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Abstract: Parrotfish perform a variety of vital ecological functions on coral reefs, but we have little
understanding of how these vary spatially as a result of inter-habitat variability in species assemblages.
Here, we examine how two key ecological functions that result from parrotfish feeding, bioerosion
and substrate grazing, vary between habitats over a reef scale in the central Maldives. Eight distinct
habitats were delineated in early 2015, prior to the 2016 bleaching event, each supporting a unique
parrotfish assemblage. Bioerosion rates varied from 0 to 0.84 + 0.12 kg m~2 yr~! but were highest
in the coral rubble- and Pocillopora spp.-dominated habitat. Grazing pressure also varied markedly
between habitats but followed a different inter-habitat pattern from that of bioerosion, with different
contributing species. Total parrotfish grazing pressure ranged from 0 to ~264 + 16% available
substrate grazed yr! in the branching Acropora spp.-dominated habitat. Despite the importance of
these functions in influencing reef-scale physical structure and ecological health, the highest rates
occurred over less than 30% of the platform area. The results presented here provide new insights
into within-reef variability in parrotfish ecological functions and demonstrate the importance of
considering how these interact to influence reef geo-ecology.
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1. Introduction

Coral reefs are built and shaped, both structurally and ecologically, by the organisms that inhabit
them [1]. Carbonate production (e.g., by scleractinian corals and coralline algae) and bioerosion (e.g., by
fish and urchins) are especially important controls on reef growth potential and topographic complexity,
thereby influencing wave energy regimes and habitat provision for many commercially important
species [2-5]. Along with bioerosion, grazing by fish and urchins is important, because it impedes
build-up of foliose algal biomass and conditions the composition of turf algae assemblages [6,7]. In turn,
this can increase juvenile coral survival rates [8], reduce partial coral mortality and disease [9,10], and
increase reef resilience [11]. Grazing therefore has an indirect influence on reef carbonate production
rates [12,13].

On coral reefs, parrotfish are key grazers, and some species, which have musculoskeletal jaw
architectures that are particularly well adapted for biting into reef substrates, are also important substrate
bioeroders [14-16]. There is now strong evidence that parrotfish target protein-rich cyanobacteria
living on and within the reef framework as their primary food source, at least in the Indo-Pacific [17,18].
In the process of feeding, primarily on dead coral and rubble substrates, parrotfish also remove and
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consume algal turfs [19-21]. Parrotfish also erode and ingest carbonate substrate to access endolithic
food resources, although some species do this more than others [18]. The ingested substrate is broken
down by modified gill arch elements, collectively known as the pharyngeal mill [22,23]. This material
is processed in the gut along with organic matter and egested into the environment as sediment [20-25].
In some regions, parrotfish bioerosion and the resultant sand egestion has been reported to dominate
reef sediment production [26-28]. Bioerosion and grazing thus play important roles in overall reef
carbonate production and cycling processes, and act as a “top-down” influence on reef ecological and
physical structure [16-30].

However, grazing pressure (defined here as the total surface area of parrotfish bites, expressed as
a proportion of grazable substrate area per year—as an indicator of the area of substrate bitten per
year) and bioerosion rates (the mass of reef substrate eroded per year) can vary significantly among
species, fish size classes, and between “scraper” (where bites are restricted to the removal of substrate
surface material) and “excavator” (where bites remove chunks of substrate material) species [22-32].
These issues become important for understanding habitat-scale parrotfish ecological functions, because
parrotfish assemblages (as with other taxonomic groups) can vary markedly between habitats or along
gradients of structural complexity [33-35]. For example, comparisons between the Red Sea, Arabian
Sea, and Arabian Gulf revealed marked regional differences in parrotfish bioerosion rates and grazing
pressure because of variations in species assemblage [36].

Whereas many studies have investigated the top-down influence of parrotfish on reef habitats, our
knowledge of how parrotfish assemblages in different reef habitats vary in their ecological functions is
limited. Hoey and Bellwood (2008) [25] demonstrated how the ecological functions of whole parrotfish
assemblages vary between inner, mid, and outer reef environments on the Great Barrier Reef. However,
many reef systems can have a very different habitat structure compared to barrier reefs, including atoll
reef platforms (an isolated reef within a larger atoll structure), fringing reefs, or systems with large
lagoons, reef flats, seagrass meadows, or mangrove forests. These systems differ in terms of the spatial
extent of their main habitats, the species that they support, their benthic community composition,
geomorphology, and the extent to which they are influenced by external factors such as terrestrial
nutrient and sediment inputs. These systems have received little attention, particularly in the central
Indian Ocean.

