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Abstract: Stille coupling between 5,5′-dibromo-4,4′-diphenyl-2,2′-bithiazole and 9-(2-ethylhexyl)-3-
(tributylstannyl)-9H-carbazole in the presence of Pd(Ph3P)2Cl2 in toluene, heated at reflux for 2 h,
gave 5,5′-bis[9-(2-ethylhexyl)-9H-carbazol-3-yl]-4,4′-diphenyl-2,2′-bithiazole in 85% yield.
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1. Introduction

Thiazoles (Figure 1) are well-studied heterocycles that are present in nature and
show numerous applications in medicinal chemistry, already reviewed [1–3]. A well-
known example of a natural thiazole is vitamin B1 (Thiamine) [4], while examples of
thiazole-containing drugs are the antiviral ritonavir [5] and the H2-receptor antagonist
famotidine [6]. Thiazole dimers are also important: 2,4′-bithiazoles appear in natural
products such as the anticancer agents bleomycins [7], while 2,2′-bithiazoles have been
studied as electron acceptors with potential applications in materials sciences [8,9].
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1. Introduction 
Thiazoles (Figure 1) are well-studied heterocycles that are present in nature and show 

numerous applications in medicinal chemistry, already reviewed [1–3]. A well-known ex-
ample of a natural thiazole is vitamin B1 (Thiamine) [4], while examples of thiazole-con-
taining drugs are the antiviral ritonavir [5] and the H2-receptor antagonist famotidine [6]. 
Thiazole dimers are also important: 2,4′-bithiazoles appear in natural products such as the 
anticancer agents bleomycins [7], while 2,2′-bithiazoles have been studied as electron ac-
ceptors with potential applications in materials sciences [8,9]. 
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Figure 1. Thiamine, famotidine and the parent structures of 2,2′- and 2,4′-bithiazoles. 

Our pursuit of 2,2′-bithiazoles began in 2015 when we identified quinoidal 2,2′-bithi-
azole 1 as a side product during our investigation into the chemistry of 1,2,3-dithiazoles 
[10]. Subsequently, our group devised a high-yielding synthetic route towards 
(2E,5Z,5′Z)-5,5′-diarylimino quinoidal 2,2′-bithiazoles 2 (Figure 2) [11]. 
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Figure 1. Thiamine, famotidine and the parent structures of 2,2′- and 2,4′-bithiazoles.

Our pursuit of 2,2′-bithiazoles began in 2015 when we identified quinoidal 2,2′-bithiazole
1 as a side product during our investigation into the chemistry of 1,2,3-dithiazoles [10].
Subsequently, our group devised a high-yielding synthetic route towards (2E,5Z,5′Z)-5,5′-
diarylimino quinoidal 2,2′-bithiazoles 2 (Figure 2) [11].

During the above studies, we had also embarked on preparing donor–acceptor–donor
(D-A-D) molecules for solution-processed bulk heterojunction (BHJ) solar cells. In this
regard, we investigated small molecules and polymers containing non-S-oxidized 4H-1,2,6-
thiadiazin-4-ones, which we combined with PC70BM to yield BHJ solar cells with Power
Conversion Efficiencies (PCEs) of ~3% for the former and up to 3.8% for the latter [12,13].
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Figure 2. Structures of quinoidal (2E,5Z,5′Z)-2,2′-bithiazoles 1 and 2. 
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nor (D-A-D) molecules for solution-processed bulk heterojunction (BHJ) solar cells. In this 
regard, we investigated small molecules and polymers containing non-S-oxidized 4H-
1,2,6-thiadiazin-4-ones, which we combined with PC70BM to yield BHJ solar cells with 
Power Conversion Efficiencies (PCEs) of ~3% for the former and up to 3.8% for the latter 
[12,13].  

