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Abstract: Gradient analysis was used to determine factors driving small-scale variation of cloud forest
communities harboring Magnolia dealbata, a threatened species and bioculturally relevant tree for the
Chinantecan, Mazatecan, Nahuan, and Zapotecan ethnicities in southern Mexico. Particularly, we aimed
to: (a) determine factors explaining major community gradients at different heterogeneity scales
along a small-scale elevational gradient, (b) test the Decreasing and the Continuum hypotheses
along elevation, and (c) classify vegetation to assist in identifying conservation priorities. We used
a stratified random sampling scheme for 21 woody stands along a small-scale (352 m) elevational
transect. Four main data matrices were used (presence-absence, density, basal area, and guild
data). Through Non-metric Multidimensional Scaling (NMS), Principal Coordinates Analysis (PCoA),
and distance-based Redundancy Analysis (db-RDA), we found that major community variation was
explained by soil pH, displaying an outstanding vegetation discontinuity, separating the species-rich
relic Oreomunnea-Ticodendron-stands from stands with higher importance values for M. dealbata. The high
species richness observed was explained by a combination of the windward effect of dry-seasonal
maximum cloud condensation gain and habitat differentiation-specialization, a phenomenon that may
also explain the mid-peak hypothesis and ensure the survival of relic species. Sampling-truncation and
conservation status also played a role in this. Our results do not support the Decreasing and Continuum
hypotheses along elevation.

Keywords: alpha diversity; beta diversity; Magnolia section Macrophylla; Oreomunnea; Ticodendron;
cloud forest; Sierra de Juarez; Oaxaca; habitat specialization; continuum hypothesis

1. Introduction

Neotropical montane cloud forests (CF) are known to display high gamma, beta, and alpha
species diversity, environmental heterogeneity, endemism, and a high number of species of
conservation concern. They form a continental pattern of island-like fragmented habitats resembling
archipelagos [1–8]. Despite their biological relevance, these complex ecosystems are being replaced or
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negatively impacted by coffee plantations, logging, induced grasslands [9], and more recently, the land
conversion for production of avocado: the “butter fruit” or “green gold” is causing havoc to plant
communities, diminishing plant diversity, depleting soil and water resources, and increasing runoff

volume rates [10,11]. In Southern Mexico, in the state of Oaxaca, CF occurs in six physiographic
provinces [12] in close interaction with a complex and long biocultural gradient of high ethnic
and language turnover, including Chinantecos, Cuicatlecos, Mazatecos, Mixtecos, Nahuas, Triquis,
Zapotecos, and Zoques [13]. Gradient analyses of these forests have focused on La Chinantla [14],
Tiltepec [15], Huautla de Jiménez [16], Sierra de Juárez [17], Sierra Mazateca [18], and Santa Cruz
Tepetotutla [19]. However, only those from the Sierra de Juárez de Oaxaca (Ixtlán de Juárez, Villa Alta)
and Sierra Mazateca are confirmed to harbor the narrowly endemic, bioculturally relevant and
threatened CF tree Magnolia dealbata Zucc. [20–22].

Neotropical Magnolia L. includes 170 extant species and four sections: section (sect.). Macrophylla
Figlar & Noot. in the southeastern USA, and eastern Mexico, sect. Magnolia in North America
and Central America, sect. Talauma (Juss.) Baill. from western and eastern Mexico to Paraná,
Brazil, and sect. Splendentes Dandy ex A. Vázquez in the Caribbean [23–25], and all sections display
a remarkable pattern of allopatric speciation [23,24,26]. Magnolia dealbata belongs to section Macrophylla
which includes M. macrophylla and M. ashei Weath. from southeastern USA, M. nuevoleonensis A.
Vázquez-Domínguez-Yescas from Nuevo León, M. alejandrae García-Mor & Iamónico from Tamaulipas,
M. rzedowskiana A. Vázquez, Domínguez-Yescas & Pedraza-Ruiz from Querétaro, San Luis Potosí, and
Hidalgo, and M. vovidesii A. Vázquez, Domínguez-Yescas & L. Carvajal from Veracruz [27–30]. Magnolia
dealbata is a mid-successional, short-lived, and fast-growing tree species with gigantic (40–50 cm in
diameter) fragrant flowers, enormous leaves (40–70 × 20–35 cm), and an outstanding biocultural
relevance in the Zapotec, Mazatec, and Nahua cultures, where it is known as “Yaj saá” (“sublime flower”
in Zapotec) and Eloxóchitl (“flower of corn husk” in Náhuatl). Flowers are harvested yearly on Easter for
ornamental, medicinal, and ceremonial purposes (the flowers are locally sold at 0.5 USD each) [28,29,31].
This species is endemic to Oaxaca with an elevational niche breadth ranging from 1380 to 2145 m and
confined to the upper central zone of Río Papaloapan watershed [32]. It is listed as Near Threatened
in the International Union for Conservation of Nature IUCN red list of Magnoliaceae [21], and as
Endangered in the Mexican Endangered Species Act [22]. Understanding the community organization
of forest stands harboring M. dealbata and generating hypotheses about its major environmental
drivers constitute an essential step for guiding the design of conservation strategies of highly relevant
forest species.

Vegetation science relies on both gradient analysis and niche theories. Gradient analysis
sensu lato involves indirect, direct, bivariate, and multivariate analyses [33–37], the latter includes
classification [38], ordination [39,40], and constrained ordination [41]. Gradient analysis is a valuable
approach in assisting the interpretation of forest community patterns and species ecological niches
in terms of their species responses to environmental variables [40–43]. Classification is particularly
effective in searching for patterns when data show major discontinuities [44], however, continuity vs.
discontinuity is mostly a scale-dependent issue [45,46]. A combination of regression, ordination,
constrained ordinations, and classification can be used as complementary analyses to assess small-scale
CF community variation; in turn, this can guide management decisions for sustainability, including in
situ conservation of endangered species and highly threatened CF communities.

Many large-scale gradient analyses in CF have assessed community trends along various
ecological gradients including latitude [1,8,17], precipitation [1,47], soil conditions [1,48–51],
and elevation [1,8,17,47,52–61]. For tropical lowland forests, successional time [62] and rate of tree
mortality [63] have also been studied. However, few studies use the full spectrum of gradient
analysis, including bivariate and multivariate gradient analyses (ordination, constrained ordination,
and classification), as complementary approaches to interpreting community patterns in CF [64,65].
Even fewer studies explore community patterns on various scales or deal with extreme acidity in
forest soil conditions, and none of the studies examine guild trends among forest sites with a floristic
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affinity to the Miocene flora of Chiapas [66], sharing an endemic tree species of conservation concern,
Magnolia dealbata, with broad elevational niche, and outstanding biocultural relevance [31].

Quantitative classifications of CF heterogeneity have been usually assessed at a single scale,
using different community attributes, and resulting clusters have been explained by different
environmental variables: (I) At the Neotropical scale, Vázquez-García [8] distinguished four regional
CF: (1) Northern-Neotropical, (2) Mesoamerican, (3) The Caribbean, and (4) Northern-South American,
explained by latitude and geographical location. (II) At a country scale (within Mexico), four provincial CF:
(1) Atlantic, (2) Pacific southwest, (3) Interior highlands, and (4) northern Mesoamerican [8], corresponding
to groups IV, I, V, and II of Ramírez-Marcial [5], who also reports one additional type of CF, South Pacific.
Similarly, the groups A, F, D, and B of Jiménez et al. [6] correspond to those four groups previously
mentioned, and they described eight additional CF types for Mexico, including one cluster (groups H, I,
and J) for the Sierra Madre of Oaxaca. (III) At the mountain range scale: Puig et al. [67], using similarity
index, report three CF types for the Sierra de Gómez-Farías: the groups share many dominant species by
the following species (1) Randia laetevirens Standl., (2) Carya ovata (Mill.) K. Koch, and (3) none of the
previous species. Using Non-metric Multidimensional Scaling NMS, Vázquez-García [8] reports six types
of CF for the Sierra de Manantlán: (1) Matudaea-Podocarpus, (2) Ternstroemia-Quercus, (3) Abies-Persea,
(4) Carpinus-Cornus, (5) Magnolia-Acer, and (6) Ficus-Sapium-Dipholis [Sideroxylon]. (IV) At the elevational
transect scale, several studies report two community types: upper and lower CF [52,58,61,68], few studies
report three or more types of CF along elevation [69], and over three types of CF are rarely reported [8].

The overall purpose was to examine small-scale vegetation patterns along a short (352 m long)
elevational gradient (1608–1960 m), within a small area (1.6 km of radius) and at different heterogeneity
scales (gradient lengths) to guide the design of conservation strategies for CF harboring the bioculturally
relevant and threatened Magnolia dealbata.

