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Abstract: The Triatominae subfamily includes 151 extant and three fossil species. Several species can
transmit the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease, significantly
impacting public health in Latin American countries. The Triatominae can be classified into five
tribes, of which the Rhodniini is very important because of its large vector capacity and wide
geographical distribution. The Rhodniini tribe comprises 23 (without R. taquarussuensis) species
and although several studies have addressed their taxonomy using morphological, morphometric,
cytogenetic, and molecular techniques, their evolutionary relationships remain unclear, resulting
in inconsistencies at the classification level. Conflicting hypotheses have been proposed regarding
the origin, diversification, and identification of these species in Latin America, muddying our
understanding of their dispersion and current geographic distribution. Clarifying these factors can
help for the design of vector control strategies. The aim of this review is to depict the different
approaches used for taxonomy of the Rhodniini and to shed light on their evolution and biogeography.

Keywords: Triatominae; Chagas Disease; Rhodnius; Psammolestes; evolution; taxonomy;
Rhodniini; biogeography

1. Introduction

Chagas disease is caused by the protozoan parasite and hemoflagellate Trypanosoma cruzi.
This pathology mainly affects Latin American countries, where there are an estimated 6–8 million
people infected and causes approximately 50,000 deaths per year [1]. The parasite can be transmitted
by insect vectors, blood transfusion, vertical transmission, organ transplantation, laboratory accidents,
and oral route [1,2]. The major transmission mechanism is via contact between humans and the feces
of infected insects of the subfamily Triatominae (Hemiptera: Reduviidae) [1–4]. Human infection
occurs accidentally during urbanization and environmental imbalances (deforestation and habitat loss)
which cause triatomine insects infected with the parasite to invade human dwellings [3–7].

In the Triatominae subfamily, 151 extant and three fossil species have been reported and classified
into five tribes according to their morphological, biological, and ecological characteristics [8,9].
Most subfamily diversity is restricted to Latin America, where 135 species have been described [10]. The
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Rhodniini tribe is one of the most diverse and has 23 described species (20 of the genus Rhodnius and three
of Psammolestes). Within the genus Rhodnius, some species are important vectors of T. cruzi [3,8,11,12],
and some have been found to have the capacity to produce metacyclic trypomastigotes of T. rangeli in
their salivary glands [13–20].

Rhodnius prolixus is one of the main vectors of Chagas disease. Its wide geographic distribution
(extending from Central America through the Andean countries and the Amazon basin), its capacity for
domiciliation, its high dispersion, and its strong vector capacity are a threat to the future of vector control
programs [21–23]. In addition to R. prolixus, three species within the Rhodniini tribe have been found
domiciled: Rhodnius ecuadoriensis in the northern zone of Peru and Ecuador, Rhodnius stali in Bolivia, and
Rhodnius pallescens in Panama. Rhodnius prolixus, R. ecuadoriensis, R. pallescens, and R. stali are infected
with T. cruzi at prevalence rates of 12.0–82.0% [24–26], 10.0–42.0% [15,27,28], 42.0–87.4% [24,29–33],
and 7.7% [34], respectively. Additionally, R. neglectus and R. nasutus are epidemiologically relevant
species in Brazil, where they often invade and colonize human environments [7,35–37].

Although the taxonomy of the genus Rhodnius has been widely studied, there are controversies
regarding the number of species, the classification of these species into groups, and the phylogenetic
relationships and monophyletic status of these groups. These have arisen from the conflicting results
of morphometric analyses, cytogenetic analyses, and analyses of isoenzyme markers and molecular
markers [8,12,38]. There is also controversy regarding the paraphyly of two genera belonging to the
Rhodniini tribe (Rhodnius and Psammolestes): although morphological differences are present, other
techniques used for taxonomic analysis group Psammolestes with Rhodnius [8,38].

The objective of this review is to describe the current state of knowledge of the phylogenetic and
biogeographical relationships among the species of the Rhodniini tribe and to highlight the need for
new studies to develop a more comprehensive understanding of the systematics of these species.

2. The Rhodninii Tribe: the Current Taxonomy

The Rhodniini tribe is composed of two genera: the genus Rhodnius consisting of 20 species and
the genus Psammolestes consisting of three species (Table 1). Initially, it was proposed that the three
species belonging to the genus Psammolestes should be grouped into a tribe called Psammolestini given
their marked morphological differences compared with the genus Rhodnius [39]. Later the two genera
were grouped into the Rhodniini tribe, based mostly on the presence of tuberosities posterior to the
eyes and bearing in mind that they represented mostly arboreal species with the exception of some of
the Rhodnius [8,40,41]. The Rhodniini tribe has been extensively studied due to its epidemiological
importance and wide geographical distribution. Additionally, members of the genus Rhodnius have
been classified into three groups—pictipes, pallescens, and prolixus—based on geographical distribution,
biogeography, and morphology. Initially these groups were called lineages; however, since their
monophyletic origin has been questioned, the term group is currently preferred [8].

Table 1. Genera and species of the Rhodniini tribe.

Genus Group Species

Rhodnius
pictipes R. amazonicus, R. brethesi, R. paraensis, R. pictipes, R. stali,

R. zeledoni

pallescens R. colombiensis, R. ecuadoriensis, R. pallescens

prolixus
R. barretti, R. dalessandroi, R. domesticus, R. milesi, R.

marabaensis, R. montenegrensis, R. nasutus, R. neglectus, R.
neivai, R. prolixus, R. robustus, R. taquarussuensis *

Psammolestes P. arthuri, P. coreodes, P. tertius

* R. taquarussuensis is currently considered a phenotypic form of R. neglectus.
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3. Geographical Distribution of Members of the Rhodniini Tribe

The Rhodniini tribe has a wide geographical distribution ranging from Central America to the
Southern Cone (Figure 1A). The distribution of species richness within the tribe is unimodal, with
a greater number of species identified towards the northern hemisphere at low latitudes and some
species identified in the southern hemisphere, reaching latitudes of 30◦ south [10].
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Figure 1. Geographical distribution of the Rhodniini tribe (A) Geographical distribution of the genus
Rhodnius (B) Geographical distribution of species within the genus Psammolestes. Each point corresponds
to geographical locations where individuals of each species were identified, these points were reported
in several studies and compilated in a database by Ceccarelli and colleagues. This database was used
to reconstruct the maps in Orange software (v.3.24.1) [42].

The genus Psammolestes has an interesting geographical distribution, and each of the three species
with this genus has a distinct distribution (Figure 1B). Members of this genus are found mainly in
bird nests (Furnariidae and Psittacidae), although they have also been identified in palm trees [43,44].
Psammolestes arthuri is distributed in Colombia and Venezuela. In Colombia, it has been described in
the departments of the Orinoco region and in Venezuela it has been described in 15 different states,
mainly in the plains region [42,45]. The range of P. tertius extends widely in Brazil, mainly in the
Caatinga and much of the Cerrado [44]. Psammolestes coreodes is distributed in the Gran Chaco, and is
widely distributed throughout 11 provinces in Argentina as well as in Paraguay, Bolivia, and the state
of Mato Grosso do Sul, in the Brazilian Cerrado [46].

The geographical distribution of the genus Rhodnius is wider, covering part of Central America
and a large part of South America. Geographical distribution is one of the criteria used for classification
of the previously mentioned groups: species of the group pallescens (trans-Andean) are distributed to
the west of the Andes mountain range (Figure 2A), while species of the groups prolixus and pictipes
(cis-Andean) are distributed east of the Andes and the Amazon region (Figure 2B,C) [8].
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Figure 2. Distribution of species within the genus Rhodnius (A) Geographical distribution of species
of the trans-pallescens group (B) Geographical distribution of species of the cis-prolixus group (C)
Geographical distribution of species of the cis-pictipes group. Each point corresponds to geographical
locations where individuals of each species were identified, these points were reported in several studies
and compilated in a database by Ceccarelli and colleagues. This database was used to reconstruct the
maps in Orange software (v.3.24.1) [42].

