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Abstract: Non-steroidal anti-inflammatory drugs (NSAIDs) are an important class of medications;
however, they have some drawbacks. We are developing a new NSAID with pronounced anti-
inflammatory and analgesic activities and a very low toxicity—(Z)-3-(2-oxo-2-(p-tolyl)ethylidene)piper
azin-2-one (piron). In this work, we describe the synthesis of the main metabolite of piron—(Z)-4-
(2-(3-oxopiperazin-2-ylidene)acetyl)benzoic acid. The anti-inflammatory activity of the synthesized
metabolite was determined in vivo.
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1. Introduction

Non-steroidal anti-inflammatory drugs (NSAIDs) are one of the most popular classes
of medications. However, currently used drugs bear some drawbacks such as gastroin-
testinal, cardiovascular, hepatic, renal, and other complications [1,2]. (Z)-3-(2-Oxo-2-(p-
tolyl)ethylidene)piperazin-2-one (piron, Figure 1) is an NSAID with pronounced anti-
inflammatory and analgesic activities that we are developing [3,4]. Piron exhibits a very
low toxicity compared to NSAIDs such as ibuprofen and diclofenac sodium, and it also
does not show an ulcerogenic effect [3].
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1. Introduction 
Non-steroidal anti-inflammatory drugs (NSAIDs) are one of the most popular classes 

of medications. However, currently used drugs bear some drawbacks such as gastrointes-
tinal, cardiovascular, hepatic, renal, and other complications [1,2]. (Z)-3-(2-Oxo-2-(p-
tolyl)ethylidene)piperazin-2-one (piron, Figure 1) is an NSAID with pronounced anti-in-
flammatory and analgesic activities that we are developing [3,4]. Piron exhibits a very low 
toxicity compared to NSAIDs such as ibuprofen and diclofenac sodium, and it also does 
not show an ulcerogenic effect [3]. 
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Figure 1. The structure of (Z)-3-(2-oxo-2-(p-tolyl)ethylidene)piperazin-2-one (piron). 

In the course of studying the pharmacokinetic behavior of piron in rats, we discov-
ered that its metabolite 1 was present in the blood in a concentration comparable with 
piron and gave the main contribution to its excretion. We successfully isolated the metab-
olite 1 (Scheme 1) from rat urine and determined its structure. The methyl group of piron 
was found to be oxidized to a carboxyl group in the body, which apparently reduces the 
lipophilicity of piron and accelerates its excretion. In the present work, we wish to report 
the synthesis of piron metabolite 1 and the study of its anti-inflammatory activity. 
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Figure 1. The structure of (Z)-3-(2-oxo-2-(p-tolyl)ethylidene)piperazin-2-one (piron).

In the course of studying the pharmacokinetic behavior of piron in rats, we discovered
that its metabolite 1 was present in the blood in a concentration comparable with piron
and gave the main contribution to its excretion. We successfully isolated the metabolite
1 (Scheme 1) from rat urine and determined its structure. The methyl group of piron
was found to be oxidized to a carboxyl group in the body, which apparently reduces the
lipophilicity of piron and accelerates its excretion. In the present work, we wish to report
the synthesis of piron metabolite 1 and the study of its anti-inflammatory activity.
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Scheme 1. Metabolic oxidation of piron to its metabolite 1. 

2. Results and Discussion 
2.1. Chemistry 

We tested several strategies to synthesize piron metabolite 1 (Scheme 2). Initially, we 
tested the most obvious approach—direct oxidation of piron (CCDC 2314647, Figure 2) 
under the action of oxidizing agents such as KMnO4 and H2O2 (Scheme 2, strategy 1). Un-
fortunately, this strategy was not successful. 

 
Scheme 2. Three synthetic routes to piron metabolite 1 (strategy 1 was reported earlier in [3]). 

Scheme 1. Metabolic oxidation of piron to its metabolite 1.