We aimed to: (1) determine what environmental variables explain major community gradients at
four different heterogeneity scales, gradient lengths (species composition, density, basal area, and guilds
data matrices), expecting topographic and edaphic variables to be more influential for community
organization than climatic variables, given the short length of the studied elevational gradient. (2) Test
the Continuum hypothesis and high overlap and absence of family turnover among communities
along short environmental gradients through classifying vegetation of four different data matrices,
relating them to environmental variables and identifying indicator species for community clusters.
(3) Test the Decreasing hypothesis [70], the most common outcome for woody species, stating that
alpha diversity (species richness) decreases with increasing elevation. (4) Assess beta diversity as
a measure of heterogeneity (gradient length) for each of the four community datasets presence/absence
P/A, density, basal area, and guild data, expecting this to fall within the range of field studies [71,72],
and use this measure to test the continuum hypothesis through assessing the magnitude of community
discontinuities, and (5) determine conservation priorities in these CF.

2. Materials and Methods

2.1. Study Area

Field research was conducted in CF of lands of the Zapotec (the “cloud people”, “Be’ena’ Za’a”
in Zapotec) San Juan Juquila Vijanos community, in Villa Alta District, Sierra de Juárez (Sierra
Norte), Oaxaca, southern Mexico, 17◦18’–17◦23’ N, 96◦14’–96◦20’ W [73] (Figure 1). Juquila Vijanos
is part of the Juárez terrain, consisting of early Cretaceous volcano-sedimentary marine rocks [74],
including basaltic spills, tuffs, volcanoclastic, and limestone [75]. The most important geological
event in Oaxaca occurred in the Tertiary period, starting mid-Miocene (14 Mya), with the formation
of the Sierra de Juárez (including de Sierra de Zongolica, Sierra Cuicateca, and Sierra Mazateca)
lifting at least 2100 m above the central valley [74]. This lift was caused by the Oaxacan Fault and
changed the climate of many regions of the state, increasing mountain moisture from trade winds
(easterlies) and creating a rain shadow effect in the central valleys [74]. The study area is located
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in the central orographic axis of the physiographic sub-province Sierra Madre de Oaxaca [12],
particularly characterized by steep topography (15–100%) [76]. Major rocks in Juquila Oaxaca include
igneous intrusive: monzonite (12.52%), sedimentary: lutita-sandstone (2.73%), metamorphic slate
(44.67%), and shale (40.08%) [73]. Soils include luvisol (85.35%) and cambisol (14.65%) and are mostly
acidic [77–79]. Juquila Vijanos includes the Juquila and Río Blanco rivers, the two drain into the Cajonos
River, and finally reach the Papaloapan River. Climate is semi-warm humid with mean annual
temperatures ranging from 16 to 22 ◦C, with abundant mean annual rainfall of 2600 mm (San Juan
Yae, 1900 m a.s.l.), with 69.34% of rainfall occurring during the summer [73]. Due to the abundance
of temperate elements and diagnostic families such as Actinidiaceae, Clethraceae, Chloranthaceae,
Hamamelidaceae, Symplocaceae, Theaceae, and Winteraceae [76], the original vegetation is considered
an upper Tropical Montane (TM)-CF [80]. Cloud forests in the Sierra Norte de Oaxaca occur between
1300 and 2300 m a.s.l., mostly on the Atlantic windward side of the mountains [14], on hilly sides
with pine-oak forest and “acahuales” (secondary successional vegetation) of different ages resulting
from the abandonment of agricultural lands [81]. However, much of the original vegetation has been
converted to coffee plantations, agriculture (including polycultures), and some pasturelands [78,81].
Oaxaca is an important center of domestication of Mesoamerican plants, including currently complex
agroforestry systems like those in Sierra de Juárez (Chinantla), where useful species are tolerated within
field crops or rustic coffee plantations involving up to 34 native tree species, including threatened
species of Magnolia, which serve as nurse plants. This type of forest management with high beta
diversity has important implications for biodiversity conservation and sustainable development [13].
In the area prevail allogenic disturbances such as logging, slash and burn agriculture, firewood,
and non-timber product extraction; meanwhile, autogenic disturbances, such as landslides, fires,
and natural tree falls, occur to a lesser extent [78,81,82]. In contrast with other successional processes
in humid forest areas, soil becomes progressively more acidic along succession, despite a decrease in
pine dominance [78,82].

2.2. Community Sampling

A stratified random sampling including 21 0.1 ha forest stands (sites) within the habitat of Magnolia
dealbata was carried out from December 2016 to August 2017, in San Juan Juquila Vijanos, on areas
with minimum disturbance and excluded from cattle grazing. A 60 × 48 m rectangular universe was
defined, divided into a 4 × 5 grid (each cell 12 × 12 m). At the center of each cell, a circle was delimited
to include an area of 100 m2 per quadrat (subplot). The centers of the possible circular quadrats
(11.28 m in diameter) were separated by 12 m, to avoid any overlap between the adjacent quadrats.
Ten circular quadrats per site were chosen in a stratified random sampling design [56]. In each circle,
the diameters of all woody species ≥2.5 cm in diameter at breast height (dbh, at 1.3 m) were measured
and recorded. A triplicate collection of voucher plant specimens was obtained: they were mostly
identified by the authors, and difficult taxa were determined by specialists. For accepted names of
species, we used Tropicos.org [83], and for plant distributions, we consulted Plants of the World
Online (POWO) [84]: their nomenclature and author abbreviations follow the International Plant Name
Index [85]. The main voucher collection was deposited in the herbarium of the Instituto de Botánica
de la Universidad de Guadalajara (IBUG) herbarium at the University of Guadalajara and sets of
duplicates were deposited at Centro Interdisciplinario de Investigación para el Desarrollo Integral
Regional (CIDIR) and the herbarium Sociedad para el Estudio de los Recursos Bióticos de Oaxaca, A.
C. (SERO).
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2.3. Environmental Sampling

At each site, a total of 31 environmental variables were recorded in five subsets: Climatic (5),
topographic (4), edaphic (14), canopy structure (5), and disturbance (5) (Table 1). Highly correlated
variables (r > 0.8) of each subset were excluded from the analysis to avoid collinearity. Climatic data
were extracted from the WorldClim database [86] and an index of the heat load was estimated [87].
Topographic variables were directly measured in the field and elevation was recorded by a Global
Positioning System GPS Garmin 60CSx. Edaphic variables were obtained from soil analyses. One mixed
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soil sample (500 gr) per site, was taken from five quadrats of 30× 30 cm each, and 30 cm deep (one quadrat in
each site’s corner and one in the center) [88]. The samples were analyzed in the Agroecology Laboratory of
the Centro Universitario de Ciencias Biológicas y Agropecuarias, University of Guadalajara. Soil density
was determined through the test tube method, and sand, silt, and clay texture were determined by
Bouyoucus. Usable water was determined by the difference between the soil field’s capacity and
permanent wilt point. Organic matter was estimated through the Walkley and Black [89] (1934)
method; for interchangeable cations (Ca), we used the volumetric method. Mg was inferred from
the volumetric method, Na and K were assessed by flammometry, and soil pH was measured by
a potentiometer; for electrical conductivity, we used a conductometer, and for soil macronutrients,
phosphorus (P), and percentage of nitrogen (N), we used the Kjeldahl method [90]. Canopy structure
variables were obtained from hemispheric photographs at each site, using a Nikon D7100 digital
camera and a hemispherical (fisheye) Canon lens. To reduce the effects due to the slope, in each
site, the camera was mounted on a tripod at a height of 1.20 m [91] and a level device was used to
ensure horizontal alignment of the camera. Each photograph was taken at the center of each site and
oriented to match the top of the photograph with the north [91,92]. Photos were taken on cloudy
days, to prevent the sun’s rays from directly affecting the camera lens. Each canopy photograph was
taken from a leveled camera [93]. Images obtained were analyzed through the Gap Light Analyzer
software (GAP free version 2.0, 1999), to correct the distortion inherent in this type of photographs.
The disturbance was assessed, assigning a score from 0 to 10 to each variable, depending on the intensity
of the disturbance: a score of 0 was considered as insignificant, 1 as low, 5 as intermediate, and 10 as
high. A disturbance index was calculated following Mir et al. [94].

Table 1. Environmental variables and methods used.