In the trans-pallescens group, all species are associated mainly with palms. The species with
the widest geographical distribution in this group is R. pallescens, whose range extends into western
Colombia, Panama, Costa Rica, Belize, and Nicaragua. R. pallescens is mainly associated with wine
palms (Attalea butyracea) and oil (Elaeis oleífera) and has also been found in human dwellings, mainly in
Panama [47,48]. R. ecuadoriensis is distributed in Ecuador and northern Peru and is strongly associated
with human dwellings and with the palm Phytelephas aequatorialis in northern Ecuador, although it has
also been identified in squirrel nests [28,47,49]. Finally, Rhodnius colombiensis is found in Colombia
in the departments of Cundinamarca and Tolima, where it is also associated with the wine palm
A. butyracea [10,46,47,50,51].

The cis-prolixus group has the largest number of species and the largest geographical distribution
of the three groups. Among the species of this group, R. prolixus is the best studied given its
epidemiological importance and has been reported in countries of Central America as well as in
Colombia and Venezuela [12,43,46,52]. As a major vector, R. prolixus is mainly found in domestic
habitats, although jungle populations associated with palms have also been identified in Colombia
and Venezuela [22,52]. Control programs in Central America have achieved both the interruption of
T. cruzi transmission and the direct elimination of R. prolixus, drastically decreasing its distribution
in Mesoamerican countries [40,53–56]. However, the presence of R. prolixus has been reported again
in Mexico, in 2019 [57]. Additionally, some reports of R. prolixus in Bolivia, Brazil, Ecuador, Guyana,
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French Guiana, Panama, and Suriname were erroneous, probably due to confusion with R. robustus
and in central Brazil with R. neglectus [10,58–62].

Another species within the prolixus group with a wide geographical distribution is R. robustus,
whose range extends through Bolivia, Brazil, Colombia, Ecuador, French Guiana, Peru, Venezuela, and
Suriname [10,46,60,61]. Five cryptic species (I–V) have been reported within this species: R. robustus I
is found in Venezuela, while R. robustus II, III, and IV are distributed in the Amazon region spanned by
the previously mentioned countries [61]. There are reports of species of the prolixus group outside of
Brazil with more restricted ranges such as R. barretti and R. dalessandroi. R. barretti has been identified
from different palms in the Napo ecoregion in the western Amazon, the region that encompasses the
lowlands of eastern Ecuador and the adjacent areas of southern Colombia (south of the Caguán River),
and the north from Peru [63]. Rhodnius dalessandroi has only been reported once in the department of
Meta, Colombia [46,56].

The other species of the prolixus group are exclusively Brazilian. R. neglectus, R. nasutus, and
R. domesticus are associated with the Brazilian ecoregions, R. neglectus is dispersed in the Cerrado and
São Paulo state, R. nasutus in the arid regions of the Caatinga, and R. domesticus in the Atlantic forest.
The first two species are found in palm trees and bird nests, while R. domesticus has been identified
in bromeliads [7,40,46,56,64]. Rhodnius montegrensis has been found in two states of Brazil (Acre and
Rondonia), while the ranges of R. milesi and R. marabaensis are limited to the state of Pará [65–67].
Rhodnius taquarussuensis n.sp. was initially proposed as a new species in Taquarussu (Mato Grosso do
Sul), but is currently considered a phenotypic form of R. neglectus [68,69].

Finally, the cis-pictipes group also has a wide geographic distribution. Within this group, R. pictipes
has the widest geographical distribution of the entire Rhodniini tribe, extending throughout the
Amazon basin (north and northwest of South America) in association with different palms. There
have been reports of this species in Belize, Bolivia, Brazil, Colombia, Ecuador, Guyana, French Guiana,
Peru, Suriname, Trinidad, and Venezuela (Figure 2C) [10,40,46,60]. The species with the next-widest
distribution is R. brethesi, which is characterized by its association with the palm Leopoldina piassaba.
The geographical distribution of this species extends to the Amazon basin in Colombia and Venezuela
and the states of Para and Amazonas in Brazil [10,40,46,47,52,56,70].

Rhodnius stali is distributed in Brazil (Matto Grosso and Acre) and in several provinces of Bolivia,
where it is associated with A. phalerata and is also found in human dwellings, primarily in Alto Bení
(Bolivia) [40,43,44,46,71]. Rhodnius neivai is found on fallen tree trunks and in the crowns of the llanera
palm (Copernicia tectorium) in Colombia and Venezuela [47,56]. Rhodnius amazonicus and R. paraensis are
distributed in French Guiana and Brazil, where R. paraensis has been found in nests of arboreal rodents
of the genus Echimys [11,56,58]. Finally, R. zeledoni was identified in a single report in the northeast of
Brazil in the state of Sergipe [72].

4. Taxonomic and Phylogenetic Studies of the Rhodniini Tribe

The taxonomy and systematics of the Rhodniini tribe are complex. Efforts to classify the species of
this tribe date back to the middle of the 18th century, at which time R. prolixus, R. pictipes, and R. nasutus
were first described. The most studied species is R. prolixus. Since its life cycle is relatively short
compared with other triatomines, it has been used as a biological model for studies of the physiology
and biology of the Triatominae [40]. In addition to morphological studies, cytogenetic, isoenzymatic,
and molecular studies have all been applied to members of the Rhodniini tribe, providing different
levels of resolution in the study of their specific relationships [40]. However, it should be noted that
many of these studies have focused only on the differentiation or analysis of selected species and few
attempted to clarify the relationships among all members of the tribe.

4.1. Morphological Studies

Taxonomic classification of the Rhodniini tribe was initially based on morphological similarities and
differences between species and included biogeographical aspects. However, one of the main limitations,
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especially for the Rhodniini tribe, was low morphological variability between species [8,41,73].
The characters that have been classically used for classification of the Rhodniini tribe were generally
size, color, or patterns of coloration in some parts of the insect, and aspects of the cuticle. Additionally,
various characters are used at the level of the head, thorax, abdomen, and legs [41,74]. New characters
have been proposed for identification of triatomines and have been applied to the Rhodniini tribe.
These include the spermatheca, geometric morphometry of the wings, morphology of abdominal
segments IX and X, coloration of the salivary glands, and morphology of the genitalia. Use of some of
these new characters has enabled differentiation at the level of the tribe presence of nitrophorins that
confer red coloration to the salivary glands of the Rhodniini tribe and the morphometry of the wings
as well as at the intra-specific level of the genus Rhodnius (Form of the female genitalia) [74–78].

The inclusion of the genera Rhodnius and Psammolestes within the Rhodniini tribe was based
on their mainly arboreal behavior and the presence of post-ocular tuberosities in members of both
genera. The latter feature is exclusive to both genera [41]. Between the two genera, differences can be
observed in the morphology of the head and the shape of the femurs. However, these characters were
insufficient to accurately reconstruct a cladogram and investigate relationships between the genera
(Figure 3) [8,40,41].
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Figure 3. Morphology of the head and complete body of genera of the Rhodniini tribe (A) Morphology
of the genus Psammolestes (P. tertius) (B) Morphology of the genus Rhodnius (R. prolixus). The images
were supplied by João Aristeu da Rosa (Co-author of this manuscript).