In many regions, it is difficult to tease apart the influences of fishing pressure and habitat type
on parrotfish assemblages [37]. However, the Maldives represents an example environment where
parrotfish are not a main fishery target [38], making it a useful natural laboratory for examining the
natural influence of habitat type on parrotfish ecological functions. Here, we examine the contributions
of parrotfish species to grazing pressure and bioerosion rates across an atoll-edge reef platform in the
central Maldives (Vavvaru Island, Lhaviyani Atoll). Specifically, we address the following questions:
(1) How does total grazing pressure and bioerosion rate vary among habitat types as a function of
parrotfish assemblage? (2) What are the dominant species and size contributors to these geo-ecological
functions? Empirical data on these issues are needed to understand how these ecological functions are
likely to respond to ongoing environmental change [25,28,39].

2. Materials and Methods

2.1. Study Site

Field data were collected in February 2015 from an atoll-edge reef platform, Vavvaru, Lhaviyani
Atoll, in north-central Maldives (5°25’5.0” N, 073°21’14.0” E; Figure 1). The reef platform at Vavvaru
comprised eight distinct marine habitats, making the site ideal for examining variation in parrotfish
ecological functions among reef habitats. Habitats were delineated in-situ based on field observations
and measures of the rugosity, substrate characteristics, and benthic communities, and the spatial extent
of each habitat was then estimated from satellite imagery and ground truthing (Figure 1, as described
in Perry et al., 2017 [28]).
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Figure 1. (a) Position of Lhaviyani Atoll in the Maldives. (b) Position of Vavvaru on Lhaviyani Atoll.
(c) Habitat map of Vavvaru produced from Quickbird imagery of western Lhaviyani Atoll taken on 9
July 2008 (provided by DigitalGlobe Foundation; http://www.digitalglobefoundation.org/) and ground
validated points. See Perry et al. (2017) [28] for original publication and position of ground points.
Note that the southeast (SE) patches (Z1) and northeast (NE) reef (Z2) could not be differentiated
during analysis of satellite data and are presented as the same color here. However, the black line
marks the division of NE reef and the SE patches, which were treated as separate habitats (based on
in-situ observations and geo-ecological data collection) in the estimates of bioerosion rate and grazing
pressure in the present study.

The far western edge of the Vavvaru reef platform consists of a hardground (limestone pavement)
habitat (Z4) with reasonably high coral cover (18.81%) at 4-6 m depth, characterized by a very steep
wall marking the margin of Lhaviyani atoll. Moving east, the hardgrounds transition into a gently
sloping coral rubble and Pocillopora spp.-dominated habitat (from ~5 m at the hardground/rubble
transition, sloping gently up to a shallow rubble ridge at ~1-m depth, Z5) and then into a shallow
(<2 m) limestone pavement habitat dominated by Porites spp. bommies (Z6). The central area of the
platform is made up of the two largest and relatively featureless marine habitats: a sand and coral
rubble habitat (Z27), and an extensive sandy lagoon (Z8) situated to the north of Vavvaru Island. The
island itself is situated off-center, toward the southeast of the platform. To the northeast of the platform
is an Acropora spp.-dominated reef habitat (Z2), which becomes more fragmented toward the south
and transitions into patch reefs (Z1) separated by irregular sand channels. Both of these reef habitats
are shallow on their nearshore sides (<2 m) but form part of the reef slope at the eastern edge of the
platform, where coral cover extends down to ~8 m (and deeper in some parts of Z2). Between Vavvaru
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Island and these eastern reef habitats is a lagoon (Z3), comprised predominantly of sand, but with
small (<10 m?) scattered patch reefs, which increase in frequency toward the eastern reef habitats.
A sand talus on the eastern slope extends into the atoll lagoon. Images of these habitats can be found
in the Electronic Supplementary Material (Figure S1).

2.2. Remote Underwater Video (RUV) Surveys

Parrotfish were surveyed using Remote Underwater Video (RUV) to estimate the extent of
parrotfish ecological functions in a given area of reef per time period (similar to a recent approach
taken by Streit et al., 2019 [40]) rather than estimating grazing pressure and bioerosion rates from visual
census data. Remote Underwater Video is considered to be a useful approach to quantify parrotfish
ecological functions, because the method is designed to observe fish activity over an area of reef over
a given period of time rather than estimate them from parrotfish density data, where there is a risk
of over- or under-counting [41]. In addition, the long survey time (totaling over 200 h) and lack of
human presence allows the contributions of rare and shy, but possibly ecologically important, species
to be detected, thereby avoiding some of the problems that can arise with conventional visual survey
techniques [42].