Variable Name Acronym Method/Database/
Software Measured Units and/or Categories

Climatic
1. Mean Annual Temperature MAT * WorldClim v.1.4 ◦C

2. Precipitation of Wettest Month PWEM WorldClim v.1.4 mm
3. Precipitation of Driest Month PDM WorldClim v.1.4 mm

4. Precipitation of Driest Quarter PDQ WorldClim v.1.4 mm
5. Precipitation of Coldest Quarter PCQ WorldClim v.1.4 mm

Topographic
6. Elevation ELE * GPS m

7. Potential Annual Direct
Incident Radiation RAD McCune and Keon 2002 [87] MJ cm−2 yr−1

8. Head Load Index HLI McCune and Keon 2002 [87]
9. Topographic Position TP 1—Valley; 2—Low slope; 3—Mid slope

Edaphic
10. Apparent Density APD Test tube g/cm3

11. Sand SAND Bouyoucos %
12. Silt SILT Bouyoucos %

13. Clay CLAY Bouyoucos %
14. Usable Water USWT %

15. Organic Matter Content OMC Walkley and Black %
16. Nitrogen N Kjeldahl %
17. Calcium Ca Volumetry Meq/100 g

18. Magnesium Mg Calculated Meq/100 g
19. Sodium Na* Flamometry Meq/100 g

20. Potassium K* Flamometry Meq/100 g
21. Phosphorus P Kjeldahl Mg/k

22. pH pH* Potentiometer Logarithmic units (0–14)
23. Electric Conductivity EC Conductimeter Mili-mhos/cm at 25 ◦C

Canopy Structure
24. Mask Area MASKA Gap Light Analyzer software %

25. Canopy Openness CANOP Gap Light Analyzer software %
26. Leaf Area Index LAI5 Gap Light Analyzer software Angle 0–75◦

Disturbance
27. Wood Extraction WEXT Disturbance index Scores 0 to 10

28. Firewood Extraction FEXT* Disturbance index Scores 0 to 10
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Table 1. Cont.

Variable Name Acronym Method/Database/
Software Measured Units and/or Categories

29. Collection of Non-Timber
Forest Products NTFP Disturbance index Scores 0 to 10

30. Grazing GRA Disturbance index Scores 0 to 10
31. Fire FIRE Disturbance index Scores 0 to 10

Abbreviations: Meq (milliequivalents). * Those only included in the constrained ordination analysis.

2.4. Data Matrices

From summary statistics obtained in PC-ORD 7 (MjM Software, Gleneden Beach, OR, USA) [85],
we generated four data matrices, three of them consisting of 21 sites× 77 species. for (1) P/A (Supplementary
Tables S1 and S2), (2) density, and (3) basal area data, and (4) a matrix for guilds, consisting of 21 sites and
60 guilds, grouped in ten categories: biogeographical affinities (8), geographic distribution (6), life forms
(4), leaf morphology (15), reproductive (3), phenological (3), successional (3), dispersal (9), antiherbivore
defenses (2), and pollination (5). Guild categories were designated using Tropicos.org and POWO for
biogeographical and distributional data, and morphological and functional guilds were determined by
consulting numerous taxonomic monographs and regional floras. These guilds are summarized for only
76 species since one species (morphospecies) was excluded (Supplementary Table S3).

2.5. Ordination

We used Non-metric multidimensional scaling (NMS), a distance-based ordination considered
superior to currently available model-based methods [95], to map the location of sample units from
the high-dimensional space of the distance matrices, to positions along community dissimilarity
gradients in a low-dimensional space. In NMS, species similarity between samples represent their
environmental similarities but in a highly coalescent configuration, including similarities in intra-
(density-dependent mortality, resource competition) and inter-specific interactions (herbivory, dispersal,
predation, pollination) and biogeographical events [42]. Four main raw matrices (P/A, density, basal area,
and guild data) were used, each consisting of 21 sites and 31 environmental variables. We used
the Sørensen (Bray-Curtis) distance measure, having a monotonic relationship to environmental
distance, and considered as a robust measure of ecological distance [42,43,96]. The secondary matrix
consisted of 21 sites × 31 variables (Table 2). NMS is considered among the most effective methods for
the ordination of ecological data because it does not require the assumption of a linear relationship
among the variables and because it determines the dimensionality of the data [89]. Preliminary runs were
performed to determine the appropriate dimensionality using the autopilot mode, choosing the slow
and thorough option, the Sørensen distance, an instability criterion of 0.00001, with 50 runs with
real data, and 500 iterations to evaluate instability. We used Pearson’s correlation coefficients to
evaluate the relationship between the identified axes of the ordination and the environmental
variables. Principal Coordinates Analysis (PCoA) was performed only for guild data, since these
data showed the lowest gradient length (low heterogeneity), making it appropriate for this metric
multidimensional technique. We used a Sørensen distance matrix of 21 sites × 60 guilds for this
ordination method, in which the distances among sites in the ordination diagram are maximally
correlated with the ecological distances [97]. Additionally, we used distance-based Redundancy
Analysis (db-RDA), a reliable constrained ordination technique, to assess the influence of environmental
variables [98,99]. The db-RDA allows for the flexible selection of many resemblance functions;
again, we used Sørensen dissimilarity in each of the four matrices: P/A, density, basal area, and guild
data. The variables most associated (with highest r values) with the NMS axes were selected as input
for a standard RDA. NMS, PCoA, and db-RDA were performed using the program PC-ORD 7 [97].
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Table 2. Environmental variables used in ordination analyses.

SITES

Variable Name 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

ELE (m a.s.l.) 1835 1939 1944 1899 1730 1898 1950 1911 1873 1744 1726 1855 1798 1792 1688 1659 1608 1645 1951 1613 1960
MAT (◦C) 15.2 15.2 15.7 15.7 17.3 15.7 15.7 15.7 15.7 17.3 17.3 16 16 16 16 16 17 17 15.2 16 15.2

PWEM (mm) 151 151 151 148 148 144 144 144 144 144 144 143 143 141 141 141 141 141 141 140 140
PDM (mm) 28 28 27.1 27.1 28.6 27.1 27.1 27.1 27.1 28.6 28.6 26.1 26.1 26.1 26.1 26.1 26.3 26.3 27 26.1 27
PDQ (mm) 7.5 7.5 7.3 7.3 8.3 7.3 7.3 7.3 7.3 8.3 8.3 7.2 7.2 7.2 7.2 7.2 7.5 7.5 7.1 7.2 7.1
PCQ (mm) 15.2 15.2 14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.1 14.1 14.1 14.1 14.1 13.2 13.2 14.3 14.1 14.3

RAD (MJ cm−2 yr−1) 0.8 0.75 0.74 0.83 1.05 1.14 1.14 0.81 0.91 1.06 1.11 1.08 0.86 0.83 1 0.72 0.89 1.07 0.94 0.89 0.78
HLI 0.65 0.6 0.59 0.69 0.89 1.07 1.08 0.93 1.06 0.97 1.04 1 0.71 0.69 1.1 0.56 0.75 0.94 0.82 0.75 0.62
TP 2 3 3 3 2 2 2 2 2 3 2 3 3 2 3 1 1 3 3 1 3

SAND (%) 54.3 56.3 39.3 50.3 51.3 59.3 53.3 52.3 57.3 49.3 48.3 48.3 59.9 50.9 64.9 61.9 58.9 48.9 46.9 49.9 66.9
SILT (%) 32.6 30.6 37.6 33.6 30.6 24.6 31.6 30.6 24.6 25.6 28.6 31 19 28 22 27 27 31 29 35 26

CLAY (%) 13.1 13.1 23.1 16.1 18.1 16.1 15.1 17.1 18.1 25.1 23.1 20.1 21.1 21.1 13.1 11.1 14.1 20.1 24.1 15.1 7.08
USWT (%) 15 14 21 16 17 15 16 16 16 20 19 18 17 18 13 13 14 19 20 16 10
OMC (%) 9.64 11.8 5.03 10.7 9.7 8.85 6.43 6.61 11.3 6.36 13 9.64 12.9 10.9 13.2 12.5 13.1 8.73 8 10 7.27

N (%) 0.17 0.26 0.15 0.25 0.16 0.23 0.18 0.15 0.2 0.15 0.14 0.2 0.28 0.23 0.28 0.27 0.22 0.22 0.2 0.26 0.22
Ca (Meq/100 g) 0.83 0.83 0.83 0.41 1.24 0.83 0.41 0.41 0.41 0.83 0.41 0.42 0.83 0.42 0.41 0.83 0.41 0.42 0.83 0.83 0.83
Mg (Meq/100 g) 1.24 1.66 1.66 2.08 0.83 0.41 0.41 0.83 0.83 0.83 0.83 0.42 0.41 0.42 0.83 0.77 0.83 0.42 0.41 0.41 0.41
Na (Meq/100 g) 0.19 0.19 0.16 0.16 0.19 0.16 0.16 0.16 0.19 0.19 0.23 0.19 0.19 0.27 0.23 0.31 0.19 0.31 0.19 0.23 0.19
K (Meq/100 g) 0.22 0.2 0.15 0.2 0.22 0.2 0.17 0.17 0.2 0.17 0.22 0.17 0.22 0.25 0.31 0.31 0.17 0.22 0.17 0.22 0.22

P (Mg/k) 5.3 5.87 6.92 3.01 3.96 4.05 3.58 4.82 5.3 2.62 7.58 3.48 5.01 3.29 8.73 5.39 0.01 5.68 5.3 5.58 12.3
pH (Logarithmic units, 0–14) 5.07 4.86 4.94 4.88 4.86 4.84 4.8 4.93 5.14 4.99 5.02 4.64 4.8 4.47 4.48 4.3 4.4 4.32 4.2 4.35 4
EC (Mili-mhos/cm at 25 ◦C) 0.07 0.08 0.07 0.08 0.09 0.07 0.08 0.07 0.07 0.09 0.08 0.04 0.05 0.06 0.05 0.1 0.06 0.04 0.06 0.06 0.07