In the genus Psammolestes, the morphology of the head, antennae, pronotum, genitalia of the males,
and their phallosoma represent characters enabling identification of the three described species [24].
In the case of the genus Rhodnius, morphological characters enabling species differentiation are
very few and can be affected by phenotypic variability. These characters also vary in association
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with environmental changes yielding minor changes, which have been postulated to contribute to
misclassification of species [12,38,40,46].

The cis-prolixus group presents very little morphological variability (Figure 4A). Thus, the
feasibility of species identification using morphological characters has been questioned. There have
even been mistakes in distinguishing R. prolixus and R. robustus, because the most useful difference
between them for classification lies in the coloration of the hind tibiae of nymphs IV and V [41,61,79,80].
Additionally, the identity of some species within the prolixus group has been questioned: (i) R. milesi
and R. taquarussuensis due to their similarity with R. neglectus; (ii) R. montenegrensis and R. marabaensis
due to similarities with the cryptic species R. robustus II and III, respectively and (iii) R. dalessandroi
due to morphological similarities with R. brethesi (group pictipes) and R. robustus [38,41,56,68,69]. With
respect to coloration patterns, R. neivai differs from other species in the group by its dark coloration,
and a dark black morphotype of R. nasutus has been identified with size variations in accordance with
the environment and colonized palm trees [41,81,82].
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Figure 4. Morphology of species within the genus Rhodnius. (A) cis-prolixus group species,
R. taquarussuensis is currently considered a phenotypic form of R. neglectus, (*) indicates that R. nasutus
has two isoforms (B) cis-pictipes group species (C) trans-pallescens group species. The images were
obtained by João Aristeu da Rosa. The morphology of R. barreti can be observed in Abad-Franch et al.,
2013 [63] and R. dalessandroi, R. paraensis and R. zeledoni can be found in Jurberg et al., 2014 [83].

More morphological differences are observed between members of the group pictipes (Figure 4B).
The validity of the species R. amazonicus has been questioned because it was documented in only
a single original report and differences with respect to R. pictipes were not evident [41]. However,
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subsequent reports in French Guiana and Breves, Pará, Brazil reaffirmed the characteristics observed
in the original report [11,58,84]. Rhodnius zeledoni was also described in only a single report and is
thought to be more similar morphologically to R. domesticus (group prolixus) than to members of the
group pictipes and correspond to a poorly-preserved adult male therefore, currently it is difficult to
validate its identity as a species [8,72]. Rhodnius brethesi differs from the remainder of the tribe by
the size of the second antenna segment, which is longer than the third and the red or orange spots
on the connexivum [41]. Finally, the pallescens group is composed of three morphologically very
similar species. However, R. colombiensis was initially confused with R. prolixus of wild origin due to
morphological similarities [56]. Rhodnius ecuadoriensis is characterized by its smaller size (Figure 4C).
However, it has been proposed that this species should be grouped with R. pictipes due to the similarities
of their antennal sensilla [56,85].

4.2. Cytogenetic Studies

In the Rhodniini tribe, the number of chromosomes is homogeneous in all of the 17 species
analyzed so far (14 species of Rhodnius and three of Psammolestes), which were representative of the
two genera and the three groups of the genus Rhodnius. Thus, the diploid chromosome number of the
Rhodniini tribe is made up of 20 autosomes and the XY sex chromosomes; variations are observed
between the Triatomini and Bolboderini tribes in the number of autosomes and sex chromosomes
present in species and complexes [40,86–89]. Nucleolar persistence has also been observed during
meiosis, as reflected by the presence of nucleoli or nucleolar corpuscles during the meiotic metaphase
in 15 members of the tribe (P. tertius, R. brethesi, R. colombiensis, R. domesticus, R. ecuadoriensis, R. milesi,
R. montenegrensis, R. nasutus, R. neglectus, R. neivai, R. pallescens, R. pictipes, R. prolixus, R. robustus, and
R. stali) [90,91]. Flow cytometry measurements of genome size have been performed in four species of
the tribe (R. ecuadoriensis, R. colombiensis, R. pallescens, and R. prolixus) and indicated sizes of 0.72, 0.58,
0.73, and 0.75 picograms of haploid DNA, respectively, smaller than all other triatomines [87,92,93].

Studies at the genus level in Psammolestes have shown that in all three species, heterochromatin
and AT repeats are present in the Y chromosome. The chromocenter is formed by the sex chromosomes
and autosomal heterochromatin is absent [40,44,87]. Studies of the genus Rhodnius have demonstrated
the presence of autosomal heterochromatin in R. pallescens, R. colombiensis, R. domesticus, R. nasutus,
R. taquarussuensis, and its absence in R. brethesi, R. ecuadoriensis, R. pictipes, R. neglectus, R. prolixus,
R. robustus, and R. montenegrensis. In species that have constitutive heterochromatin, usually very
tiny C-bands are observed [40,87,89,92,94]. However, in spite of the homogeneity of cytogenetic
characteristics observed in the tribe, intra- and inter-specific differences exist in the chromosomal
location of ribosomal genes. Two patterns of location have been observed: one on both sex chromosomes
X and Y (P. tertius, R. domesticus, R. neglectus, R. neivai, R. milesi, R. pictipes, R. pallescens, and R. stali)
and another only on the X chromosome (R. nasutus, R. prolixus, R. robustus, R. colombiensis, and R.
ecuadoriensis). In R. ecuadoriensis, both patterns were observed in populations from Peru and Ecuador.
Analysis of ribosomal genes using cytogenetic techniques can be a useful marker of recent divergence
of species or populations and allowed the formulation of two hypotheses regarding the evolution of
ribosomal gene patterns, which may be due to: (i) loss of the loci in the Y chromosome, with the XY
pattern representing the ancestral state; or (ii) partial transfer of genes from the X to the Y chromosome
through mechanisms of transposition or ectopic recombination between sex chromosomes [95,96].

There is clear utility in analyses of heterochromatin C at the intraspecific level (e.g., for Triatoma
infestans and Panstrongylus geniculatus) [40,97,98]. Cytogenetic analyses have been applied to different
specimens of R. pallescens obtained from different geographical locations in Colombia and Panama, and
revealed intraspecific variability: two cytotypes were described differing in terms of size, number and
distribution of heterochromatin C during mitosis and meiosis. The frequencies of cytotypes varied in
relation to the ecological and geographical characteristics of collection sites. Additionally, the cytotypes
were consistent with morphological differences in size, morphometry of the wings and characters of
the head [92,99]. Finally, cytogenetic characteristics (number and size of chromosomes, autosomal
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heterochromatin, and sex chromosomes) have also been used to evaluate intraspecific variability of
different populations of R. prolixus and R. neglectus and no variation in cytotypes was observed with
respect to the ecological and geographical characteristics of the populations analyzed [100].