2. Results and Discussion
2.1. Chemistry

We tested several strategies to synthesize piron metabolite 1 (Scheme 2). Initially, we
tested the most obvious approach—direct oxidation of piron (CCDC 2314647, Figure 2)
under the action of oxidizing agents such as KMnO4 and H2O2 (Scheme 2, strategy 1).
Unfortunately, this strategy was not successful.
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Then, we examined another synthetic pathway (Scheme 2, strategy 2) using 4-acetylben
zonitrile as the starting reagent for the Claisen condensation. The Claisen condensation of
4-acetylbenzonitrile with diethyl oxalate in the presence of sodium methoxide successfully
yielded p-cyanobenzoylpyruvic ester 2 (Scheme 2). The cyclocondensation of the latter
with ethylenediamine led to the formation of cyano analog 3 of piron whose structure was
confirmed through a single-crystal X-ray analysis (CCDC 2314648, Figure 3). Next, we
tested different conditions for the hydrolysis of the cyano group in compound 3. Hydrol-
ysis in an aqueous acidic medium (HCl or H2SO4) destroyed compound 3, resulting in
4-acetylbenzonitrile. Alkaline hydrolysis (NaOH in water and dioxane) was also unsuc-
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cessful. Anhydrous conditions similar to the Pinner reaction (HCl in MeOH) also led to the
degradation of the molecule to methyl 4-acetylbenzoate.
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Figure 3. Molecular structure of compound 3 showing 30% probability for amplitude displacement
ellipsoids. An asymmetric unit is shown.

Due to difficulties encountered in performing selective hydrolysis of the cyano group,
we turned to strategy 3, starting from 4-acetylbenzoic acid (Scheme 2, strategy 3). For-
tunately, both stages of the synthesis (Claisen condensation of 4-acetylbenzoic acid and
reaction of compound 4 with ethylenediamine) proceeded smoothly to form carboxy analog
1 of piron (Scheme 2). The structure of compound 1 was confirmed by the 1H and 13C NMR
spectra and was identical to the structure of the piron metabolite isolated from animal urine.

2.2. X-ray Analysis

The crystal structure of piron has not been previously studied using X-ray diffraction.
Since knowledge of the structural features for bioactive compounds may be useful, we per-
formed a single-crystal X-ray analysis of piron. It crystallizes in the centrosymmetric space
group of C2/c (Figure 2). The molecule, except for two methylene groups, is approximately
planar (RMSD 0.048 Å). Methylene groups deviate from the plane of the piperazine ring
in opposite directions; in other words, the ring is in a half-chair conformation. Due to the
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planarity of the molecule, the enaminoketone moiety contains an intramolecular hydrogen
bond N2–H2···O2 (Table 1). Intermolecular hydrogen bonds N1–H1···O1 link molecules in
a crystal into centrosymmetric dimers (Figure 4).

Table 1. Hydrogen bond geometry.

Compound D–H···A D–H, Å H···A, Å D···A, Å Angle D–H···A, ◦

Piron N1—H1···O1 * 0.877(19) 1.99(2) 2.8649(16) 173.0(16)

Piron N2—H2···O2 0.90(2) 1.96(2) 2.6529(16) 132.8(17)

Compound 3 N1A—H1A···O1 ** 0.91(2) 2.03(2) 2.915(2) 163(2)

Compound 3 N2A—H2A···O2A 0.92(3) 2.02(2) 2.697(2) 129(2)

Compound 3 O1W—H1WA···O1 0.85 2.09 2.866(3) 152

Compound 3 O1W—H1WB···O1A 0.85 2.25 2.873(3) 131

Compound 3 N1—H1···O1A *** 0.89(3) 2.08(3) 2.884(2) 150(2)

Compound 3 N2—H2···O2 0.88(2) 2.05(2) 2.707(2) 130(2)

Symmetry codes: * 1 − x, −1 − y, 1 − z; ** x, −y + 1/2, z − 1/2; *** x, −y + 1/2, z + 1/2.

Molbank 2024, 2024, x FOR PEER REVIEW 4 of 10 
 

reaction of compound 4 with ethylenediamine) proceeded smoothly to form carboxy an-
alog 1 of piron (Scheme 2). The structure of compound 1 was confirmed by the 1H and 13C 
NMR spectra and was identical to the structure of the piron metabolite isolated from ani-
mal urine. 