MASKA (%) 0.1 0.1 0.1 0.11 0.12 0.11 0.12 0.09 0.11 0.12 0.11 0.12 0.12 0.11 0.1 0.12 0.12 0.09 0.11 0.11 0.11
CANOP (%) 9.51 12.9 16.3 11.4 15.2 16 15.5 11.4 22.5 26.8 18.7 10.5 5.24 6.69 18.7 12 8.1 17 6.02 7.95 9.45

LAI 5 (angle 0–75◦) 2.52 2.14 1.89 2.28 2.01 1.9 1.91 2.37 1.62 1.4 1.8 2.47 3.33 2.89 1.79 2.26 2.72 1.9 3.09 2.73 2.53
WEXT (Scores, 0–10) 0 0 5 5 5 1 0 5 5 5 5 0 5 0 5 0 0 10 5 0 0
FEXT (Scores, 0–10) 5 5 0 5 5 1 1 5 5 5 5 10 5 1 10 1 1 10 10 5 10
NTFP (Scores, 0–10) 1 2 1 5 5 1 1 1 1 5 5 10 10 0 10 0 0 1 0 5 0
GRA (Scores, 0–10) 0 0 0 0 5 0 0 0 0 0 0 0 0 0 1 0 0 5 0 0 0
FIRE (Scores, 0–10) 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

Climate data: MAT (Mean Annual Temperature), PWEM (Precipitation of Wettest Month), PDM (Precipitation of Driest Month), PDQ (Precipitation of Driest Quarter), PCQ (Precipitation
of Coldest Quarter); soil data: APD (apparent density), Sand, Silt, Clay, Usable water (USWT), Organic matter content (OMC), Nitrogen (N), Calcium (Ca), Magnesium (Mg), Sodium
(Na), Potassium (K), Phosphorus (P), pH, electric conductivity (EC); topographic data: ELE (Elevation), (RAD) Potential annual direct incident Radiation, HLI (Headload index), (TP)
Topographic position; anthropogenic disturbance data: WEXT (Wood extraction), FEXT (Firewood extraction), NTFP (Collection of non-timber forest products), GRA (Grazing), Fire;
canopy data: MASKA (Mask Area), CANOP (Canopy Openness), and LAI 5 (Leaf Area Index).



Diversity 2020, 12, 444 9 of 29

2.6. Classification

A hierarchical cluster analysis, was performed using PC-ORD 7 [97], with the flexible beta
algorithm, was performed to determine community groups, using a Sørensen distance matrix
of 21 sites × 77 species. We used a restriction criterion (β = −0.25) as a linkage method to
obtain a dendrogram [95]. Compositional differences among groups, generated by cluster analysis,
were assessed using a multi-response permutation procedure (MRPP), a technique not requiring
distributional assumptions (multivariate normality and homogeneity of variance) [95]. This technique
provides a statistical test (T) describing the separation among groups, a p-value evaluating the likelihood
that an observed difference is due to chance, and the agreement statistic A, describing within-group
homogeneity compared to that expected by chance. When all the items within groups are identical, the
weighted mean within-group distance (δ) = 0 and A = 1, the highest possible value for A. A neutral
value (A = 0) is obtained when heterogeneity matches that expected by chance. If there is less agreement
within groups than expected by chance, then A < 0 [95]. We run MRPP available on the PC ORD 7
software [97] using the Sørensen distance measure, the same one used in both the ordination and
classification. Indicator Species Analysis (ISA) was used to determine the most representative and
exclusive tree species in each of the groups detected in the cluster analysis [89], using the relative
frequency and relative abundance of the species in each selected group. Indicator values were tested
through 1000 Monte Carlo randomizations [95]. ISA was also used to objectively define the optimum
number of groups, selecting the hierarchical cluster step with both the smallest average p-value
and the highest number of significant indicator species [95,100]. ISA was performed for P/A data,
using the Tichý and Chytrý [101] method; for abundance data (density, structure, and guilds), we used
Dufrêne and Legendre [100], with the Sørensen distance measure. We used the software package
PC-ORD 7 for all multivariate analyses [95].

2.7. Diversity and Structure

A regression analysis was carried out using species richness (α-diversity) as the dependent
variable and elevation as the independent variable. The resulting pattern for the 21 sites of this study
was compared against data of alpha diversity for 146 sites from previous studies using the same
sampling scheme with circular quadrats [47]. The relative species-richness of families was examined
along the elevational gradient: the 21 sites were grouped and averaged by elevation into four classes:
1600−1699 m a.s.l. (sites 15−17, 18, 20), 1700−1799 m a.s.l. (sites 5, 10−11, 13−4), 1800−1899 (sites
1, 4, 6, 9, 12), and 1900−1999 m a.s.l. (sites 2–3, 7−8, 19, 21). Species turnover (β-diversity) was
assessed through detrended correspondence analysis (DCA), performed with PC ORD 7 [97] to quantify
the heterogeneity, as gradient length, for each of the four data matrices (P/A, density, basal area,
and guilds). This measure is ecologically meaningful, and it was also used to assess the magnitude of
discontinuities along the primary gradient in ordination and among clusters in vegetation classification.
The total amount of the species found (γ-diversity) was obtained from the 21 sites along the 350 m
elevational gradient. Structure data were obtained from summary statistics of individual tree species
(frequency, density, and dominance) in the 21 sites, using the PC-ORD software package version 7.0.

2.8. Endemism and Conservation

We used Tropicos.org and POWO to assess the geographic distribution and endemism of
each species. The risk status and endemism of all species were determined using various criteria:
The International Union for Conservation of Nature and Natural Resources Red List [102], the Mexican
endangered species act NOM−059 [22], and the Red List of Mexican Cloud Forest Trees [20].
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3. Results

3.1. Ordination

NMS suggested three dimensions for P/A data, and two and one for density and basal area,
respectively. Axis 1 accounted for a greater proportion of variance for basal area data, followed by
density and P/A data (Table 3), axis 1 was consistently explained by pH (Table 4) in all three datasets
(P/A, density, and basal area). Axis 2 was explained by elevation and MAT for P/A data and by Na for
density data, and none of the measured variables explained axis 3 (Table 4). The lowest “stress” value
was achieved with P/A data and with fewer iterations, followed by basal area and density data (Table 3).
Groups overlays (convex hulls), showed no overlap in all three datasets (Figure 2A–C), except for P/A
data, where the Siparuna-CF overlapped with the Vismia-CF in axis 1–2. Oreomunnea-Ticodendron-CF
were consistently separated in all three datasets along axis 1 and explained by soil acidity. For P/A
data, the Vismia-CF was separated from the Siparuna-CF along axis 2 and explained by elevation.
For density data, the Zinowewia-CF was separated from the Oreomunnea-Ticodendron-CF along axis 2
and explained by Na and K. For basal area data, all three groups where separated along axis 1 by pH.
For guild data, PcoA showed high eigenvalues and accounted for a high total variance, inertia (76.22%)
(68.01%, corrected), suggesting the existence of strong environmental gradients in the Juquila river
watershed. Axis 1 explained 69.74% and axis 2 explained 6.48% (Figure 3A). Groups overlays (convex
hulls) showed no overlap among all four groups, with three of them separated along elevation in lower
(lw-CF), mid-elevation (me-CF), and upper CF, with the latter subdivided and separated by soil acidity
into low acidity (up-la-CF) and high acidity (O-T-CF) (Figure 3B).

Table 3. Proportion of variance (NMS) for three different data matrices (P/A, density, and basal area).

Distance Matrix Dimensions p Stress Final Instability Iterations
Proportion of Variance Accounted

Axis 1 Axis 2 Axis 3

Presence Absence 3 0.004 10.26 <1 × 10−6 151 0.608 0.181 0.107
Density 2 0.004 14.50 <1 × 10−6 375 0.672 0.123 0

Basal Area 1 0.004 11.97 <1 × 10−6 281 0.81 0 0

Table 4. Pearson (r) correlation of environmental variables and ordination axes of Bray and Curtis for
presence-absence, density, and basal area to NMS.