4.3. Isoenzymatic Studies

Isoenzyme analyses have also been applied to species of the Rhodniini tribe, although few
cross-sectional studies have examined all species at once. The first phylogenetic study addressing in
several species of the Rhodniini tribe (R. brethesi, R. ecuadoriensis, R. nasutus, R. neglectus, R. pallescens,
R. prolixus, R. pictipes, and R. stali) analyzed 12 enzymes, and the results of the analysis of distances and
genetic variability allowed the grouping of species into the three groups currently known, in agreement
with their geographical distribution [101]. Differently, one study proposed that Rhodnius species should
be classified into only two groups: prolixus and pictipes, with the pictipes group including members
of the group pallescens [80]. In addition, other isoenzymatic studies also showed that: (i) R. stali and
R. pictipes despite their morphological similarities and geographical proximity are different species (ii)
R. nasutus and R. neglectus are very closely related, indicating that their speciation probably occurred
very recently, and that (ii) wild specimens erroneously identified as R. prolixus in Tolima (Colombia)
were placed within the group pallescens and not with R. prolixus, and that they therefore could represent
a new species that is known today as R. colombiensis [101,102]. Subsequently, two isoenzyme studies
were published and included the species P. coreodes [103] and P. tertius [80] along with species of
the three groups of the genus Rhodnius. In these studies, it was not possible to define the species
status of Psamolestes in the tribe, because these species showed paraphyly with Rhodnius [80,104].
Another isoenzyme studies, addressing in species of the genus Rhodnius, showed that R. prolixus and R.
robustus had identical electrophoretic patterns and were not reproductively isolated, however by using
salivary, heme proteins was possible to differentiate these species [40,80,104–106]. The species status of
R. neglectus was confirmed by genetic distance analysis and reproductive isolation although only one
locus allowed its differentiation with R. nasutus [104,106].

4.4. Random Amplification of Polymorphic DNA (RAPD)

With the advent of molecular techniques based on DNA, the use of high resolution markers, such
as random amplification of polymorphic DNA (RAPD), became possible. This technique was used
mainly for differentiating species of the tribe where morphological and isoenzyme differentiation was
not possible (e.g., R. prolixus vs. R. robustus, R. ecuadoriensis vs. R. pictipes, and R. nasutus vs. R. neglectus).
The electrophoretic patterns by RAPD allowed differentiation of all six species [107]. Additionally,
RAPD was used to compare populations of domestic R. prolixus from Central America (Honduras) and
South America (Colombia). RAPD electrophoretic patterns differed according to geographic location
and showed that genetic variability was greater in specimens obtained from Colombia. Thus, it can
be deduced that the Central American specimens were derived from those in South America; this
conclusion was reached not only from the results of RAPD but also based on differences in morphology,
because the specimens from Honduras were smaller. Finally, an isoenzymatic analysis showed no
differences between the two types of specimens, suggesting a common origin [108]. However, RAPD
studies also showed that R. prolixus (domestic) and R. colombiensis (wild) have different electrophoretic
patterns, suggesting no genetic flow and that the effective migration rate between the species is
insufficient to maintain genetic homogeneity in the two species [109]. RAPD has also been used to
evaluate intraspecific genetic variability of populations of P. tertius of differing geographic origins
in Brazil. One study found differences in electrophoretic patterns in association with geographic
origin, and these results were supported by differences in isoenzyme patterns and morphological
features [110].
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4.5. Microsatellites

Microsatellite markers have also been used in the Rhodniini tribe, mainly with the aim of analyzing
intraspecific variation given the high resolution of these markers. A scheme of 10 microsatellite loci
was designed based on DNA sequences of R. prolixus and its amplification was tested in 10 species of
the genus Rhodnius. Amplification of all loci was successful in R. robustus and in 6–9 of the species
of the prolixus group, while in species of the groups pallescens and pictipes, amplification of more
than three loci was not achieved [111]. Subsequent studies have used microsatellites to analyze
intraspecific genetic structure in different populations of R. pallescens [111,112], R. nasutus [36], R.
ecuadoriensis [113], and R. prolixus [22]. In populations of R. pallescens, field and laboratory specimens
have been compared, and laboratory colonies of R. pallescens showed a different genetic structure than
their wild relatives [112]. Studies of microsatellite markers in R. nasutus and R. ecuadoriensis showed that
populations of these species from different geographic locations had genetic differences. For R. nasutus,
four differentiated groups were revealed in eight geographic localities of the Brazilian Caatinga [36],
and for R. ecuadoriensis, specimens in two biogeographically distinct localities of Ecuador had distinct
genetic structures in association with other phenotypic differences [113]. Given its epidemiological
importance, microsatellite markers were analyzed in wild and domestic populations of R. prolixus
from Venezuela. No genetic differences were found, reflecting a high risk of wild populations easily
invading human habitations [22].

4.6. Sequencing of Mitochondrial and Nuclear Markers

Improvements in sequencing technologies have enabled the analysis of mitochondrial and nuclear
DNA markers. Analysis of these markers has been applied in several species of the tribe, both for
intra- and inter-species analysis and together with other species of the Triatominae subfamily. Some
of these studies have been carried out in combination with other molecular markers [8,38]. Nuclear
and mitochondrial marker sequencing studies (26 conducted to date) have explored the phylogenetic
relationships among the species of the tribe. Twelve studies explored species of the Rhodniini tribe
and other tribes. The following mitochondrial markers have been evaluated: 16S rRNA (16S ribosomal
RNA), 12S rRNA (12S ribosomal RNA), ND4 (4 subunit NADH dehydrogenase), Cytb (Cytochrome
b), COI (Cytochrome oxidase I), and COII (Cytochrome Oxidase II). The following nuclear markers
have been evaluated: 18S (18S ribosomal RNA), ITS-2 (internal transcribed spacer of ribosomal DNA
2), EF-1α (elongation factor 1 alpha), Wg (Wingless), and 28S rRNA (RNA ribosomal 28S) [8,38,40].
The sequences of the Cytb gene were searched in Genbank using the following Entrez line: “esearch -db
nucleotide -query “<organism> CYTB”|efetch -format fasta” that yielded 226 records corresponding to
13 species of Rhodnius (Table S1) and Triatoma infestans sequence was used as outgroup. The alignment
was made using MUSCLE, correct by hand and the sequence were translated to proteins in order
to verify for stop codons in Mesquite 3.04. A maximum likelihood topology was obtained with the
evolution model HKY + F + I + G4 (BIC score: 6711.067753) in IQ-TREE and node support was
calculated with 1000 ultrafast bootstrap replicates. (Figure 5). In relation to the other tribes (mostly
the Triatomini tribe), the Rhodniini tribe is of monophyletic origin [114–119]. In studies in which
specimens of the Cavernicolini and Borbodelini tribes were included, these tribes were grouped with
the Rhodniini and not with the Triatomini, although all tribes preserved their monophyletic status.
However, it should be noted that some of these studies only included one or two species of the
Rhodniini tribe, given that their focus was not on the Rhodniini tribe but on the subfamily Triatominae
and other Reduviidae [120–125].



Diversity 2020, 12, 97 11 of 28

Diversity 2020, 12, x FOR PEER REVIEW 11 of 31 

 

although all tribes preserved their monophyletic status. However, it should be noted that some of 

these studies only included one or two species of the Rhodniini tribe, given that their focus was not 

on the Rhodniini tribe but on the subfamily Triatominae and other Reduviidae [120–125].  

 

 

Figure 5. Maximum likelihood tree for Rhodnius based on Cytb sequences. The tree was 

reconstructed using sequences of Rhodnius species from GenBank. 

The presence of two groupings within the pictipes group (Table 2) has led some authors to 

propose that the genus Rhodnius should be composed of clades or lineages. Some authors have 

proposed that the lineage prolixus be formed only by species of the group prolixus (named robustus 

lineage for other authors) and that another lineage should be formed by the species of the pallescens 

and pictipes groups called lineage pictipes [7,79,80,126]. Other authors proposed that the prolixus clade 

should be formed by species of the group prolixus and the group pictipes[122].  

The remaining 14 studies focused on evaluating the phylogenetic relationships of Rhodniini 

species only and the grouping of species in particular. In these studies, the number of markers was 

limited to five: two mitochondrial (Cytb and ND4) and three nuclear (28S, AMPg, and ITS-2) [8]. 