A range of Go-Pro Hero 4, 3+, and Intova Sport HDII cameras were mounted onto polyvinyl
chloride (PVC) frames and deployed for a minimum of 1 h to capture both common and rare species [43].
In each habitat, 15 RUVs were randomly deployed, ensuring they were at least 20-m apart. Deployments
spanned the entire length of the parrotfish feeding day (~06:30-18:30) with six replicates in the morning
(sunrise-11:30), three at midday (11:30-14:00), and six in the afternoon (14:00-sunset). The camera was
randomly redeployed in a new location in each time bin, so all 15 replicates were deployed in new
locations. Four 50 cm scale bars with 5 cm increments were placed at 1 m intervals up to 4 m in front of
the camera. These were removed ~30 s into each recording to avoid unnecessary disturbance to fish
behavior. A screen overlay was then used to mark the position of the scales during data collection and
allow estimates of fish size.

Analysis of each video began once the scale bars were removed and after allowing 2 min for
observers to leave the area. All parrotfish entering the field of view within 4 m (the furthest scale bar)
of the camera were recorded at their entry time, identified to species level and life phase, and assigned
to one of the following size classes: <15 cm, 16 to 30 cm, 31 to 45 cm, >46 cm. Each species was also
described by its primary functional group (excavator, scraper, browser) as defined in Bellwood and
Choat (1990) [22]. A pilot study conducted prior to fieldwork revealed that classifying objects (PVC
pipes) into 15-cm size categories using this method was correct 98% of the time, regardless of angle to
the camera. The 4-m distance from the camera limit was chosen to ensure that visibility and distance
of fish from the camera did not interfere with species identification. Juvenile parrotfish (which were
rarely larger than 15 cm) were recorded without species information because of challenges associated
with accurate visual identification. A dataset of ~3500 recordings of parrotfish video entry and exit
times was used to estimate a mean parrotfish residence time in the survey area.

The videos were used to record the total number of parrotfish sightings of all species and size
classes in a defined area of reef, over a given period of time, regardless of whether it was the same or
different individuals entering the area. Using the total duration that each size class of each species spent
in the area, and the known bioerosion rate and grazing pressure for those parrotfish, total parrotfish
bioerosion rates and grazing pressure for the survey area and duration were estimated.

2.3. Inter-Habitat Variability in Total Parrotfish Bioerosion Rates

To estimate overall parrotfish bioerosion rates in each habitat, local species- and size class-specific
bite rates and grazing scar metrics were extracted from Yarlett et al. (2018) [44] for six of the most
abundant and representative species at Vavvaru: Chlorurus sordidus, Chlorurus strongylocephalus, Scarus
frenatus, S. rubroviolaceus, S. niger, and S. psittacus. Rates for other species were assumed to match the
most closely related species (based on Choat et al. 2012 [45]), or species with the most comparable
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morphology (see Table 1). Parrotfish bite rates were assumed to remain relatively consistent throughout
the year because there is little seasonal variation (<30 min) in daylight hours or water temperature
(<2 °C) in central Maldives. To account for any variation across day times, bioerosion rates for each
size class of each species were then estimated for morning (sunrise-11:30), midday (11:30-14:00), and
afternoon (14:00-sunset) using time period averaged bite rates (following the calculations described in
Yarlett et al. 2018 [44]). Bioerosion rates for each size class of each species observed during each video
were then estimated as:

VBSS (kg survey area — 1 video duration —1) = No. individuals observed x
mean residence time (s) x bioerosion rate at video time period (kg ind —1s—1)

where VBSS = video bioerosion for each size class of each species.

These values were then converted to bioerosion rates per m? (per unit time) using the estimated
survey area of the video, and then to annual rates per m? by scaling to the length of the time period
(~264 min for morning and afternoon time periods, and ~132 min for midday) and multiplying by
365. This was repeated for all 15 videos in each habitat, covering the whole of the parrotfish feeding
day (~11 h; [44]). These time period specific rates were then summed to determine an average annual
bioerosion rate (ABR) for each size class of each species.

Table 1. For species where data were absent, data for these were assumed to match the bioerosion rate
and grazing pressure of the most comparable species for which data were available.

Species with Missing Data Data Assumption
Chlorurus enneacanthus Chlorurus sordidus
Scarus tricolor Scarus niger
Scarus scaber Scarus frenatus
Scarus prasiognathos Scarus frenatus
Scarus viridifucatus Scarus frenatus
Scarus russelii Scarus frenatus
Hipposcarus harid Scarus frenatus
Cetoscarus ocellatus Chlorurus strongylocephalus
Juveniles Lowest measured bioerosion rate at <15 cm

Finally, total bioerosion rates for each habitat were estimated using the following equation:
TAHB (kg yr—1) = Z ABR(kgm —2 yr—1) x habitat area (m2)

where TAHB = total annual habitat bioerosion. Each variable involved in the calculation had an
associated standard error. To calculate cumulative error, standard rules for error propagation were
used, with details provided in the Electronic Supplementary Information.