Distance Matrix Variables Axis 1 Axis 2

Presence Absence pH −0.694 0.255
Elevation −0.012 −0.806

MAT −0.204 −0.805
Density pH 0.658 −0.184

Na 0.046 0.699
Basal Area pH −0.609 0

The db-RDA showed that the canonical axis 1 was explained by pH in three different datasets
(P/A, density, and basal area), except for guild data, which was explained by MAT. Canonical axis 2
was explained by MAT in two datasets (P/A and basal area), by elevation for P/A data, by Na and K
for density data, and by pH for guild data. Guild data accounted for a greater proportion of both
cumulative explained variance from total variation (Table 5, Figure 4A–D). In summary, the db-RDA
confirmed that vegetation change was best explained by pH, MAT, and elevation, and the guild dataset
was the most efficient.
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(P/A, density, and basal area), except for guild data, which was explained by MAT. Canonical axis 2 
was explained by MAT in two datasets (P/A and basal area), by elevation for P/A data, by Na and K 
for density data, and by pH for guild data. Guild data accounted for a greater proportion of both 

Figure 2. NMS ordinations of the vegetation for presence-absence (A), density (B), and basal area
(C) data. The fitted vectors (full-line arrows in black) show the direction and strength of the linear
correlations of environmental variables. Cloud forest groups, determined by Flexible clustering for
presence-absence (D), density (E), and basal area (F) data, are color-coded, indicated by convex hulls
or ellipses, and typified by indicator taxa or associated environmental conditions. Values in brackets
are proportions of variation represented by the axes. Stress was 10.26%, 14.50%, and 11.97%, for A, B,
and C, respectively.



Diversity 2020, 12, 444 12 of 29

Diversity 2020, 12, x  14 of 31 

 

cumulative explained variance from total variation (Table 5, Figure 4A–D). In summary, the db-RDA 
confirmed that vegetation change was best explained by pH, MAT, and elevation, and the guild 
dataset was the most efficient. 

Table 5. Explained variation (db-RDA) for presence-absence, density, basal area, and guilds data for 
ecological guild data. 

Distance 
Matrix 

Cumulative Explained 
Variance (%) 

Explained from 
Total Variation (%) 

Strongest Inter-Set with Correlations (r) 
Canonical Axis 1 

Predictor/r/Biplot Scores 
Canonical Axis 2 

Predictor/r/Biplot Scores 
Presence-
Absence 

32.9 15.5 pH (0.845), 0.1820 
Elevation (0.818), 0.1705 
MAT (−0.886), −0.2000 

Density 28.5 14.6 pH (−0.613), −0.0499 
Na (−0.788), −0.0542  

K (0.554), −0.0501 
Basal Area 30.1 24.6 pH (−0.709), 0.2562 MAT (0.516), 0.1637 

Guilds 36.6 28.6 MAT (0.525), 0.0586 pH (0.680), 0.0983 

 

Figure 3. (A) Principal coordinate analysis (PCoA) on guild data. (B) Flexible-Beta cluster analysis. Figure 3. (A) Principal coordinate analysis (PCoA) on guild data. (B) Flexible-Beta cluster analysis.

Table 5. Explained variation (db-RDA) for presence-absence, density, basal area, and guilds data for
ecological guild data.

Distance Matrix Cumulative Explained
Variance (%)

Explained from Total
Variation (%)

Strongest Inter-Set with Correlations (r)

Canonical Axis 1
Predictor/r/Biplot Scores

Canonical Axis 2
Predictor/r/Biplot Scores

Presence-Absence 32.9 15.5 pH (0.845), 0.1820 Elevation (0.818), 0.1705
MAT (−0.886), −0.2000

Density 28.5 14.6 pH (−0.613), −0.0499 Na (−0.788), −0.0542
K (0.554), −0.0501

Basal Area 30.1 24.6 pH (−0.709), 0.2562 MAT (0.516), 0.1637
Guilds 36.6 28.6 MAT (0.525), 0.0586 pH (0.680), 0.0983
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Figure 4. Constrained ordination triplots (db-RDA) relating the plant species presence-absence (A),
density (B), and basal area (C) or (PCoA) guilds data (D) to the selected environmental variables (full-line
arrows). Species names represent positions of the significant (p < 0.05) indicator species with indicator
values (IV) IndVal ≥ 43.07% and 28.58%. The first three letters are for the generic name and the last three
letters are for the specific epithet. The cloud forest groups are indicated by convex hulls or ellipses.
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3.2. Classification

ISA, applied to every hierarchical step of the flexible-clustering, determined where to prune each
dendrogram, suggesting four groups for P/A data (Table 6, Figure 2D), 3 groups for density data
(Table 6, Figure 2E), four groups for the basal area (Table 6, Figure 2F), and 4 groups for guild data
(Table 6 and Figure 3B). P/A and density data were the only ones that resulted in having species with
significant indicator values, while for basal area and guild data, the analysis failed to highlight species
with significant indicator values (Tables 6 and 7). The Oreomunnea-Ticodendron-CF had an outstanding
number of species with significant IV’s. The MRPP showed homogeneity within groups for P/A,
density, basal area, and guild data (Table 6).

Table 6. Summary for Indicator Species Analysis (ISA) and Multi-Response Permutation Procedures
(MRPP).

Distance Matrix Spp. or Guild #
with Significant IV

Lowest Average
p-Value

Suggested Group
Number

Cloud Forest
Group Names

MRPP
T/p/A

Presence-Absence 16 0.4307 4

(1) Alnus-Nectandra
(A-N-CF), (2) Vismia (V-CF),

(3) Siparuna (Si-CF),
(4) Oreomunea-Ticodendron

(OT-CF)

−8.14/7.4 × 10−7/0.21

Density 4 0.2258 4, three interpretable

(1) Sarauia (Sa-CF),
(2) Zinowiewia (Z-CF),

(3) Oreomunea-Ticodendron
(OT-CF).

−9.87/2.01 × 10−6/0.18

Basal Area 0 0.1822 5, three interpretable

(1) Low acidity (la-CF),
(2) Mid acidity (ma-CF),
and (3) extreme acidity

(O-T-CF)

−10.25/3 × 10−8/0.34.

Guilds 0 0.0325 5, four interpretable

(1) Upper, low acidity
(up-la-CF), (2) Upper,
high acidity (O-T-CF),

(3) Mid elevation (me-CF),
and (4) Low (lw-CF)

−8.12/6.8 × 10−7/0.34

Table 7. Indicator species of the groups determined for the presence-absence and density data.

Distance Matrix Species Group (IV) p-Value

Presence-Absence Viburnum microcarpum 1 0.683 0.001
Alnus acuminata 1 0.775 0.002
Gaultheria erecta 1 0.615 0.002

Nectandra rubriflora 1 0.556 0.033
Vismia camparaguey 2 0.798 0.001
Lyonia squamulosa 2 0.577 0.061

Siparuna gesnerioides 3 1 0.008
Ocotea mexicana var. diminuta 4 1 0.009

Psychotria galeottiana 4 1 0.009
Ticodendronincognitum 4 1 0.009
Oreomunnea mexicana 4 0.905 0.03
Calyptranthes pallens 4 0.905 0.033
Sphaeropteris horrida 4 0.905 0.033
Cartrema americana 4 0.825 0.048

Eupatorium constipatiflorum 4 0.825 0.055
Mikania pyramidata 4 0.825 0.059

Density Saurauia angustifolia 1 50 0.042
Zinowiewia concinna 2 44.4 0.049

Ocotea mexicana var. diminuta 3 100 0.008
Mikania pyramidata 3 75 0.033

IV (Indicator values).
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3.3. Diversity

Species richness increased with increasing elevation (r = 0.39, degrees of freedom (d.f.) GL 19,
p < 0.05) (Figure 5A), inversely to the expected pattern observed for 167 Mexican CF sites (r = −0.38,
GL 165, p < 0.005) (Figure 5A), with the same sampling scheme. The elevation gradient of CF
sites in Mexico with transect sampling of 0.1 ha with the Gentry method was 750 to 2750 m a.s.l.,
and the richness gradient was 15 to 75 species per 0.1 ha (average of 40 species). Transect richness,
in general, for 30 Mexican CF sites tended to decrease with increasing elevation (r = −0.7242, d.f.L
28; p < 0.005) (Figure 5B). Species turnover or gradient length for ecological guild data for the first
axis, as determined by DCA, had an eigenvalue of 0.01, and the shortest gradient length of 0.39
of standard deviation SD, representing a low beta diversity. For the P/A data, the eigenvalue of
axis 1 was 0.3 and a gradient length of 2.2 SD, using importance value data the eigenvalue of axis
1 was 0.5, and the gradient length was 2.8 SD, using density data the eigenvalue of axis 1 was 0.6,
and the gradient length was 2.9 SD, and using basal area data the eigenvalue of axis 1 was 0.7,
and had the largest gradient length was 3.9 SD, representing a high beta diversity or high species
turnover with almost no species in common between the endpoints of axis 1. Total species diversity
of the woody vascular flora (>2.5 cm in dbh) in the 21 sites (2.1 ha) was represented by 77 species
(including one morphospecies), corresponding to 61 genera and 41 families. Three species occurred
along the entire elevational gradient and had high importance values: Pinus chiapensis (Martínez)
Andresen, Magnolia dealbata, and Hedyosmum mexicanum C. Cordem. The most frequent species (>80%)
were Hedyosmum mexicanum, Palicourea padifolia (Humb. & Bonpl. ex Schult.) C.M. Taylor & Lorence,
Phyllonoma laticuspis (Turcz.) Engl., Clethra mexicana DC., Magnolia dealbata, Miconia glaberrima (Schltdl.)
Naudin, Pinus chiapensis, Liquidambar styraciflua L., Vaccinium leucanthum Schltdl., Viburnum acutifolium
Benth., and Myrsine juergensenii (Mez) Ricketson & Pipoly. Asteraceae was the most species-rich family
in most elevation ranges, except at 1800−1899 m a.s.l., where it was matched by Lauraceae, Ericaceae,
and Fagaceae. Families showed greater equitability at this elevational range. Ericaceae unexpectedly
increased toward lower elevations and Lauraceae increased toward higher elevations (1900−1999 m
a.s.l.) (Figure 6). The family richness in terms of species/genera were Asteraceae (9/6), Ericaceae and
Rubiaceae (4/4), Lauraceae and Pentaphylacaceae (4/3).