Regarding phylogenetic relationships within the tribe, different issues have been identified that have 

been controversial with respect to previous studies: (i) paraphyly of the two genera of the tribe and 

grouping of the genus Psammolestes with members of the group prolixus were observed; (ii) the 

grouping of lineages within the genus Rhodnius was incongruent as well as the assignment of some 

species within groups; and (iii) the validity of some species was questionable due to inconsistencies 

in some phylogenies. These controversial aspects arose from the fact that many studies did not 

address all species of the tribe: most studies were intraspecific and used a limited number of markers. 

The objectives of most studies were limited to describing lineages but did not attempt the accurate 

delineation of all species nor the understanding the evolutionary processes that led to their formation 

[8,38]. 

Several primarily morphological studies established that the Rhodniini tribe is made up of two 

monophyletic genera [41,46,56]. However, in nine studies both nuclear [ITS-2, 28S] and mitochondrial 

cis - pictipes

trans - pallescens

cis - prolixus

Figure 5. Maximum likelihood tree for Rhodnius based on Cytb sequences. The tree was reconstructed
using sequences of Rhodnius species from GenBank.

The presence of two groupings within the pictipes group (Table 2) has led some authors to propose
that the genus Rhodnius should be composed of clades or lineages. Some authors have proposed that
the lineage prolixus be formed only by species of the group prolixus (named robustus lineage for other
authors) and that another lineage should be formed by the species of the pallescens and pictipes groups
called lineage pictipes [7,79,80,126]. Other authors proposed that the prolixus clade should be formed
by species of the group prolixus and the group pictipes [122].

The remaining 14 studies focused on evaluating the phylogenetic relationships of Rhodniini
species only and the grouping of species in particular. In these studies, the number of markers was
limited to five: two mitochondrial (Cytb and ND4) and three nuclear (28S, AMPg, and ITS-2) [8].
Regarding phylogenetic relationships within the tribe, different issues have been identified that have
been controversial with respect to previous studies: (i) paraphyly of the two genera of the tribe and
grouping of the genus Psammolestes with members of the group prolixus were observed; (ii) the grouping
of lineages within the genus Rhodnius was incongruent as well as the assignment of some species
within groups; and (iii) the validity of some species was questionable due to inconsistencies in some
phylogenies. These controversial aspects arose from the fact that many studies did not address all species
of the tribe: most studies were intraspecific and used a limited number of markers. The objectives of
most studies were limited to describing lineages but did not attempt the accurate delineation of all
species nor the understanding the evolutionary processes that led to their formation [8,38].
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Table 2. Characteristics of phylogenetic studies that have evaluated the relationships between groups
of the genus Rhodnius.

Grouping Nuclear
Marker

Mitochondrial
Marker Taxa Reconstruction

Method Reference

pictipes +
pallescens

16S 4 MP Stothard et al., 1998

16S, Cyt b 8 NJ Lyman et al., 1999

16S, Cyt b 15 Schofield and Dujardin,
1999 *±

28S 16S, Cyt b 13 MP, NJ Monteiro et al., 2000

Cyt b 18 NJ Monteiro et al., 2018 ±

28S Cyt b 9 NJ Marquez et al., 2011

Cyt b 12 MP Maia da Silva et al., 2007

Cyt b 5 ML, BI Da Rosa et al., 2012

pictipes +
prolixus

16S, 12S 14 MP, NJ Hypsa et al., 2002

16S 14 MP, ML De Paula et al., 2007 ±

16S 14 MP, ML De Paula et al., 2005

18S, 28S 16S, Cyt b, COI,
COII 10 ML, BI Justi et al., 2014

18S, 28S, Wg 16S 11 ML, BI Justi et al., 2016

* In this study, several markers were consolidated: RAPD, isoenzymes, morphometry and marker sequencing. NJ:
Neighbor-Joining, MP: Maximum parsimony, ML: Maximum likelihood, BI: Bayesian inference. ± In this study, the
sequences were collected from previous studies.

Several primarily morphological studies established that the Rhodniini tribe is made up of two
monophyletic genera [41,46,56]. However, in nine studies both nuclear [ITS-2, 28S] and mitochondrial
(Cyt b, 18S, 12S, and 16S) molecular markers have indicated the paraphyly of Psammolestes and
Rhodnius [38,79,114,115,117,118,122,123,127]. Some studies showed that P. coreodes [79,114,115,117,
122,127], P. tertius [79,114,115,117,122,127] and P. arthuri [123] were grouped with the species of the
prolixus group of the genus Rhodnius, while a neighbor-joining analysis of Cytb sequences indicated
the paraphyly of Psammolestes but not its grouping with the prolixus group [38,123].

Sequencing of molecular markers has detected groupings within the genus that have been
postulated using other markers. However, sequencing did not confirm that the three groups
were monophyletic nor the expected basal location of the pictipes group; these results have been
controversial [40,117]. Some studies have found that the pictipes group is more closely related to
the pallescens group [38,56,79,118,119,126,128], while other studies described topologies in which the
pictipes group is more closely associated with the prolixus group [117,121,122,127]. These differences
in the associations between groups may be due to variability in study characteristics (Table 2):
the number of taxa may be an important aspect that provides greater precision to phylogenetic
reconstructions [121,129].

Within the genus Rhodnius, there are also controversies regarding groupings of species.
One example consists of the associations among species of the group pallescens, since after the
identification of R. colombiensis it was grouped in some studies with R. ecuadoriensis [79,122] and in
others with R. pallescens [38,117,127,130]. The position of R. neivai within the group prolixus has also
been questioned, because some studies have proposed that it should belong to the group pictipes [56]
and others that it should belong to the prolixus group [79,117,127]. In other cases, a clear location was
not identified in any of the groups [38,80]. The validity of the species R. robustus has been strongly
questioned and for that reason phylogenetic studies have been carried out to explore its associations
with R. prolixus, mainly due to the important epidemiological implications of confusing the two species
due to their morphological similarity. Monteiro et al., 2000, conducted a first study using specimens
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of both species and sequenced 28S, 16S, and Cytb. These analyses showed discordances between
morphological identification and phylogenetic grouping of individuals of both species [79].

These confusions in classification of these species led to a second study in which 26 different
specimens of the two species from seven countries of Central and South America were used.
Mitochondrial Cytb sequences were analyzed and the results showed that all specimens of R.
prolixus—both from Central and South America—were grouped into a monophyletic and homogeneous
cluster. By contrast, R. robustus showed a paraphyletic assembly composed of four clades (I–IV)
from two different geographic regions: specimens of R. robustus clade I came from Venezuela and
clades II, III, and IV came from French Guyana and different subregions of the Brazilian Amazon.
Phylogenetic and distance analyses showed two main groups, one formed by R. prolixus and R. robustus
I and another formed by the three remaining clades of R. robustus. This drew attention to the genetic
distance between R. robustus clade I and R. robustus clades II, III, and IV, and to the distance between
R. robustus I and R. prolixus [61]. These groupings and the topology of the two species were replicated
in a study that included 551 specimens from Orinoco and Amazonia [22]. Subsequently, R. robustus
clade V was discovered in the central-north zone of the Amazon and grouped with R. robustus clade
I and R. prolixus [38,131]. Subsequent studies used the term cryptic species for R. robustus instead
of clades or genotypes I–IV and confirmed the paraphyly of this species with R. prolixus. In these
studies, two techniques were used to differentiate the two species: band size of PCR amplicons derived
from Cytb [62] or sequencing the nuclear marker AMPg (a region located in the fourth intron of
transmembrane protein 165) [132]. Other arguments such as loss of fertility (number of eggs per
female) in interspecific crosses favored the differentiation of the two species; however, no overall loss
of fertility was observed (number of females that lay eggs) in these crosses [133,134].