2.2. X-ray Analysis 
The crystal structure of piron has not been previously studied using X-ray diffraction. 

Since knowledge of the structural features for bioactive compounds may be useful, we 
performed a single-crystal X-ray analysis of piron. It crystallizes in the centrosymmetric 
space group of C2/c (Figure 2). The molecule, except for two methylene groups, is approx-
imately planar (RMSD 0.048 Å). Methylene groups deviate from the plane of the pipera-
zine ring in opposite directions; in other words, the ring is in a half-chair conformation. 
Due to the planarity of the molecule, the enaminoketone moiety contains an intramolecu-
lar hydrogen bond N2–H2···O2 (Table 1). Intermolecular hydrogen bonds N1–H1···O1 link 
molecules in a crystal into centrosymmetric dimers (Figure 4). 

Table 1. Hydrogen bond geometry. 

Compound D–H···A D–H, Å H···A, Å D···A, Å Angle D–H···A, ° 
Piron N1—H1···O1 * 0.877(19) 1.99(2) 2.8649(16) 173.0(16) 
Piron N2—H2···O2 0.90(2) 1.96(2) 2.6529(16) 132.8(17) 

Compound 3 N1A—H1A···O1 ** 0.91(2) 2.03(2) 2.915(2) 163(2) 
Compound 3 N2A—H2A···O2A 0.92(3) 2.02(2) 2.697(2) 129(2) 
Compound 3 O1W—H1WA···O1 0.85 2.09 2.866(3) 152 
Compound 3 O1W—H1WB···O1A 0.85 2.25 2.873(3) 131 
Compound 3 N1—H1···O1A *** 0.89(3) 2.08(3) 2.884(2) 150(2) 
Compound 3 N2—H2···O2 0.88(2) 2.05(2) 2.707(2) 130(2) 

Symmetry codes: * 1 − x, −1 − y, 1 − z; ** x, −y + 1/2, z − 1/2; *** x, −y + 1/2, z + 1/2. 

 
Figure 4. Dimer in crystal of piron. 

Compound 3 crystallizes in the centrosymmetric space group P21/c as a hydrate. The 
asymmetric unit contains 2 geometrically similar molecules of compound 3 and a water 
molecule (Figure 3). The structure of compound 3 is generally similar to the structure of 
piron. Both independent molecules 3 are also relatively planar. However, the aryl rings in 
them are slightly rotated relative to the enaminoketone moiety (RMSD 0.135 Å and 0.071 
Å for non-hydrogen atoms in compound 3, excluding two methylene groups). Intramo-
lecular hydrogen bonds N2–H2···O2 and N2A–H2A···O2A are formed similarly to piron 
(Table 1). Dimers in a crystal are formed from independent molecules 3 via intermolecular 

Figure 4. Dimer in crystal of piron.

Compound 3 crystallizes in the centrosymmetric space group P21/c as a hydrate. The
asymmetric unit contains 2 geometrically similar molecules of compound 3 and a water
molecule (Figure 3). The structure of compound 3 is generally similar to the structure of
piron. Both independent molecules 3 are also relatively planar. However, the aryl rings in
them are slightly rotated relative to the enaminoketone moiety (RMSD 0.135 Å and 0.071 Å
for non-hydrogen atoms in compound 3, excluding two methylene groups). Intramolecular
hydrogen bonds N2–H2···O2 and N2A–H2A···O2A are formed similarly to piron (Table 1).
Dimers in a crystal are formed from independent molecules 3 via intermolecular hydrogen
bonds N1A—H1A···O1 and N1—H1···O1A (Table 1). These dimers are linked through
H-bonding with water molecules into infinite chains along the 0c axis (Figure 5).
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2.3. Biological Assay

The anti-inflammatory activity of compound 1 was assessed in white laboratory
outbred rats through a carrageenan-induced paw edema test (intraperitoneal administration
in doses of 5, 25, and 125 mg/kg). Compound 1 was found to show anti-inflammatory
activity in doses of 25 and 125 mg/kg at time periods of 1 and 3 h after administration
of the inflammation inducer (Table 2, Figure 6), suppressing the development of edema
(edema inhibition 48.9–63.1%). The activity of compound 1 was comparable to the activity
of diclofenac, which was used as a positive control (Table 2, Figure 6). The level of anti-
inflammatory activity of piron [5] and its metabolite 1 was also comparable. To determine
the leader compound in this pair, a separate parallel experiment is required.