3.4. Structure

Total density was 6223 woody individuals (≥2.5 cm dbh) in the 21 sites, representing an average
of 141 trees/0.1 ha. Species with large densities (trees/0.1 ha) were Hedyosmum mexicanum (482),
Phyllonoma laticuspis (389), Magnolia dealbata (249), Clethra mexicana (177), Liquidambar styraciflua (162),
Palicourea padifolia (156), Pinus chiapensis (144), Miconia glaberrima (131), and Vaccinium leucanthum
(105). The rest of the species had <100 trees/0.1 ha. The total basal area was 86.73 in the 21 sites,
averaging 4.13 m2/0.1 ha, ranging from 1.7 to 6.5 m2/0.1 ha (sites 18 and 14, respectively). Site 18, the one
with the maximum basal area, was densely populated by P. chiapensis, with this species occupying
5.04 m2/0.1 ha, followed by L. styraciflua with 0.43 m2/0.1 ha. Site 14, the one with the minimum basal
area, had H. mexicanum as the dominant tree, occupying 0.58 m2/0.1 ha of the total basal area for
the site. Dominant species, in terms of the basal area along the entire gradient (m2/2.1 ha), included
P. chiapensis (53%), and L. styraciflua (7%), H. mexicanum (7%), and Magnolia dealbata (6%). The rest of
the species had <5% dominance. A-O-CF averaged 4.1 m2/0.1 ha, ranging from 1.7 to 6.2 m2/0.1 ha
(sites 14 and 1, respectively). V-CF averaged 4.4 m2/0.1 ha, ranging from 3.7 to 6.5 m2/0.1 ha (sites 10
and 18, respectively). O-T-CF average was 4.4 m2/0.1 ha, ranging from 3.8 to 5.01 m2/0.1 ha (sites 19
and 21, respectively). S-CF average was 3.4 m2/0.1 ha ranging from 2.8 to 4.0 m2/0.1 ha (sites 20 and 16,
respectively). The highest importance value index at the entire gradient (2.1 ha) was maximum for
P. chiapensis (36%), followed by H. mexicanum (25%), Liquidambar styraciflua (24%), Magnolia dealbata and
P. laticuspis (tied at 16%), P. padifolia (14%), and C. mexicna (12%).
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Figure 5. Alpha diversity in relation to elevation in 0.1 ha Mexican cloud forests (CF) sites. The central
trend line in is black. (A) 167 Mexican CF sites, using circular quadrats, with a fixed sampling
universe [56]. Pacific slopes (dots in light blue), Atlantic slopes (dots in yellow), this study (dots and
central trend line in red). (B) Thirty Mexican CF sites, using transects: with undefined sample universe
(19 sites) [1] and within a defined sampling universe (11 sites, brown circles) [17].
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Figure 6. Percentage of woody species in the most diverse plant families (with more than two species) at
each elevation in the cloud forest of San Juan Juquila Vijanos, Oaxaca. Family names consist of their initial
three letters: ACT, Actinadiaceae; ARA, Araliaceae; AST, Asteraceae; CLU, Clusiaceae; ERI, Ericaceae;
FAG, Fagaceae; LAU, Lauraceae; MEL, Melastomataceae, MYR, Myricaceae; PEN, Pentaphylacaceae;
PIN, Pinaceae, PRI, Primulaceae; RUB, Rubiaceae; SOL, Solanaceae; VIB, Viburnaceae.

3.5. Endemism and Conservation

All 76 species are new world endemics: 70 species were Neotropical endemics, 59 spp. were
Mesoamerican endemics, including Oreomunnea mexicana (Standl.) J.-F. Leroy and Ticodendron
incognitum Gómez-Laur. & L.D. Gómez. Twenty-five spp. were northern Mesoamerican endemics,
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including Pinus chiapensis. Twenty-five spp. were central and southern Mexican endemics, including Pinus
patula and Quercus trinitatis Trel. Five spp. were southeastern Mexican endemics, including Cleyera cernua
and Ternstroemia oocarpa (Rose) Melch., and only one species was an Oaxacan endemic, Magnolia dealbata.
Only four spp. occurred in North, Central, and South America, and only one species, Liquidambar styraciflua,
occurred in both North and Central America. The IUCN Red List includes one third (31 spp.) of
the 77 species found in the Juquila, Oaxaca gradient: Vulnerable 5% (4 spp.), including Arachnothryx
buddleioides (Benth.) Planch., Cornus disciflora Moc. & Sessé ex DC., Hedyosmum mexicanum, and Saurauia
angustifolia Turcz, Near Threatened 4% (3 spp.), including Magnolia dealbata, Quercus skinneri Benth.,
and Ticodendron incognitum, Endangered 3% (2 spp.), including Dendropanax populifolius (Marchal) A.C.
Sm. and Zinowiewia concinna Lundell, and under Least Concern 29% (22 spp.). In contrast, the Red
List of Mexican cloud forest trees includes over two thirds (52 spp.) listed for the Juquila gradient.
Critically Endangered 4% (3 spp.): Dendropanax populifolius, Cleyera cernua (Tul.) Kobuski, and Quercus
skinneri, Endangered 12% (9 spp.): Magnolia dealbata, Cleyera velutina B. M. Barthol., Viburnum acutifolium,
Vaccinium leucanthum, Zinowiewia concinna, Clusia guatemalensis Hemsl., Symplocos pycnantha Hemsl.,
and Quercus trinitatis, Vulnerable 16% (12 spp.), including, among others: Pinus chiapensis, Ternstroemia
oocarpa, and Quercus sapotifolia Liebm., Near Threatened 12% (9 spp.), including, among others:
Ticodendron incognitum, Weinmannia pinnata L., and Saurauia scabrida Hemsl., and under Least Concern
25% (19 spp.). (Supplementary Table S3).

4. Discussion

4.1. Environmental Community Drivers

Community composition and structure of CF with Magnolia dealbata in the Sierra Norte de
Oaxaca may be explained by habitat specialization to soil gradients and altitude. On short elevational
gradients, edaphic variables are often more relevant than climatic variables in explaining the strongest
community gradients [51,103]. For instance, moisture and topography can change within small scales,
impacting species composition, while soil nutrients across topography gradients may result in fertility
gradients affecting species dominance. Spatial environmental variation in temperature, light, soil pH,
moisture, nitrogen, and altitude at any scale may drive to the occurrence of habitat-specialized plant
species [104,105], which leads to changes in species composition even on small scales.

Soil acidity (pH) along the short (352 m) elevational gradient was more relevant than any other
measured climatic variables in explaining the variance in each of the three strongest community
gradients recovered by NMS (compositional, structural, and dominance). In contrast to other studies
in Fagus-CF, out of all the analyzed microenvironmental factors, pH was the only one not correlated
with community variation [106]. Studies in the study area report soils with a pH below 5, so they are
considered acidic and easily leached [77,78]. Despite the fact that conifers tend to increase the acidity of
the soil [77,107–109] and that conifer needles provide lower amounts of Ca, K, and Mg than deciduous
species [110], the dominance of Pinus chiapensis was inversely correlated to the acidity gradient.
The acidity gradient was instead correlated with precipitation of the driest month (r = 0.59, p < 0.01)
and inversely correlated with N (r = −0.48, p < 0.05). It is well known that acidity is also attributed
to soil leaching [56,111], which is enhanced under high rainfall and steep slopes, like those reported
for our sites, generating a higher concentration of aluminum and displacement of cations [78,112].
A significant number of species that prefer acidic soils grow in high-altitude areas because soil pH
is negatively correlated with elevation (higher tendency to acidification at higher altitudes), since at
higher altitude, the decomposition of organic matter is slower, and the acidification process is more
intense due to higher precipitation [113].

However, elevation was not correlated with the strongest gradient (axis 1) on any of the three
ordinations. Soil acidity is common in CF [114]; in Mexico, it has been recorded in both the Atlantic
slopes of Veracruz and Oaxaca [58,78,115], and the Pacific slopes of Guerrero and Jalisco [116,117] from
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early to the late-successional stage and under different conservation and extraction regimes, as shown
for Juquila Vijanos in the Sierra Norte de Oaxaca [78,79,110].

