was
first noticed. Therefore, the disparity in plant mortality among fragmented localities may indicate that
plant damage from armored scale herbivory was not influenced by the size of each area of occupancy,
but the beetle’s predation efficacy benefitted from large expanses of its prey among contiguous forests.

4.3. Bigger Is Definitely Better

The effect of plant size on speed of mortality following A. yasumatsui damage among our 12
Guam localities corroborated our earlier report [23]. The seedlings reached 100% mortality first,
the juveniles reached 100% mortality second, and the persisting plants were restricted to adults.
These demographic controls over speed of mortality were founded in the resource depletion methods
that A. yasumatsui employs to kill its host [21]. Larger individuals began their infestation with a
substantive pool of resources, smaller individuals began their infestation with a limited pool of
resources. However, the speed of seedling mortality occurred for three other known reasons. First, the
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damage by A. yasumatsui to the seedlings was not restricted to infestation of petiole and leaflet surfaces.
Seeds of this and other Cycas species are platyspermic, and germinate by opening a longitudinal cleft
to expose the gametophyte and allow the coleorhizae to extend [32]. Direct A. yasumatsui infestation
of exposed coleorhizae, radicle, and gametophyte surfaces added to the speed of seedling resource
depletion. Second, for unknown reasons the R. lophanthae predator avoided the lowest strata in Guam’s
forests [33,34], so predation of the armored scale was less effective in the stratum where the seedlings
were restricted. Third, the olfactory signals from seedling leaves infested with A. yasumatsui were less
attractive to R. lophanthae adults than were the signals from adult leaves infested with A. yasumatsui [35].

4.4. Looking Forward

4.4.1. Prognosis

We have defined pre-invasion spatial aspects of the genetic diversity [36] and plant frequency
(Figure 4, 2005 data) of C. micronesica throughout the portions of Guam that are non-federal lands.
However, Volis and Deng [37] contend that large-scale conservation efforts such as these should follow
an initial determination of demographic relations of a threatened plant species. We have conformed
to this assertion by reporting the demography of a heavily studied locality in northwest Guam [23].
The pre-invasion C. micronesica population exhibited high regeneration and recruitment potential with
a majority of the population being represented by young plants. The invasions of the non-native
insect herbivores led to 92% mortality by 2011 and predicted localized extirpations by 2019 [23].
However, these same habitats contain living trees in 2020, so the 2011 projections from that locality
were not accurate as mortality rate was reduced after 2011. Interestingly, the 2011 data from our
12 habitats throughout Guam indicated 93% mortality and predicted extirpations by 2015. Therefore,
the northwest Guam locality [23] was losing plants at a slower pace from 2005–2011 than were the 12
permanent localities discussed herein.

The prognosis for Guam’s population of this culturally and ecologically important native tree
species does not look favorable. A projection of our 2011–2020 survival curve indicates extirpation
from these 12 habitats will occur about 2032. However, this projection is based on an assumption that
the current rate of plant mortality will remain stable, and this is not likely to occur. There have already
been inflection points in 2008 (Figure 2) and 2011 (Figure 2 inset) when plant mortality abruptly slowed
down, and one or more inflection points may occur again in the future as the persisting plant population
becomes increasingly comprised of more resistant genotypes. Moreover, a fortuitous invasion of a new
biological control organism or irruption of a resident biological control organism population may occur
in the future. For example, we have introduced and released thousands of Coccobius fulvus Compere
& Annecke and Aphytis lingnanensis Compère parasitoids and have never been able to confirm that
these parasitoids established on Guam [30,33]. Due to the ubiquity of A. yasumatsui throughout the
island, the successful establishment of these parasitoids is possible and our inability to document
their presence may have been due to an extended lag phase comprised of a constrained parasitoid
population. If the R. lophanthae population declines for some reason in the future, the direct competition
for the A. yasumatsui resource may subside such that any resident parasitoid species may increase in
efficacy as biological control agents.

The capacity to fully assess the conservation status of this arborescent cycad species on the island
of Guam is damaged by the missing data from the vast portions of Guam that are under federal control.
These lands include the large area between W4 and W5 and the entire portion of the island north of E1
and W1 (Figure 1). The heavily studied locality that provided substantial historical information for
understanding the biology and conservation of this species [17,23,38–44] was located on these federal
lands. We lost access to the locality and our other permanent plots within federal lands in 2015 when
C. micronesica was added to the ESA [27]. To our knowledge, there have been no sustained studies that
contain pre-invasion benchmarks that directly inform the extent of ongoing plant mortality within
the major areas of occupancy on any of Guam’s federal lands. This missing information due to lack
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of access by international experts reduces their ability to fully assess the conservation status of the
species and improve adaptive management decisions for species recovery.