2.4. Inter-Habitat Variability in Total Parrotfish Grazing Pressure

To estimate parrotfish grazing pressure, estimates of grazing scar surface areas were derived
from the grazing scar length and width measurements used to estimate scar volumes in Yarlett et al.
2018 [44] (surface areas presented in Table 2). The surface area of substrate grazed per minute by
different species and size classes was calculated as follows (it was assumed that all bites remove algae
from the reef substrate):

SAsubstrate (cm2 min — 1) = average bite rate at time period (bpm) x GSSA (cm?2)

where SAsubstrate = surface area of substrate grazed per minute, bpm = bites per minute for the
specific species size class, and GSSA = grazing scar surface area for the specific species size class.
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Table 2. Mean grazing scar surface areas (cm?) and standard errors (SE) for four size classes of
five representative Maldivian parrotfish species. Note that some individuals of Scarus frenatus were
observed up to ~50 cm, but grazing scar surface areas were assumed to match those in the 31 to 45 cm

size class.
Species Size Class N Mean SE
Chlorurus sordidus <15 cm 13 0.03 0.01
16 to 30 cm 22 0.05 0.01
31to 45 cm 7 0.19 0.05
>46 cm N/A N/A N/A
Chlorurus strongylocephalus <15 cm 13 0.03 0.01
16 to 30 cm 19 0.17 0.03
31to45 cm 12 0.57 0.11
>46 cm 12 0.88 0.17
Scarus frenatus <15 cm 6 0.02 0.01
16 to 30 cm 11 0.04 0.01
31to 45 cm 10 0.10 0.02
>46 cm N/A N/A N/A
Scarus niger <15cm 14 0.01 0.003
16 to 30 cm 12 0.05 0.01
31 to 45 cm 9 0.08 0.02
>46 cm N/A N/A N/A
Scarus rubroviolaceus <15 cm 4 0.01 0.003
16 to 30 cm 7 0.02 0.003
31to45 cm 12 0.08 0.03
>46 cm 7 0.15 0.04

The surface area grazed for each size class of each species observed during the video was then
estimated using the following equation:

VGSS (cm2 survey area — 1 video duration — 1)
= No. individuals observed X mean residence time (s)
X SA substrate at video time period (cm2s—1)

where VGSS = video grazed area for each size class of each species.

These values were then converted to area grazed per m? of substrate using the estimated survey
area of the video, and then scaled to the length of the time period (morning, midday, or afternoon,
which together make up ~11 h, the length of the feeding day; [44]). This was multiplied by 365 to give
an annual rate and was repeated for all 15 replicate videos in each habitat before summing the average
morning, midday, and afternoon rates to find an average Annual Grazing Pressure (AGP) for each size
class of each species. The total surface area grazed by parrotfish in each habitat was then estimated
using the following equation:

TAGA (cm2 yr—1) = Z AGP (em2m =2 yr—1) X habitat area (m2)

where TAGA = total area grazed annually.

The parrotfish grazing pressure in each habitat was expressed as a proportion of TAGA to the area
of substrate available for feeding in each habitat. The surface area available for feeding was estimated
using the total surface area and percent cover of dead coral and rubble substrates in each habitat
(where habitat surface area was calculated from the 2D spatial extent, extracted from the habitat map
(Figure 1), and multiplied by its average rugosity—extracted from Perry et al. 2017 [28]).
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3. Results

Fifteen species of parrotfish from five genera were identified over six of the eight delineated
habitats on the Vavvaru reef platform. No parrotfish were observed in the central nearshore
sand/rubble or lagoonal sand habitats. Of these fifteen species, four were excavators (Chlorurus sordidus,
C. strongylocephalus, C. enneacanthus and Cetoscarus ocellatus), and ten were scrapers (Scarus psittacus, S.
frenatus, S. rubroviolaceus, S. niger, S. tricolor, S. russellii, S. prasiognathos, S. scaber, S. viridifucatus, and
Hipposcarus harid). One browser species (Calatomus carolinus) was also observed and recorded but was
not factored into substrate bioerosion or grazing calculations because it feeds on macroalgae rather
scraping or excavating the reef substrate.