Another study revealed that specimens similar to R. robustus (identified by classical morphometry)
collected in Puerto Asis, Colombia, corresponded according to sequence analysis of Cytb and 28S a
new cryptic species of R. robustus, previously reported in Ecuador (Abad-Franch 2005,111). These
specimens did not group with any other cryptic species of R. robustus and were located as a basal clade
of the prolixus group [126]. However, more recent analyses of Cytb and morphometry indicated that
the previously reported R. robustus is located as a basal clade only of R. robustus clade I and R. prolixus,
and that these specimens do not correspond to R. robustus but rather represent a new species called
R. barretti that is basal to the prolixus group [38,63].

The analysis of Cytb and ITS-2 markers performed by Monteiro et al. has been applied in some
species whose validity has been questioned. However, in some species the number of specimens
analyzed was very limited. The first was R. amazonicus, which was questioned as a potential variant
of R. pictipes; the study showed that this species had an independent origin and did not group with
specimens of R. pictipes. Other species questioned by marker sequencing were R. milesi (because of
its monophyly with specimens of R. neglectus) and R. montenegrensis (because of its location within
R. robustus clade II). However, another study using Cytb sequences identified R. montenegrensis as
an independent species of R. robustus, supported by morphological characters and PCR restriction
fragment length polymorphism analysis of ITS-2 [135]. Several species have also been questioned
due to a lack of information regarding molecular markers, including R. marabaensis, R. taquarusuensis,
R. zeledoni, and R. dalessandroi. Sequencing of Cytb has also enabled identification of species such as
R. stali in A. phalerata palms in Alto Beni, Bolivia, and R. prolixus in A. butyracea palms in Casanare,
Colombia [38].

Finally, Cytb sequencing has also been used to assess intraspecific variability of several species
of the tribe including R. prolixus. The results showed very low genetic diversity and that wild and
domestic specimens shared 7/18 haplotypes found in all analyzed specimens [22]. In 157 specimens of
R. nasutus collected in eight localities of the Brazilian Caatinga, 16 haplotypes of Cytb were detected, of
which two major haplotypes were shared by specimens from five localities with low levels of diversity
observed [36]. In the case of R. ecuadoriensis, 174 specimens from two provinces of Ecuador (Loja and
Manabí) were analyzed and 34 haplotypes were identified, of which only three were shared between the
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two provinces. High haplotype diversity was observed and the model of isolation by distance applied
to the two populations, showing that the populations of the two provinces were highly differentiated
at the genetic level [113]. In R. pallescens, analysis of the Cytb, ND4 and 28S markers in populations
from Panama and Colombia indicated the presence of two evolutionary lineages with genetic and
morphological differences associated with their biogeographical and ecological distribution. It was
even possible to observe genetic variation within lineages. In this manner, the Colombian lineage
R. pallescens clade I could be subdivided into two populations, one from the north and one from
southern Colombia and the Central American lineage R. pallescens clade II, which is composed of
populations collected in western Colombia and different areas of Panama [92,130].

4.7. The Advent of Genomic Data: Genomics and Transcriptomics in the Rhodninii

Recently, additional sequencing tools have been applied to some members of the Triatominae
subfamily and specifically to the Rhodniini tribe to obtain genome and transcriptome data. So far,
the only member of the subfamily whose genome has been sequenced is R. prolixus; its genome was
sequenced with 8× coverage using Sanger and 454 technologies and assembled using the CABOG
program [120]. The genome was composed of 16,537 scaffolds with an N50 of 1.08 Mb, had an
estimated size of 733 Mb and achieved an assembly that was 95% complete, corresponding to 706
Mb without chromosome mapping. The most updated version (October 2017) includes annotation of
15,738 genes and 15,752 transcripts (Rpro version C3.3 in VectorBase) (https://www.vectorbase.org/

organisms/rhodnius-prolixus/cdc/rproc33).
This important approach to the genome of R. prolixus showed that 5.6% of the genome corresponded

to transposable elements and demonstrated the presence of transcriptionally active genes transferred
horizontally from Wolbachia. Exploration of the R. prolixus genome and knockdown experiments
confirmed the presence of genes from different immune pathways (Toll and Imd) and the expansion of
defensins, which function to control the intestinal microbiota but are unrelated to T. cruzi infection.
Finally, comparative analysis of proteins revealed tandem expansions of genes families related to
chemoreception, feeding, and digestion that potentially contributed to the evolution of a blood-feeding
lifestyle [136].

The genome of R. prolixus has been used to search for satellite DNA sequences previously described
in T. infestans using BLAST. The two species share four families of satellite DNA sequences of the
42 that are present in T. infestans, suggesting that their genomes are highly differentiated. Through
hybridization experiments, it was demonstrated that these shared sequences were found at the
autosomal level and the X chromosome in both species. By contrast, these sequences were absent in
the Y chromosome in T. infestans and present in R. prolixus, suggesting a possible origin and evolution
of the independent Y chromosome [137].

Recently, mitochondrial genomes of three triatomine species (R. pictipes, Triatoma migrans, and
Panstrongylus rufotuberculatus) were sequenced and compared with the mitochondrial genomes of
Triatoma rubrofasciata, T. infestans, and Triatoma dimidiata to explore evolutionary relationships with the
other Reduviidae species and between the Rhodniini and Triatomini tribes. The results showed that
mitochondrial genes had different rates of molecular evolution and six genes (ND1, ND2, ND4L, ND5,
ND6, and ATP8) had higher rates than other protein-coding genes (PCGs) in all species. R. pictipes
showed differences in the start codons of three PCGs (ND4L, ND6, and ND1) and in the stop codons of
two PCGs (ATP6 and ND1) compared with other Triatoma species. Additionally, the sister relationship
between Stenopodainae and Triatominae subfamilies was strongly supported, and the Triatomini
species formed a sister group to R. pictipes [138].

Several transcriptomes of R. prolixus have been analyzed. The first was derived from ovarian
follicle tissue in order to explore the role of gene expression in insect reproductive processes. This study
showed expression of some genes that promote oogenesis and development of the embryo, suggesting
that they may be important in insect control processes [139]. The transcriptome of the digestive system
has also been described, which enabled exploration and differentiation of transcripts present in the three
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segments of the intestine. The results showed that increased levels of some transcripts were related to
the processes of digestion, detoxification, and transport of proteins through the digestive tract [140].
The transcriptome of the antennas has been described in all larval stages in order to characterize the
expression of genes involved with the sensory functions of the insect. The results showed increased
expression of genes related to chemoreceptors mainly in adult stages, as well as high expression of
odorant binding proteins and chemosensory proteins in all stages [141]. Transcriptomes of T. dimidiata,
T. infestans, and T. pallidipennis and the genome of R. prolixus have also been compared to evaluate the
expression of gene families related to resistance to insecticides. In the case of R. prolixus, these studies
revealed the expansion of two families, CYP4 (cytochrome P450-4) and CCE (carboxyl-Cholinesterases),
related to pyrethroid resistance, odor processing, and degradation of hormones and pheromones [142].