Table 2. Inhibition of edema relative to the values of the control group.

Group
Edema Inhibition, %

1 h 3 h 5 h

Compound 1 5 mg/kg 19.5 14.2 −61.6
Compound 1 25 mg/kg 63.1 1 61.5 1 16.2
Compound 1 125 mg/kg 48.9 2 58.3 1 20.0

Diclofenac 10 mg/kg 77.2 1 73.1 2 59.2 2

1 p-value < 0.1; 2 p-value < 0.05.
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Figure 6. Dynamics of paw edema. The dots indicate the average values, the whiskers indicate the
boundaries of the 95% confidence interval, the continuous line with black dots shows the dynamics
of edema in the control group, and the dotted line with white dots shows the dynamics of edema in
the experimental group. *—p-value ≤ 0.1, **—p-value ≤ 0.05.

3. Materials and Methods
3.1. General Information

1H and 13C NMR spectra (Supplementary Materials) were acquired on a Bruker
Avance III 400 HD spectrometer (Bruker BioSpin AG, Faellanden, Switzerland) (at 400 and
100 MHz, respectively) in CDCl3 or DMSO-d6 using the solvent residual signal (DMSO-
d6: δH = 2.50 ppm; δC = 39.52 ppm; CDCl3: δH = 7.26 ppm; δC = 77.16 ppm) as an
internal standard. IR spectra were recorded on a Perkin Elmer Spectrum Two Spectrometer
(PerkinElmer Inc., Waltham, MA, USA) as mulls in mineral oil. Melting points were
measured on a Mettler Toledo MP70 Melting Point apparatus (Mettler-Toledo (MTADA),
Schwerzenbach, Switzerland). Elemental analysis was carried out on a Vario MICRO
Cube analyzer (Elementar Analysensysteme GmbH, Langenselbold, Germany). TLC was
performed on plates Silica gel 60 F254 (Merck, Darmstadt, Germany); spots were visualized
with UV light (254 nm). Silica gel 0.035–0.070 mm, 60 Å (Acros Organics, Geel, Belgium),
was used for column chromatography. The single-crystal X-ray analysis of piron and
compound 3 was performed on an Xcalibur Ruby diffractometer (Agilent Technologies,
Wroclaw, Poland). The empirical absorption correction was introduced via multi-scan
method using SCALE3 ABSPACK algorithm [6]. Using OLEX2 [7], the structures were
solved with the SHELXS [8] or SHELXT [9] programs and refined by the full-matrix least-
squares minimization in the anisotropic approximation for all non-hydrogen atoms with the
SHELXL [10] program. Hydrogen atoms bound to carbon were positioned geometrically
and refined using a riding model. The hydrogen atoms of NH groups were refined freely
with isotropic displacement parameters. Crystal structures of piron and compound 3 were
deposited at the Cambridge Crystallographic Data Centre with the deposition numbers
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CCDC 2314647 (piron) and 2314648 (compound 3). Piron was obtained according to the
reported procedure [3]. All solvents and reagents were purchased from commercial vendors
and used as received.

3.2. Methyl (Z)-4-(4-cyanophenyl)-2-hydroxy-4-oxobut-2-enoate 2

To a solution of sodium methoxide freshly prepared from 160 mg of sodium and
methanol (3 mL), a solution of diethyl oxalate (1.01 g, 6.9 mmol) and 4-acetylbenzonitrile
(1 g, 6.9 mmol) in methanol (2 mL) was added. The reaction mass was left at room tem-
perature overnight, and an excess of 1M HCl (8 mL) was added. The resulting suspension
was stirred for 3 h at room temperature; the precipitate was filtered off and recrystallized
from ethanol to yield title compound 2. Yield: 0.90 g (56%); white solid; mp 170–175 ◦C (lit.
161–163 ◦C [11]). IR (cm–1): 2228, 1733, 1615. 1H NMR (400 MHz, Chloroform-d) δ: 14.97
(br. s, 1 H), 8.08 (d, J = 8.8 Hz, 2 H), 7.80 (d, J = 8.8 Hz, 2 H), 7.06 (s, 1 H), 3.96 (s, 3 H).