3.1. Species Contributions to Bioerosion and Inter-Habitat Variability in Bioerosion Rates

As predicted, bioerosion was dominated in all habitats (except the nearshore lagoon—Z23) by
excavating species (Figure 2; see Tables S$9-514 for these data expressed as rates and standard errors).
In the western hardground (Z4) and rubble (Z5) habitats, C. strongylocephalus was responsible for >80%
of the total parrotfish bioerosion rate (0.42 + 0.12 and 0.72 + 0.11 kg m~2 yr~!, respectively) and was
also dominant (albeit to a lesser extent) in the southeast (SE) patch reef (Z1) habitat (>60%; 0.35 + 0.07
kg m~2 yr~1). These rates were almost entirely the result of bioerosion by large (>30 cm) individuals.
The Porites bommie habitat (Z6), on the western side of the platform, was an exception because no
C. strongylocephalus were observed. Instead, C. enneacanthus was responsible for >50% of the total
parrotfish bioerosion rate (0.04 + 0.01 kg m™2 yr‘l). In the northeast (NE) reefs (Z2), Ce. ocellatus and C.
sordidus were the dominant bioeroders (0.22 + 0.06 and 0.15 + 0.02 kg m~2 yr~!, respectively). The
nearshore lagoon (Z3) was the only habitat where scrapers eroded more framework than excavators
but overall erosion rate in this habitat was low (0.005 + 0.0009 kg m~2 yr~1).

Contribution to bioerosion (%) Contribution to bioerosion (%)
0 10 20 30 40 SO 60 70 80 90 100 0 10 20 30 40 S0 60 70 80 90 100

Cs a - hardground b - rubble
w
K]
(%3
g Ce Size class (cm)
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Co []16t030

W W31to45
Scr W >46

¢ - Porites bommie d - NE reef
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o
o

G e - SE patch reefs f - nearshore lagoon

C.st
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(]
o

Co

Scr

Figure 2. Percent contributions to total parrotfish bioerosion by four size classes of the fifteen species
present in the six Vavvaru habitats supporting parrotfish. Species abbreviations: C. s—Chlorurus
sordidus, C. st—C. strongylocephalus, C. e—C. enneacanthus, C. o—Cetoscarus ocellatus, Scr—Scrapers
(pooled).
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Parrotfish bioerosion rates differed markedly among habitats over the Vavvaru reef platform,
ranging from 0.00 to 0.84 + 0.12 kg m~2 yr~! (Figure 3, Table 3). Over half of total platform-scale
parrotfish bioerosion occurred in the rubble habitat (Z5), despite this habitat making up only ~12%
of the platform area. The NE reef (Z2) and SE patches (Z1) also had high total parrotfish bioerosion
rates at 0.46 + 0.07 and 0.58 + 0.07 kg m~2 yr~!, respectively. Approximately 20% of total parrotfish
bioerosion over the platform occurred in these habitats combined. Parrotfish were not found in the
central nearshore sand/rubble (Z7) and lagoonal sands (Z8) habitats, so they were considered unlikely
to make any meaningful contribution to substrate bioerosion in over half of the platform area.

Table 3. Total parrotfish bioerosion rate (mean + SE) and the % that occurs in the morning (sunrise-1130),
at midday (1130-1400), and in the afternoon (1400-sunset). Note that midday is a shorter time period
(by half) of the morning and afternoon time periods. Total habitat bioerosion (mean + SE) and the
relative % of total platform bioerosion that occurs in each of the eight habitats is also presented. The
relative habitat sizes (in % of platform area) are shown for reference. Z1-8 refers to the reef zones
marked out in Figure 1.

71 72 Z3 74 z5 Z6 z7 z8

Total parrotfish

bioerosion rate (kg  0.58 +0.07 046+0.07 0.01+0.00 050+0.11 0.84+0.12 0.08=+0.01 0.00+0.00 0.00+0.00

m~2yr )
Morning

bioerosion (% of 41 37 62 31 77 53 N/A N/A
total rate)

Midday bioerosion

(% of total rate)
Afternoon
bioerosion (% of 53 47 27 65 2 43 N/A N/A
total rate)
Total parrotfish
habitat bioerosion
(kg yr™)

% of total platform
parrotfish 5.48 15.55 0.18 22.23 52.42 414 0.00 0.00
bioerosion

% platform area 1.74 6.19 6.53 8.25 11.56 9.68 28.93 22.12

6 16 12 4 21 4 N/A N/A

8413 + 23,872 + 280 + 50 34,143 + 80,503 +

1069 3400 7634 11122 6351 + 789 00 00
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Figure 3. Choropleth map showing total rate of parrotfish bioerosion in each marine habitat on the
Vavvaru platform. Bar graph subplot shows habitat bioerosion rates and standard error.
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3.2. Species Contributions to Grazing and Interhabitat Variability in Grazing Pressure

In comparison to bioerosion, a wider variety of parrotfish species and size classes made significant
contributions to grazing (Figure 4; see Tables S15-520 for data expressed as surface area grazed
and standard errors). Both scrapers and excavators contributed to substrate grazing, but scrapers
grazed a higher surface area compared to excavators in three of the six habitats occupied by parrotfish
(Hardground (Z4), Porites bommie (Z6), and nearshore lagoon (Z3); Table 4). Some highly abundant
species, such as S. psittacus, which contributed extremely little to bioerosion, were very important for
grazing large surface areas of reef substrate in some habitats (e.g., in the Hardground (Z4) and Porites
bommie (Z6) habitats).