However, this is the first time that an acidity gradient explains the strongest CF gradients
along a short elevational range. The outstanding discontinuity along the acidity gradient (axis 1),
separating two major groups of CF does not support the Continuum hypothesis [118]. The great
majority of CF stands (19 sites) occur in acidic soils (pH 4.3–5.15), while the other group includes only
two sites occurring in strongly acidic soils (pH 4.4–4.0); site 19 (1951 m a.s.l.), mono-dominated by
Oreomunnea mexicana (relative dominance, 18%), and the site 21 (1960 m a.s.l.), co-dominated by Persea
liebmannii Mez (14%), Ticodendrum incognitum and Dendropanax populifolius (11% each), and Oreomunnea
mexicana (10%). However, the acidity level is not as extreme as shown in other Oreomunnea populations
in Oaxaca, with pH values from 3.7 to 3.5 [119]. Monodominance of Oreomunnea mexicana has also been
registered from La Esperanza (1600 and 1800 m a.s.l.), Santiago Comaltepec, Oaxaca [14], other nearby
areas in the same region [120], and in Santa Cruz Tepetotutla, south of San Felipe de Usila, Oaxaca at
1840 m a.s.l. [121]. It has also been inferred from density data, in one single site east of Cofre de Perote,
Veracruz [58]. Codominance of this species has been reported in La Esperanza, in coexistence with
different taxa (mostly Quercus spp.), between 1800 and 2050 m a.s.l. [14]. Meave et al. [121] recorded for
the first time a forest dominated by O. mexicana and T. incognitum in Santa Cruz Tepetotutla at 1840 m
a.s.l. After twenty-one years, the present study is the second record for the Sierra Norte of Oaxaca,
where the two biogeographic relicts, O. mexicana and T. incognitum, are reported as codominant in
a 0.1 ha site, among the other few dominant tree species. Ticodendron incognitum has been found at
high densities (39 trees/0.1 ha) in La Esperanza, Oaxaca (1750 m), Mexico [17], while in Santa Cruz
Tepetotutla, the highest density (10 trees/0.1 ha) was recorded at 1840 m in elevation [121]. In San
Miguel Tiltepec (418 trees/0.1 ha), it was recorded at 1640 m [15], and in lower densities at the Barva
volcano, Costa Rica (14−27 trees ha), at 1750−2000 m [54].

Elevation was of secondary importance in shaping vegetation structure, and composition
also changes with altitude. Environmental variables such as temperature, precipitation, potential
evapotranspiration, and radiation can play a vital role in determining the distribution of species along
the altitudinal gradient [65,122–124]. One of the first patterns observed in nature was the change
of species richness in an altitudinal gradient, which was widely accepted to decrease as elevation
increased [70,125]. In elevation gradients, depending on the type of vegetation, species richness may
be associated with different climatic variables [65]. The fact that elevation explained a secondary
gradient and not the first may have to do with the range of the elevation of the gradient. The longer
the gradient elevation, the more expected to be the overriding variable, suggesting that for each
elevational mountain gradient, there must be a gradient range threshold below which edaphic or
topographic variables become more important than elevation to explain community structure [51].

4.2. Cloud Forest Types and Relationships

In general, the CF studied in the present work correspond environmentally to the warm-temperate
lower-montane moist forests [126]. The high woody species turnover and heterogeneity found in
Juquila Vijanos has been documented frequently for CF transects in different biogeographic provinces
with contrasting floristic composition, for instance, the three cloud forest communities reported
from the calcareous Cerro Grande Manantlán Massif in the Sierra de Manantlán [69]: evergreen CF
(2400−2500 m), mesophyll CF (2100−2300 m), and Myrcianthes CF (1900−2000 m). Other authors have
identified only two types of CF along elevation, for instance, Williams-Linera et al. [58] distinguished
lower (1250−1630 m) and upper montane forests (1483−2550 m), Rodríguez-Gonzalez [61] found upper
montane CF (1600−2200 m) and lower montane CF (1300−1600 m), Cruz-Peña [68], for the southern
windward slopes of Nevado de Colima Volcano, describes upper montane CF (1935−2656 m) and lower
montane CF (1290−1860 m), and Guerrero et al. [52] described lower montane CF (1500−2020 m) and
upper montane CF (1920−2450 m). Cloud forests thriving at very high elevations such as those found
in Nevado de Colima, Cofre de Perote, Cerro Grande Massif, and Cerro La Bufa, may be explained by
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the Massenerhebung effect [127]. We found no records of CF inhabiting soils with low pH values such
as those observed in O-T-CF in Juquila Vijanos, Oaxaca. Concerning ISA, indicator species for O-T-CF
are associated with low acidity, while indicator species for A-O-CF are associated with high elevation.
The absence of indicator species in V-CF suggests that their species have a wide distribution range and
could be shared with other neighboring CF.

4.3. Diversity

4.3.1. Alpha Diversity

The effect of elevation on species richness is not universal but rather scale- and context-dependent.
Some studies report that species richness depends on the life form considered [56,128]. Four major
patterns of species diversity along elevation are described among different organisms [70]: (1) Midpeak
is the most common pattern in plants [34,37,101,102], (2) decreasing richness with increasing elevation
is the most common for woody plants in tropical montane forest [1,23,28–30,32,34,43,57,110,111],
and less common patterns are: (3) low plateau and (4) low plateau with a mid-peak [70]. Our study,
showing increasing richness with increasing elevation in CF transects, does not conform to any of
the major trends, however, to some extent, our result is related to studies showing the increasing
pattern from the lowlands to some mid-elevation peak [129–132]. Thus, the observed increasing
pattern for CF could be considered a sampling artifact. Sampling truncation at the upper portion of
an assumed unimodal CF species richness pattern could result in a short gradient displaying a positive
relationship. Alternatively, it could be explained in part by a combination of (a) habitat specialization
to edaphic conditions along a gradient of high soil heterogeneity, where forests develop on soils
ranging from low to high acidity, as evidenced in this study (see below), (b) a higher rainfall and fog
from eastern trade winds out of the Gulf of México toward higher elevations, which is expected to
influence species richness [1,70], (c) biogeographic refugia, including paleoendemic relics, which may
also contribute to the high diversity. For instance, among the sites with to the richest and highest
elevation group: the O-T-CF, which are considered Oligocene-Miocene relics [14], and (d) better
conservation status on steep slopes that are farther away from towns, e.g., disturbance or successional
gradients [77,78,82], which in turn may be correlated to altitude [70]. The resulting diversity values
for the Juquila Vijanos gradient increased two-fold (15–35) along the elevational gradient, and every
value fell within the expected species richness ranges for Mexican CF: 8–42 spp. ha−1 using circular
quadrats (Figure 5A) and 15–75 spp. ha−1 using transects (Figure 5B). Only two sites (19 and 21)
showed unusually high values (32 and 35 spp., respectively) for their elevational zone, being greater
than that reported for Neotropical CF [1,17,27]. These two sites correspond to the richest and highest
elevation group, the O-T-CF.

4.3.2. Family Shifts Along Elevation

The top five species-richest families at the Juquila, Oaxaca gradient, were Asteraceae, Ericaceae,
Fagaceae, Lauraceae, and Rubiaceae. The latter two are also among the top five families at similar
elevation range in the Andes, in Antioquia, Colombia, however, in the latter, Melastomataceae is also
among the top families [133]. The family Asteraceae dominated at most elevations in congruence with
studies in western México: the karstic Cerro Grande massif, Sierra de Manantlán [56], the volcanic
and plutonic Sierra de Cacoma, Talpa de Allende, Jalisco, from 1600 to 2200 m a.s.l., with its
greatest contribution being from 1750–2000 m a.s.l. [61]. Geographic isolation and optimal growth
conditions led to the evolution of a particularly large number of Asteraceae in the montane regions of
Guatemala and Mexico [134]. High species richness of Asteraceae along most of the Juquila gradient
could be attributed to the high dispersal efficiency of the family through their anemochorous and
ectozoochorous mechanisms, but also to their antiherbivore defenses through the production of
secondary metabolites [135]. However, this family showed the lowest values at the middle portion
of the CF gradient (1800–1899 m a.s.l.), this may be explained by the fact that Asteraceae do better
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in dryer habitats and this elevation range is associated to the highest moisture regime observed
between 1835 and 1944 m a.s.l., possibly corresponding to a unimodal distribution of precipitation
and or an area of high condensation of moisture from trade winds [136] out of the Gulf of Mexico, as
evidenced by the 102% gain from fog through water collectors during the dry season, peaking at 1898
m a.s.l. in Altotonga, Veracruz, also in the windward side of the Gulf of México, in the neighboring
Sierra Madre Oriental [137]. Other CF with low diversity of Asteraceae include the mesic CF in
the Cerro Grande Sierra de Manantlán, in western Mexico, where Orchidaceae and Aspleniaceae
out-number the Asteraceae only from 2300 to 2400 m a.s.l. [56]. The observed decrease of Asteraceae
at 1800−1900 m a.s.l. in the Juquila gradient could be explained by high moisture. For instance,
along an elevational gradient in Cerro Grande, Manantlán [56], Asteraceae shows its lowest richness
value at 2300 m a.s.l. in moist CF with higher fog incidence, where umbrophilic ferns (Aspleniaceae),
orchids, and Lamiaceae outcompete heliophytes like Asteraceae due to greater efficiency in using
understory diffuse light [56,138]. In the same Manantlán gradient, at 2400 m, again, orchids out-number
Asteraceae as the leading family. Similarly, but in a contrasting ecosystem, wet grasslands in Uganda
have less diversity of Asteraceae than dry grasslands [139]. Higher moisture or rainfall could also make
pappus and bristles wet, interfering with wind-dispersed species, except for those with ectozoochory.