3.3. (Z)-4-(2-(3-Oxopiperazin-2-ylidene)acetyl)benzonitrile 3

Ethylenediamine (286 µL, 4.3 mmol) was added to a solution of compound 2 (900 mg,
3.9 mmol) in ethanol (10 mL) and acetic acid (2 mL), and the reaction mixture was heated
at reflux for 2 h. Then, the reaction mixture was cooled to room temperature. The formed
precipitate was filtered off and recrystallized from the mixture of ethanol and chloroform
to yield title compound 3. Yield: 600 mg (60%); yellow solid; mp 234–235 ◦C. IR (cm–1):
3204, 2227, 1691, 1602. 1H NMR (400 MHz, DMSO-d6) δ: 10.80 (s, 1 H), 8.58 (s, 1 H), 8.00
(d, J = 8.0 Hz, 2 H), 7.91 (d, J = 8.0 Hz, 2 H), 6.48 (s, 1 H), 3.59–3.34 (m, 4 H). 13C NMR (101
MHz, DMSO-d6) δ: 186.5, 159.2, 152.1, 143.0, 132.5 (2 C), 127.3 (2 C), 118.3, 113.3, 89.0, 38.8,
38.6. Anal. Calcd (%) for C13H11N3O2: C 64.72; H 4.60; N 17.42. Found: C 64.98; H 4.54;
N 17.25.

3.4. (Z)-4-(3-Hydroxy-4-methoxy-4-oxobut-2-enoyl)benzoic Acid 4

Dimethyl oxalate (620 mg, 5.25 mmol) was added to a solution of sodium methoxide
freshly prepared from 250 mg of sodium (10.9 mmol) and methanol (4 mL). 4-Acetylbenzoic
acid was added to the reaction mass heated to 60 ◦C under stirring. The reaction mixture
was heated at 40 ◦C overnight. The formed precipitate was filtered off and washed with
petroleum ether (10 mL) and toluene (1.5 mL). Then, 1M HCl (15 mL) was added to the
precipitate in a flask, and the resulting suspension was stirred for 1 h. The precipitate
was filtered off and washed with water (10 mL) and petroleum ether (10 mL) to yield title
compound 4. Yield: 970 mg (78%); white solid; mp 195–198 ◦C. IR (cm–1): 1752, 1687, 1619.
Tautomer ratio ~ 9:1 (A:B). 1H NMR (400 MHz, DMSO-d6) δ (A + B): 13.28 (br. s, 0.9 H, A),
8.14 (d, J = 8.3 Hz, 2 H, A + B), 8.11–8.04 (m, 2 H, A + B), 7.12 (s, 0.9 H, A), 5.00 (br. s, 1 H,
A + B), 4.64 (s, 0.2 H, B), 3.87 (s, 2.7 H, A), 3.79 (s, 0.3 H, B). 13C NMR (101 MHz, DMSO-d6)
δ (A): 188.1, 169.9, 166.3, 161.9, 137.6, 135.1, 129.7 (2 C), 127.9 (2 C), 98.4, 53.0. Anal. Calcd
(%) for C12H10O6: C 57.61; H 4.03. Found: C 57.47; H 4.15.