Contribution to grazing (%) Contribution to grazing (%)
0 10 20 30 40 S50 60 70 0 10< 20 30 40 S0 60 70
Cs a - hardground b - rubble

Co Size class (cm)

<15

16 to 30

Sr 1to45
>46

|

Species
w
o

¢ - Porites bommie J
d - NE reef

Species

U

| f - nearshore lagoon
e - SE patch reefs

1

Species
1]
o

"

Figure 4. Percent contributions to total grazing by each size class of fifteen parrotfish species
present in the six major Vavvaru reef habitats. Species abbreviations: C. s—Chlorurus sordidus, C.
st—C. strongylocephalus, C. e—C. enneacanthus, C. o—Cetoscarus ocellatus, S.f—Scarus frenatus, S. r—S.
rubroviolaceus, S. p—S. psittacus, S. n—S. niger, S. t—S. tricolor, S. s—S. scaber, S. pr—S. prasiognathos,
Oth.—Other.
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Table 4. Surface area of each habitat and the % of substrate available for feeding. The total area of
substrate grazed by parrotfish per year in each habitat is presented, along with the % that occurs in
the morning (sunrise-11:30), at midday (11:30-14:00), and in the afternoon (14:00-sunset). Note that
midday is a shorter time period (by half) of the morning and afternoon time periods. The percentage of
the substrate available for feeding that is grazed per year is also presented. Z1-8 refers to reef zones
marked out in Figure 1.

71 72 Z3 74 Z5 Z6 z7 Z8
Habitat Surface
Area (m?) (Areax 32,449 102,233 59,367 92,150 159,990 107,405 255725 191,750
Rugosity)
Substrate available , o, 40.87 21.31 61.89 80.02 62.38 N/A N/A
for feeding %
E°ta2::::ﬁgsff(z;‘zl 18112+ 110218+ 3826+ 74054+ 72722+ 75696+ 040 050
yp 1) 1190 6864 465 5283 5531 4689
Morning grazing
(%% of Lot rate) 25 38 67 43 57 52 N/A N/A
Midday grazing (%
of o] tate 18 17 11 15 12 8 N/A N/A
Afternoon grazing
(%% of tota rate) 57 45 2 4 31 40 N/A N/A
% of habitat area
grazed by 130£9  264+16  30+4  130+9  57+4  113%7 0 0

parrotfish per year

The surface area of substrate grazed by parrotfish also differed among reef habitats but followed
a different pattern to that of bioerosion (Figure 5). Parrotfish grazing pressure was highest in the
NE reef (Z2) habitat (~264 + 16% available substrate grazed yr‘l). Relative to substrate available for
feeding, grazing pressure on reef habitats was comparable in the Porites bommie (Z6), SE reef (Z1),
and Hardground (Z4) habitats (Porites bommie: 113 + 7%, SE reef: 130 + 9%, Hardground: 130 +
9% available substrate grazed yr'l) but lower in the Rubble (Z5) habitat (Rubble: 57 + 4% available
substrate grazed yr~!; Table 4).
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Figure 5. Choropleth map showing total parrotfish grazing pressure on the Vavvaru platform. Bar
graph subplot shows grazing intensity and standard error.
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4. Discussion

Our findings demonstrate the extent to which parrotfish bioerosion rates and grazing pressure
can vary across different reef habitats and that the spatial patterns of these ecological functions are not
necessarily tightly coupled. This means that a habitat with a high parrotfish grazing pressure does
not necessarily also have a high parrotfish bioerosion rate, or vice versa. Instead, grazing pressure
and bioerosion rate are determined by the species and sizes of parrotfish present in a habitat and
what ecological functions they contribute to. These different spatial patterns are important to consider
because both ecological functions have different contributions to the reef system. Whereas mapping
out spatial patterns of parrotfish bioerosion rates can help identify key sources of platform sediment
production and can be used in estimates of reef carbonate budgets, patterns of grazing pressure may
indicate the type of habitats where parrotfish act as important controls on benthic algal communities.