A recent study analyzed and compared the transcriptomes of the head and salivary glands of
R. robustus and R. montenegrensis; the validity of the latter species has been questioned due to its
limited morphological differences compared with the former. The authors used RNA-Seq and detected
3055 single nucleotide polymorphisms (SNPs) distinguishing the two species and 216 transcripts
with high levels of divergence. Several SNPs were detected in the same contig, suggesting that the
two species were highly differentiated with possibly an extended time of divergence. In addition,
the authors suggested that some of the genes studied could be subsequently tested for use in the
identification and differentiation of these two species [143]. Finally, the most recent study combined
the analysis of the previously reported transcriptomes of R. robustus and R. montenegrensis with the
analysis of three molecular markers: Cytb, 28S, and ITS-2. In this study, it was concluded that
R. montenegrensis and R. robustus clade II are in all likelihood the same species [127]. However, the
repeatome and proteomic analyses detected high differentiation between R. prolixus, R. montenegrensis,
and R. marabaensis, showing they are different species [144,145].

5. Biogeographical Hypotheses Pertaining to the Rhodninii Tribe

Studies of biogeography in the Rhodniini tribe are limited in number but revealed high complexity,
including theories of possible vicariance, duplications (sympatry), dispersion, and extinction events.
These are related to several geological events such as: (i) the elevation of the Central Andes during the
Miocene; (ii) the branching of the Andes into three separate mountain ranges (eastern, central, and
western) during the Plio-Pleistocene; (iii) the formation of a land corridor connecting South and North
America during the Pliocene; and (iv) the elevation of the Serra do Mar and the mountain systems of
the Serra da Mantiqueira between the Oligocene and the Pleistocene [56,127]. Because morphometric,
cytogenetic, and molecular markers have yielded contradictory results in several systematic and
phylogenetic studies of the Rhodniini tribe, there are several contradictory hypotheses regarding the
origin and diversification of the species within this tribe.

5.1. Monophyletic Groups Hypothesis

The first hypothesis was formulated by Schofield and Dujardin in 1999. It assumes that the
ancestor of the Rhodniini was closest to R. pictipes species and originated during the Quaternary Period
in arboreal habitats of the Amazon-Orinoco and tropical forests dispersed towards the south of the
Brazilian Amazon and the northeast of Bolivia. In turn, the ancestor gave rise to R. stali in palms and
invaded homes. This ancestor underwent other more specific dispersions, giving rise to the remaining
species of the pictipes group: (i) towards the north of Colombia and central Venezuela, to R. neivai
which is found in Copernicia tectorum palms; (ii) towards the border area between Brazil, Colombia and
Venezuela, to R. brethesi which is found in palms of Leopoldinia piassaba; (iii) towards the Colombian
Orinoquia, to R. dalessandroi which is morphologically very similar to R. brethesi but is found in other
palms; and (iv) towards the state of Pará, Brazil, to R. paraenesis which is found in nests of Echymis
crysurus (Figure 6A). The ancestor pictipes also gave rise to the group pallescens. In this case, the ancestor
R. pictipes was dispersed towards the northwest of Colombia and through a bottleneck in the Sierra
Nevada de Santa Marta and the northern tip of the Cordillera de los Andes, gave rise to R. pallescens,
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which is associated with Attalea butyracea palms and whose range extends to Central America and
northwestern Colombia. The ancestor then dispersed through the Magdalena valley giving rise to R.
colombiensis and into eastern Ecuador and Peru, giving rise to R. ecuadoriensis in Ecuador and northern
Peru, possibly due to adaptation to the palm Phytolepas aequatorialis (Figure 6B) [56].
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Figure 6. Monophyletic groups biogeographic hypothesis explaining speciation within the Rhodninii
tribe. (A). Speciation and dispersion of pictipes group species (B). Speciation and dispersion of pallescens
group species (C). Speciation and dispersion of prolixus group species. The asterisk (*) indicates the
species closest to the most recent common ancestor (MRCA) of Rhodniini tribe by each hypothesis.

The ancestor R. pictipes gave rise to R. robustus which was scattered throughout the Amazon in two
forms: (i) a first form dispersed to the north reaching Venezuela where it gives rise to wild R. prolixus
and P. arthuri; and (ii) a second form dispersed towards the south reaching the Brazilian Cerrado, where
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it gave rise to R. neglectus (associated with Mauritia and Acrocomia palms) and P. tertius. The latter
and the southern form of R. robustus are dispersed towards the Caatinga where R. robustus gave rise
to R. nasutus associated with the palm Copernicia prunifera. Additionally, R. neglectus is dispersed
towards the Atlantic Forest where it gave rise to R. domesticus associated with Bromelia. Finally, this
hypothesis proposes that the Spanish colonization of Venezuela triggered the domiciliation of wild
R. prolixus and that the presence of R. prolixus domiciled in Central American countries may be due to
the transport of some collections from Venezuela to El Salvador followed by their accidental release
in rural homes. Subsequently, they dispersed and adapted to homes of several Central American
countries. This last hypothesis is supported by morphometric analysis, isoenzyme analysis, and RAPD
(Figure 6C) [56,108].

5.2. Lineages Hypothesis

Conflicting with these hypotheses, analysis of molecular markers did not support the idea that R.
pictipes was the species closest to the ancestor of the three groups of Rhodnius. Instead, two topologies
were generated, one in which R. pictipes was a sister group to the pallescens group and another in which
it was a sister group to the prolixus group (Table 2). In addition, some studies grouped R. colombiensis
as a sister species of R. pallescens and others as a sister speices of R. ecuadoriensis. Thus, two different
hypotheses supported the two types of topologies and groupings observed [7,122,127].

The second hypothesis, based on morphometric studies, mitochondrial markers and isoenzyme
analysis, was proposed by Abad-Franch et al., 2009 and Díaz et al., 2016. Under this hypothesis,
the genus Rhodnius is classified into two lineages (pictipes and robustus). The first gave rise to the
transandean (pallescens) group and the Amazonian species (pictipes), while the second diversified into
the Amazon (group robustus) and underwent radiation in nearby ecoregions (Orinoco, Chaco, Caatinga,
Cerrado, and Mata Atlântica) allowing the formation of the cis-prolixus. Under this hypothesis it
is assumed that R. colombiensis and R. pallescens are sister species. Thus, the ancestor of the pictipes
lineage was dispersed to the northern part of the then low eastern mountain range of Colombia in
the late Miocene (11–6 Ma) [7,131] or the mid-Miocene (16–11 Ma) [116]. Thus, the diversification of
the pallescens and pictipes could be explained by a vicariance, either caused by the formation of the
Pebas system [130] or by the elevation of the Andes mountain range during the Pliocene (5 Ma) [7,131].
Regarding the diversification of the ancestral pallescens, two hypotheses have been proposed: (i) the
divergence of the ancestor of R. pallescens/R. colombiensis and R. ecuadoriensis could have occurred
during the late Miocene, a period during which the Northern Andes had not reached more than half of
its modern elevation (11–7 Ma), and the diversification of the ancestor of R. pallescens/R. colombiensis
occurred with the elevation of the northern Andes and the separation of the R. pallescens lineages with
the formation of the isthmus of Panama during the early Pliocene [130]; and (ii) diversification of the
ancestral group pallescens occurred during the Pliocene with the elevation of the then-low eastern
mountain range of Colombia, which divided the population into two main clades, a northern group
comprising the ancestral forms of R. pallescens and R. colombiensis, and an isolated southern group which
adapted to the new ecotopes and eventually gave rise to R. ecuadoriensis [7,131]. The radiation of the
ancestor of pictipes in the Amazon is postulated to have occurred during the Pliocene and Pleistocene,
according to the specific adaptations described under the first hypothesis, with the exception of R. neivai
that was included in the robustus lineage [7].