3.5. (Z)-4-(2-(3-Oxopiperazin-2-ylidene)acetyl)benzoic Acid 1

A solution of ethylenediamine (2.92 mL, 43.8 mmol) in ethanol (30 mL) was added
dropwise over 15 min to a solution of compound 4 (11.0 g, 43.8 mmol) in ethanol (150 mL)
and acetic acid (5 mL) at 60 ◦C, and the reaction mixture was heated at 60 ◦C under
stirring for 24 h. Then, the reaction mixture was cooled to room temperature. The formed
precipitate was filtered off and washed with ethanol (10 mL) and ethyl acetate (10 mL) to
yield title compound 1. Yield: 10.0 g (87%); yellow solid; mp 279–282 ◦C. IR (cm–1): 3299,
1728, 1667, 1619. 1H NMR (400 MHz, DMSO-d6) δ: 10.74 (s, 1 H), 8.56 (s, 1 H), 8.02 (d,
J = 8.4 Hz, 2 H), 7.95 (d, J = 8.5 Hz, 2 H), 6.51 (s, 1 H), 3.54–3.45 (m, 2 H), 3.44–3.37 (m, 2 H).
A proton of OH group was extremely broad and was in a wide range of 9–14 ppm. 13C
NMR (101 MHz, DMSO-d6) δ: 187.7, 167.1, 159.4, 151.6, 142.3, 134.3, 129.3 (2 C), 126.6 (2 C),
89.2, 38.7, 38.6. Anal. Calcd (%) for C13H12N2O4: C 60.00; H 4.65; N 10.76. Found: C 60.32;
H 4.67; N 10.89.
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Isolation of 1 from rat urine: 50 mL of rat urine collected after oral administration
of piron was extracted twice with ethyl acetate (2 × 50 mL). The organic extract was
washed with H2O (3 × 30 mL) and brine, and it was dried over Na2SO4. The solvent was
evaporated under reduced pressure. The residue was subjected to column chromatography
(acetone–MeOH = 10:1, Rf 0.35) to yield compound 1 as a yellow solid.

3.6. Biological Assay

White laboratory outbred Wistar rats were used in the experiment. Animal preparation
included selection by sex, age, and health status. Within the selected subpopulation, a
random selection was performed, using a random number generator, into experimental
groups of 6 animals (3 experimental (dose) groups, 1 control, 1 reference group) [12].
Animals in groups were marked using the method of applying end-to-end individual
marks. The quality of randomization was checked by testing the significance of mass shifts
and homogeneity of variances—before the experiment.

Test compound 1 was suspended in a 2% solution of food starch and administered
intraperitoneally to animals in doses of 5 mg/kg, 25 mg/kg, and 125 mg/kg 40 min before
subplantar injection of a 1% solution of carrageenan. Diclofenac 0.05 g tablets, enteric-
coated (Ozon LLC, Zhigulevsk, Russia) were used as a reference. As an equistress treatment,
animals in the control group were administered a 2% starch solution.

The edema inducer was a 1% solution of gamma-carrageenan (Sigma Aldrich, Burling-
ton, MA, USA). The model of exudative inflammation, carrageenan paw edema, was mod-
eled according to methods published in this field of research [13,14]. Paw measurements
were performed using the oncometric photometric method. The photometry setup is a
digital anhydrous plethysmometer. The plethysmometer uses an optical three-dimensional
measurement system that calculates paw volume based on images from multiple digital
cameras [15].

The anti-inflammatory effect was assessed by reducing the volume of edema in the
experimental groups compared to the control group. To assess the anti-inflammatory
activity of substances, the following indicators were used: the percentage of edema increase
and the percentage of edema inhibition.

To process experimental data, nonparametric statistical methods were used in all
cases where the requirements for parametric data were not met [16]. The main methods of
data processing were various implementations of univariate and multivariate analysis of
variance, including those resistant to outliers [17]. In this case, the nonparametric Wilcoxon
method was used [18], and corrections for multiple comparisons were not performed. The
exclusion of outliers was carried out according to the “1.5 IQR” rule [19,20].

The experimental plan of studies involving animals was agreed upon and approved
by the ethics committee at the Department of Chemistry of Perm State University.

4. Conclusions

A method was developed for the synthesis of two new 3-oxopiperazin-2-ylidenes,
including 3-oxopiperazin-2-ylidene 1, which is a metabolite of piron exhibiting anti-
inflammatory activity. Compound 1 was found to exhibit anti-inflammatory activity
comparable to the activity of diclofenac.

Supplementary Materials: The following supporting information can be downloaded online. Table
S1: Crystal data and structure refinement for piron and compound 3; Figure S1: 1H NMR spectrum
of compound 2; Figure S2: 1H NMR spectrum of compound 3; Figure S3: 13C NMR spectrum
of compound 3; Figure S4: 1H NMR spectrum of compound 4; Figure S5: 13C NMR spectrum
of compound 4; Figure S6: 1H NMR spectrum of compound 1; Figure S7: 13C NMR spectrum of
compound 1.
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