4.1. Spatial Patterns of Parrotfish Bioerosion Rate and Grazing Pressure

Over 90% of total platform-scale parrotfish bioerosion occurred in the hardground (Z4), rubble
(Z5), and NE reef (Z2) habitats, despite comprising only 26% of the total platform area when combined.
Over 50% of this bioerosion occurred in the rubble habitat (Z5) alone. This habitat was considered
to be naturally important for parrotfish bioerosion and resultant sediment production, rather than
representing a “disturbed” rubble-dominated reef front habitat, which has been observed to be
exploited by excavating parrotfish [46,47]. Whereas previous research has suggested that parrotfish are
not ecologically important in rubble habitats (because the conditions are poor for corals, e.g., see Adam
et al. 2015 [48]), our results suggest that these habitats may supply significant quantities of sediment to
reef habitats and islands because of high parrotfish bioerosion rates (0.84 + 0.12 kg m~2 yr~!). The
important contribution of the rubble habitat (Z5) at Vavvaru was partly attributed to the high overall
parrotfish bioerosion rate, which was primarily a result of C. strongylocephlaus feeding (>80% of total
parrotfish bioerosion), but also due to the fact that it was the largest reef habitat in which parrotfish
were found (96380 m~2; ~12% of the platform area). The NE reef and SE patch reef habitats also had
reasonably high overall bioerosion rates (0.46 + 0.07 and 0.58 + 0.07 kg m~2 yr~!, respectively), but
because of their relatively small spatial extent (51,633 and 14,551 m~2, respectively), the total quantity
of framework eroded per year in these habitats was lower than that of the rubble habitat. There are, of
course, other bioeroding organisms that contribute to total bioerosion rates (such as other fish groups,
sponges, urchins, and boring mollusks), but these appear to contribute little to total bioerosion at most
sites in the Maldives [26,28].

The observed spatial variation in parrotfish grazing pressure was driven primarily by the
contributions of scrapers and small excavators as well as the proportion of substrate available for
feeding (rubble and dead coral skeletons). For example, parrotfish grazing pressure was distributed
over a large area in the rubble (Z5) habitat (72,722 + 5531 m? grazed yr‘1 distributed over 128,024 m?)
compared to the NE reef (Z2), which received the highest parrotfish grazing pressure on the platform
(110,218 + 6864 m? grazed yr~! distributed over 41,783 m?). The parrotfish grazing pressure in the
NE reef (Z2) habitat (which we estimate is fully grazed 2.6-times per year) was comparable to that
reported for similar reef crest environments surrounding rat-infested islands (with low seabird density
and hence limited nutrient input into surrounding waters) in the neighboring Chagos Archipelago
(which is grazed up to 2.8-times per year by parrotfish [49]). The grazing pressure measured in the
present study was considerably lower than that reported around seabird-dominated (nutrient-enriched)
islands in the Chagos Archipelago, and on inner- and mid-shelf reefs on the northern Great Barrier
Reef, which were fully grazed in the region of 9- to 11-times per year [25-49]. The lower rates in our
study may be because of low external nutrient input to the reef, such as from seabirds [49] or from
terrestrial environments (such as may be the case on inner-shelf reefs on the Great Barrier Reef), and
the resultant impacts on substrate food resources. The lower grazing pressures (compared to the NE
reef—Z72) in other Vavvaru habitats may be because of the greater surface area of substrate available
for feeding (60-80% of habitat surface area in the western habitats). In these habitats, parrotfish
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grazing is spread over a large grazeable area compared to the NE reef (Z2), where higher coral cover
means parrotfish grazing is condensed into only ~41% of the habitat area. However, parrotfish are
not the only abundant grazers on the Vavvaru platform. It is also likely that other families, such as
surgeonfish and rabbitfish, have a significant influence on grazing pressure, and potentially their own
unique inter-habitat patterns, although this was not investigated. Finally, lower grazing rates do not
necessarily translate into altered benthic dynamics, since less productive reefs require lower grazing
pressure to keep macroalgae under control.

4.2. Factors Influencing the Observed Spatial Patterns

The key contributors to grazing pressure were observed to be different to the key contributors
to bioerosion rates and were spread across a larger number of species and size classes. For example,
key species in the NE reef (Z22) were found to be the small excavator C. sordidus and scrapers Scarus
niger and S. psittacus, which contributed 59%, 18%, and 14%, respectively. Scrapers were also found to
make a higher contribution to grazing pressure than excavators in three habitats (the hardground (Z4),
Porites bommie (Z6), and nearshore lagoon (Z3) habitats). Whereas the bites of scrapers may be smaller,
the bite rate for many scraping species in the Maldives, as well as other locations, is considerably
higher [15-51], contributing to the high surface area grazed. However, the fact that contributions to
grazing are spread across a larger number of species compared to bioerosion does not necessarily infer
functional overlap. For example, Brandl and Bellwood (2014) [51] found that different species, even
those closely related such as S. frenatus and S. oviceps [45], utilize different microhabitats for feeding.