4.3.3. β-Diversity

Gradient length estimates, except for guild data (0.39), match the expected outcome, ranging
from 1.36 to 11.98 for field studies [71,72], and the length observed on structural vs. P/A data tends
to be higher, representing their high structural heterogeneity, complexity, and turnover. Comparison
of distance estimates between datasets should, however, be restricted to situations with the same
abundance scale, range of the abundance scale, and species deletion level [71].

4.3.4. γ-Diversity

Gamma diversity values are not directly comparable among CF studies, due to different sampling
schemes, elevational range, and area size covered, among many other factors. For instance, a 1300 m
elevational CF gradient in Cofre de Perote, eastern Mexico, had 128 tree species ≥5 cm dbh [58], while
for Juquila Vijanos, after excluding species with dbh <5 cm and ≥2.5 cm, we reported 64 woody
species ≥5 cm dbh. Thus, gamma species richness of the Juquila gradient is half of that of the more
northern Cofre de Perote (Veracruz), however, the altitudinal range of the Juquila gradient is only 26%
of that of Cofre de Perote. This suggests that the gamma diversity in the southern Juquila gradient is
proportionally greater than that in the Cofre de Perote gradient, in agreement with the globally known
pattern of increasing species richness with the decrease in latitude [140].

4.3.5. Floristic Affinities

Floristic affinities of these CF, in terms of species composition, are similar to that of other CF in
the Sierra Madre de Oaxaca and the Chimalapas, including La Chinantla, Sierra Mazateca, and Cerro
Salomón, Chimalapas [6]. It is worth noting that the generic composition of the Juquila gradient
is highly similar (ca. 50%) to that of the Miocene flora of northern Chiapas [64]. This Sierra de
Juárez gradient also has affinities to the Cretaceous formations: Tarahumara (Sonora) and Cerro del
Pueblo (Coahuila), which include Alnus, Betulaceae; Hedyosmum, Chloranthaceae; Quercus, Fagaceae;
Juglandaceae (possibly), Magnolia, Magnoliaceae; Myrtaceae; Pinus, Pinaceae [141], while floristic
affinities with Early Eocene floras of the formations La Carroza, La Trinidad (Chiapas), and Jackson
(Tamaulipas) include Alnus; Ilex, Aquifoliaceae; Liquidambar, Altingiaceae; Oreomunnea, Juglandaceae;
Myrica, Myricaceae; Eugenia, Myrtaceae, and the families Asteraceae, Caryophyllaceae, Fabaceae,
and Poaceae [139]. The presence of additional boreal elements such as Pinus, Quercus, and Ilex represent
the effect of decreasing temperatures before the Pleistocene, which allowed colonization to southern
latitudes, as evidenced in Veracruz (Paraje Solo) of Mid-Pliocene [141,142].
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4.4. Endemism and Conservation

Temperate semi-humid zones have higher endemism at the species level than warm humid
zones [143]. The high endemism of these CF is explained by various factors: (a) the long permanence
of the topographic relief of the Sierra de Juárez since the Miocene ca. 16 Ma, (b) the constant volcanic
activity in eastern Oaxaca during the Miocene [144] contributed to the modification of environments,
climates, and niches, as well as the formation of geographical barriers, inducing vicariance and
allopatric speciation, (c) the effective ecological isolation of these CF archipelagos [8] that have resulted
from the decrease of the space matrix with the increase in elevation, and (d) the high physiographic,
geological, and edaphic heterogeneity [143]. However, some taxa managed to overcome barriers,
and some constitute major disjunctions: Eastern Mexican and eastern North American disjunction,
separated by northern Mexico and the southern Texas gap [145], Transisthmic disjunctions, separated by
the Tehuantepec Isthmus, and northern vs. southern Mesoamerican disjunctions, separated by de
Nicaraguan depression [146].

The proportion of Critically Endangered species in Juquila, Oaxaca (4%), were similar to that
reported for the ecological reserve El Cielo, in Tamaulipas (4%) [67], and in Cofre de Perote National
Park, Veracruz (3%) [58] and Sierra de Cacoma, Jalisco (3%) [57,61]. Endangered species in Juquila,
Oaxaca (9%), represented a lower fraction than in Cofre de Perote, Veracruz (16%) and El Cielo,
Tamaulipas (11%), and it was similar to Sierra de Cacoma, Jalisco (8%). Near Threatened species
had a higher proportion in Juquila, Oaxaca (12%), than in Sierra de Cacoma, Jalisco (1%), Cofre de
Perote, Veracruz (9%), and El Cielo, Tamaulipas (7%). The proportion of Vulnerable species in Juquila,
Oaxaca (18%), was lower than in Cofre de Perote, Veracruz (21%), and higher than in El Cielo,
Tamaulipas (11%) and Sierra de Cacoma, Jalisco (9%). In Juquila Vijanos, the high proportion of species
under a risk category (31%) [20] suggests that this area may have been functioning has a biodiversity
refuge [14,64]. This result confirms that the Sierra Madre de Oaxaca is one of the major biodiversity
hotspots in Mexico [147] and the area with the largest number of threatened taxa reported for the Sierra
Norte of Oaxaca (Ixtlán, Villa Alta y Mixe districts) [148]. However, the conservation status of many
tree species is poorly documented, and many species are yet to be included in the Red List of Mexican
cloud forest trees [20].

A considerable number of floristic elements along this gradient indicate disturbance, for instance,
the dominant shade-intolerant woody Asteraceae and several other gap-phase regeneration
species such as Hedyosmum mexicanum, Phyllonoma laticuspis, Magnolia dealbata, Clethra mexicana,
Liquidambar styraciflua, Palicourea padifolia, Pinus chiapensis, Miconia glaberrima, and Vaccinium leucanthum.
This disturbance aspect is acknowledged as a limitation in this research.

5. Conclusions

Major small-scale CF community variation was explained by soil pH, while elevation, K, Na,
and firewood extraction were environmental variables of secondary importance. This supports the habitat
specialization hypothesis as the major driver of small-scale community organization of CF stands harboring
M. dealbata in Juquila, Oaxaca.

The high discontinuity separating the Oreomunea-Ticodendron forest stands do not support
the Continuum hypothesis. This relic Oreomunnea-Ticodendron-CF resulted isolated at the high acidity
end of the gradient, and there, species richness reached its maximum, where Magnolia dealbata had its
lowest density and basal area. In contrast, Magnolia dealbata presented the highest density values in
the Vismia-CF and the highest basal area in the Alnus-Ocotea-CF and Siparuna-CF.

The increasing species richness with increasing elevation does not support the Decreasing
hypothesis, but this may be due to a sampling artifact, sampling truncation at the top of an assumed
unimodal (mid peak) pattern, or may be explained in part by a combination of habitat specialization,
contributions from biogeographic refuges, and from sites with good conservation status. The high
species richness observed was associated with the sea windward dry-seasonal maximum cloud
condensation gain and habitat differentiation-specialization. We hypothesize that a combination of these
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factors may also explain the hypothesis of mid-peak species richness and may have allowed long-term
survival of relict species such as Oreomunea Mexicana and Ticodendron incognitum. Future studies
may consider testing the unimodal (mid-peak) hypothesis for species-rich and mist-loving vascular
families such as Aspleniaceae, Grammittidaceae, Orchidaceae, and Bromeliaceae, on longer altitudinal
transects, a wider range of edaphic and topographic variables, using different scales, and incorporating
land-use change, among additional factors.

The species-richest Oreomunnea-Ticodendrum-CF, considered an Oligocene-Miocene relic, must be
legally protected urgently, and since it is isolated and specialized to the acidic end of the gradient,
it requires specific maintenance of soil conditions. The generated or tested hypotheses about major
environmental variables influencing community organization as well as the relationships among
various CF groups should be used to guide conservation and sustainable development strategies for
these communities harboring the bioculturally relevant Magnolia dealbata.
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