The only two localities that reached localized extirpation (100% mortality in all 10 plots) during the
study timeline were isolated localities at the beginning of the study. This new knowledge may inform
conservation management decisions when conservation funds are severely limited. For example, if the
goal of stakeholders is to save the greatest number of in situ cycad plants, then conservation mitigation
actions should focus on locations within large contiguous populations. Alternatively, if the goal is
to save the greatest genetic diversity of the threatened cycad species, then conservation mitigation
actions should focus on locations that are fragmented and isolated, as these are the most vulnerable to
rapid localized extirpation.

4.4.2. Future Directions

The indigenous range of C. micronesica includes Palau, Yap, Guam, and Rota [26]. Our focus
on Guam and Yap was because Guam was the first island to be invaded by A. yasumatsui while Yap
remains the only island without any of the invasive insect herbivores. The differences among the four
island groups could be exploited to more fully understand the conservation needs for this arborescent
cycad species. In addition to the insect herbivores, Guam’s trees are also damaged by non-native
feral pigs (Sus scrofa L.) and non-native wild deer (Rusa marianna Desmarest) [14]. Rota’s trees are
being threatened by A. yasumatsui and C. pandava only. Palau’s in situ habitats remain free from any
non-native biological threat, but the urban populations of C. micronesica and other Cycas species are
suffering from A. yasumatsui infestations.

Our methods did not enable the construction of adequate stage-structured Lefkovitch [45] or
Leslie [46] matrix population modeling. Palau’s areas of occupancy are limited in size and disjunct,
but numerous sites in Guam, Rota, and Yap still contain large areas of occupancy with enough stems to
lend themselves to matrix population modeling as the plant mortality continues into the future.

4.5. Benchmarks

The population dynamics from Yap C. micronesica localities revealed a healthy population with
high recruitment potential, analogous to the less dense pre-invasion Guam population. We did not
follow seedling death and germination for each individual female tree within the Yap transects, but
our observations indicated that recruitment from the seedling to sapling stage was under control of
Janzen-Connell effects [47,48], where proximity to a mature tree and sibling seedlings caused death
prior to the three-leaf stage for most seedlings. A plant species may become constrained by these effects
after the habitats suffer from loss of a seed dispersal organism. These phenomena explained the drastic
increases and declines in the seedling counts with each successive census (Figure 5). This information
may be of value in formulating future restoration actions by Guam’s conservation agencies. The acute
threats to the species are currently restricted to the non-native herbivores, and until these threats are
effectively mitigated, we believe there is no justification for using available conservation funds for
other activities [49]. However, if the non-native herbivores are brought under biological control at
some point in the future, active restoration of the Guam populations may include reintroduction of
plants to replenish the former areas of occupancy. International species experts are curating ex situ
C. micronesica germplasm collections with Guam genotypes in Florida, Philippines, and Thailand.
These collections are available to produce seeds for reintroduction to appropriate localities throughout
Guam. Our Yap observations indicate that establishment and persistence of the reintroductions may
be most successful if the planting sites are not close to mature persistent C. micronesica trees.

Benchmarking is the use of a point of reference to expand knowledge for improving
performance [50], and is important for successful conservation practice [24,51]. Our approach
to establish plots in 2005 within each area of occupancy enabled those pre-invasion data to serve as one
benchmark for understanding the plant population responses in the past 15 years. The use of Yap’s
unthreatened C. micronesica population as a second benchmark has magnified our ability to expand
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conservation knowledge to inform adaptive management of this culturally and ecologically important
gymnosperm tree.

The benchmarks, the persisting non-native herbivore threats, the failures in establishing a complex
biological control program to date, the sustained plant mortality, and the mis-directions of the currently
funded conservation activities collectively indicate C. micronesica has been added to the list of what
Janzen called the “living dead” pool of forest species [52–54]. Living dead tree species are present,
physiologically active, but not ecologically functional [55]. If they produce flowers or strobili, they often
fail to set seeds. If they do produce seeds, there is no appreciable dispersal. If the seeds germinate,
the seedlings are killed by insidious threats or are lost to attrition before recruiting to the juvenile
stage. The living dead tree species show up in biodiversity surveys sometimes in substantial numbers,
allowing uninformed assessors to opine that they are not endangered, even though they are [52].

5. Conclusions

The invasions of several non-native insect herbivores to Guam from 2003–2005 initiated
island-wide mortality of the C. micronesica population. Population demography strongly influenced
initial mortality dynamics, and the rate of mortality slowed after all seedlings and most juveniles
were killed. Mortality was greatest in west coast areas of occupancy and in isolated forest fragments.
Our observations confirm that the only high priority activity to conserve this living dead tree species is
to heed the 2005 prognosis [30] to establish a complex integrated biological control program under the
direction of scientists with appropriate international expertise. Anchoring future conservation models
with the knowledge that plant size and habitat traits influence susceptibility of cycad plants to non-native
herbivore pressures will increase their power for informing conservation management decisions.
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