However, the radiation of the taxa of the robustus lineage (R. domesticus, R. neivai, R. robustus,
and R. nasutus) in the ecoregions mentioned above can be attributed to another possible vicariance
event at the end of the Miocene and subsequent radiation during the Pliocene. The division of the
robustus-neglectus-prolixus group can be explained by more recent cladogenic events during the Pliocene
and Pleistocene. Additionally, it was proposed that the lineages of R. robustus were potentially generated
by parapatric speciation during the Pleistocene, and R. robustus in Venezuela does not appear to be a
product of gene flow between R. prolixus and R. robustus from Amazon basin, but rather R. prolixus and
R. robustus I seem to share a (relatively young) MRCA (most recent common ancestor) [7,61].
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5.3. Clades Hypothesis

Finally, the third hypothesis proposed by Justi et al., 2016 using nuclear and mitochondrial markers
proposes the formation of the prolixus clade (cis-andean) and locates the pictipes and prolixus groups
as siblings, suggesting that the separation of the prolixus (cis-andean) group from the pictipes group
(cis-andean) occurred by means of a vicariance during the formation of the Pebas system (23–11 Ma).
Thus, the ancestor of the prolixus group was isolated in subregions of Brazil and that of the pictipes in
the Chaco subregion and then the Amazon. Subsequently, the formation of the Acre system (10–7 Ma)
allowed the ancestor of R. neivai/R. domesticus to diversify towards the north, giving rise to R. neivai,
and towards the south, giving rise to R. domesticus. With respect to the group pallescens, this hypothesis
proposes that divergence from the clade prolixus occurred during the late Miocene via the formation of
the Pebas and that the separation of the three species occurred during the Pliocene. However unlike
the second hypothesis, it proposes that separation occurred between R. pallescens and an ancestor R.
colombiensis/R. ecuadoriensis, probably induced by the expansion of R. pallescens in Central America [122].

6. Future Perspectives

In the Andean countries, the main triatomines responsible for vector-mediated transmission of
T. cruzi to people are those of the genus Rhodnius; thus, control measures are directed to species of this
genus. Therefore, further studies of the evolution, phylogeny, biogeography, ecology, physiology, and
behavior of Rhodnius species are needed to help improve existing Chagas disease control programs [8,
10,38]. One of the primary steps in any control program is the accurate identification of vector species
and detailed understanding of their genetic and population structures.

Therefore, future studies should be based on integrative taxonomy approaches, taking into
account the delimitations of species, the synthesis of morphological characteristics with information
obtained from molecular genetic studies, biogeography, phylogeography, behavior, ecology, and
development [146]. The incongruities shown so far between morphological and genetic studies are
due to several intrinsic limitations of several techniques. Studies to date have focused on describing
groupings of species within the tribe but have not delimited these groups within the tribe, which has
generated systematic problems.

One of the most important limitations of current studies lies in the limited morphological variability
between different species of the tribe; therefore, there are few synapomorphic characters. Added to
this, identification of some species of the tribe (R. prolixus vs. R. robustus) relies on few characters with
complex interpretation, resulting in inconsistent results between morphological studies and errors in
morphological identification. These problems arose because few cladistic studies or studies based on
morphological characters of all species of the Rhodniini tribe have been conducted [8,74,147].

Some characters used for identification of species are affected by phenotypic variability and
morphological plasticity in association with environmental changes. The latter generates minor
morphological changes between populations of the same species and can therefore lead to erroneous
identification, such as the presence of color morphotypes in R. nasutus. These changes can occur
before genetic barriers are present between species and therefore will generate inconsistencies between
morphological and genetic studies. Phenotypic variability and morphological plasticity can also lead
to morphological convergence between species that are genetically distinct but are adapted to the same
ecological niche, as is the case for species of the prolixus group [38,40]. Due to these complicating
factors, future studies should focus on identifying morphological synapomorphic characters that
facilitate differentiation and identification of appropriate species, and are complemented by genetic,
biogeographic, behavioral, and ecological analyses. This would help in laying out a rational approach
to the systematics of the tribe.

Complexities in delineation of species of the Rhodniini tribe could also be addressed through
crosses in the laboratory: these would allow evaluation of reproductive isolation and the potential
presence of hybrids between species. Although several studies have been carried out in the Triatomini
tribe, few reports have documented a cross between members of the Rhodniini tribe (R. prolixus–R.
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robustus and R. prolixus–R. nasutus) [134,148]. This reflects the complex morphological identification
of species of the tribe and the difficulties associated with identification of hybrids, because these
usually correspond to morphological intermediates between the parental species. Thus, it is important
that future studies carry out interspecific crosses to verify if members of the tribe meet the biological
definition of species. These crosses should be evaluated not only at the level of morphological
characters, but also using genetic characters such as molecular markers. Analyses of nuclear DNA and
mitochondrial DNA can both be used for appropriate identification of species involved in crosses as
well as for analysis of the progeny of crosses: the nuclear and mitochondrial DNA sequences allow
identification of introgression and the latter allows identification of hybridization processes [149].

Finally, genetic studies in the tribe have been limited, and the majority of them have focused
on studying relationships between the Rhodniini tribe and other members of the Triatominae or
Reduviidae. Additionally, studies that have exclusively examined species of the tribe have focused on
analysis of epidemiologically important species or been focused at the intra-specific level. In addition,
different studies have examined different species and are thus not directly comparable. There is only
one study in which Cytb sequences from most of the tribe’s species were included [38]. Therefore, it is
necessary to carry out studies that include a large number of species of the Rhodniini tribe to attempt
relevant delineation of tribe members.

In Anopheles and several species of the Triatomini tribe, nuclear ribosomal sequences present
intragenomic variability due to their high copy number. Thus, data obtained from these specimens
should be analyzed with caution because errors of interpretation may occur. Multilocus approaches
will enable better resolution in phylogenetic analyses and also allow identification of introgression and
potential hybridization events. Therefore, attempts to design molecular markers for multilocus studies
are required; these markers need to be sequenced in a representative number of species to elucidate
their phylogenetic relationships and to provide useful tools for integrative taxonomy [149].

Finally, genomic and transcriptomic resources in the tribe are scarce. To date, only the mutation
rates of Cytb sequences in species of the genus Triatoma and of mitochondrial loci in R. pictipes have been
examined. This information may be used for coalescence analyses and phylogeographic reconstructions
in future studies. However, the genomic mutation rate of at least one representative species of the
Rhodniini tribe remains to be determined. The genome of R. prolixus has low coverage and has not yet
been assembled at a chromosomal level. Therefore, future studies could improve genomic resources,
especially because the resolution of phylogenies drastically improves when genomic data are used, as
previously documented in plants and in a recent phylogenomic analysis of the Hemiptera [150,151].

7. Conclusions

In spite of the valuable contributions of studies carried out to date on species of the Rhodniini tribe,
limitations in our understanding have led to inconsistencies between and within morphological and
phylogenetic studies. In turn, this has created three problems in the systematics of the Rhodniini tribe:
(i) paraphyly of two genera in the tribe, (ii) different types of classification and grouping of the species
of the genus Rhodnius, and (iii) difficulties in identification and adequate delineation of some species.
These issues have resulted in generations of conflicting hypotheses regarding the origin, evolution,
and dispersion of the species of the Rhodniini tribe. This information is of great importance because
of the biologic role of several species of the tribe in transmission of T. cruzi. Thus, it is necessary to
conduct further genetic, ecological, morphological, and biogeographical studies of the tribe to provide
an integrative approach that can address the current systematic and taxonomic inconsistencies; in turn,
these studies will provide the information necessary to develop improved vector control strategies for
Chagas disease.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-2818/12/3/97/s1,
Table S1: Table S1_Cytb_Rhodnius_Sequences.
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