The patterns of parrotfish bioerosion rate and grazing pressure observed in the present study are
a result of the species assemblages in each habitat. These assemblages are known to be influenced by
habitat characteristics such as benthic community composition, nursery habitat availability, substrate
type, and degree of structural complexity [52-54]. Factors such as depth, exposure, and distance from
the reef slope can also play a role [47-56], as they are known to influence wave energy regimes and
currents, which have a resultant impact on fish swimming performance and assemblages [57-59]. The
distance from the reef slope and shallow depth may explain why the excavator C. enneacanthus was
found almost exclusively in the Porites bommie (Z6) habitat at Vavvaru. This species may thrive here,
while the dominant excavator in the platform edge habitats was found to be C. strongylocephalus. Biotic
factors, including competition and predation, are also likely to affect assemblage composition [60,61].

Peak parrotfish bioerosion rates and grazing pressure were also observed to occur at different
times of the day in different habitats. As a general trend, grazing pressure appeared to be higher in
the afternoons at the two main eastern reef habitats but was higher in the mornings in the western
hardground (Z4), rubble (Z5) and Porites bommie (Z6) habitats (see Tables 3 and 4). This trend was
similar for bioerosion, except for in the hardground (Z4) habitat, where higher bioerosion rates occurred
in the afternoon rather than the morning (it is also worth noting that daily averages of bioerosion
and grazing pressure gave almost the same annual rates as calculations factoring for time period,
and suggest that daily variation could be ignored if necessary for estimating annual rates in future
studies). We hypothesize that this pattern may reflect the nutritional quality of autotrophic food
resources at different times of the day on the eastern and western sides of the platform, but without
relevant data, this remains speculative. To further understand the drivers of parrotfish distributions
and of these ecological functions that result from parrotfish feeding, there is a need for more research
into parrotfish resource harvesting and the partitioning of food resources across species over both
spatial and temporal scales. Emerging research in this field has shown that different parrotfish species
feed on substrates at different stages of taphonomic succession, even though all target microscopic
photoautotrophs, particularly cyanobacteria, as a primary food source [18]. There is also evidence
of within habitat spatial variability in bite frequency [40-62], but habitat specific bite rates were not
observed in our study. There are two additional areas that warrant further study to refine estimates of
bioerosion rate and grazing pressure. First, it was assumed in the present study that all bites remove
algae, but future research would benefit from examining the variation in algal biomass removed per
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bite. Second, the bioerosion rate and grazing pressure of some species were absent, and were assumed
to match that of other species for which data were available. Future research would benefit from
directly measuring bite rates and grazing scar metrics of a more diverse range of species to improve
the accuracy of reef-scale bioerosion rate and grazing pressure estimates.

4.3. Implications

Findings from the present study may help to predict the responses of key parrotfish ecological
functions to projected environmental change scenarios, such as habitat degradation. For example, a
loss of structural complexity is likely to have a detrimental effect on parrotfish density [63—-65]. The
results of our study suggest that such impacts would particularly negatively affect key grazing species
such as S. niger and S. viridifucatus that appeared to be associated with topographically complex habitat
types at Vavvaru, while other species may remain relatively unimpacted. This change may result in an
increase in algal biomass and reduced coral recruitment, but increased bioerosion rate. This pattern
has been observed at sites in the southern Maldives, which suffered up to 75% coral mortality during
the 2016 bleaching event in habitats comparable to the eastern reef habitats at Vavvaru [66]. The result
of this event was an increase in parrotfish bioerosion and pulses of increased sediment generation
after subsequent bleaching events, thought to be the result of increased availability of food resources
following coral mortality [66-69].

Our findings may also be useful for considering the impact of fishing pressure on the functions
of bioerosion and grazing in reef habitats. Parrotfish are unsustainably exploited in many island
settings [70]. Large excavators (such as large Chlorurus spp.) are typically extracted [71-73] and have
been observed to decline in abundance along a gradient of human fishing pressure in some locations,
resulting in marked declines in bioerosion rates (e.g., Bellwood et al. 2012 [72]). Although speculative
and in need of empirical study, this removal of large excavators could also reduce rates of sediment
production in habitats where excavators are the dominant bioeroders, which may have a negative
impact on reef island maintenance, especially under projected rates of sea level rise [26]. Efforts should
therefore be made to conserve parrotfish and their ecological functions, both through protecting a
diverse range of habitat types and through creating refuges from fishing pressure.
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