Interestingly, carbazole-bound 2,2′-bithienyls 3 [14–17] have been used in various op-
toelectronic applications, such as photoelectric conversion agents for imaging [14], organic 
field-effect transistors [15] and organic light-emitting diodes [16], and they have been com-
bined to BODIPY units as potential hole transport materials for perovskite solar cells [17]. 
As such, to enhance the PCE of the solar cells under our investigation, we chose to explore 
the use of analogous 2,2′-bithiazole derivatives as non-fullerene acceptors. To the best of 
our knowledge, there are no reports of the use of 2,2′-bithiazole-carbazoles in OPV de-
vices: a Reaxys search revealed only two analogous 2,2′-bithiazole-carbazoles 4 and 5 (Fig-
ure 3) that appear on PubChem (ID 102230564 and 122233114, respectively) without any 
reported experimental data. 

 
Figure 3. General structures of carbazole-bound 2,2′-bithienyls 3 and PubChem-reported carbazole-
bound 2,2′-bithiazoles 4 and 5. 

Herein, we report the synthesis of a new 2,2′-bithiazole bearing carbazole substitu-
ents. As demonstrated in our previous study [12], these substituents were found to expand 
the π–π conjugation, thereby facilitating charge transfer. 

2. Results and Discussion 
The target, 5,5′-bis[9-(2-ethylhexyl)-9H-carbazol-3-yl]-4,4′-diphenyl-2,2′-bithiazole 

(6), was synthesized via our adapted Stille coupling protocol developed for halothiadia-
zines [12]. The starting material, bithiazole 7, was readily obtained in two steps with an 
overall yield of 58%, starting from 2-bromoacetophenone and rubeanic acid [11,18]. Ad-
ditionally, the tributylstannyl reagent, 9-(2-ethylhexyl)-3-(tributylstannyl)-9H-carbazole 
(8), had been previously used effectively by us to prepare thiadiazine oligomers [12]. The 
Stille coupling proceeded smoothly to give the expected bithiazole 6 in 85% yield (Scheme 
1). 

Figure 2. Structures of quinoidal (2E,5Z,5′Z)-2,2′-bithiazoles 1 and 2.

Interestingly, carbazole-bound 2,2′-bithienyls 3 [14–17] have been used in various
optoelectronic applications, such as photoelectric conversion agents for imaging [14], or-
ganic field-effect transistors [15] and organic light-emitting diodes [16], and they have
been combined to BODIPY units as potential hole transport materials for perovskite solar
cells [17]. As such, to enhance the PCE of the solar cells under our investigation, we chose
to explore the use of analogous 2,2′-bithiazole derivatives as non-fullerene acceptors. To
the best of our knowledge, there are no reports of the use of 2,2′-bithiazole-carbazoles in
OPV devices: a Reaxys search revealed only two analogous 2,2′-bithiazole-carbazoles 4 and
5 (Figure 3) that appear on PubChem (ID 102230564 and 122233114, respectively) without
any reported experimental data.
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Figure 3. General structures of carbazole-bound 2,2′-bithienyls 3 and PubChem-reported carbazole-
bound 2,2′-bithiazoles 4 and 5.

Herein, we report the synthesis of a new 2,2′-bithiazole bearing carbazole substituents.
As demonstrated in our previous study [12], these substituents were found to expand the
π–π conjugation, thereby facilitating charge transfer.

2. Results and Discussion

The target, 5,5′-bis[9-(2-ethylhexyl)-9H-carbazol-3-yl]-4,4′-diphenyl-2,2′-bithiazole
(6), was synthesized via our adapted Stille coupling protocol developed for halothia-
diazines [12]. The starting material, bithiazole 7, was readily obtained in two steps with an
overall yield of 58%, starting from 2-bromoacetophenone and rubeanic acid [11,18]. Addi-
tionally, the tributylstannyl reagent, 9-(2-ethylhexyl)-3-(tributylstannyl)-9H-carbazole (8),
had been previously used effectively by us to prepare thiadiazine oligomers [12]. The Stille
coupling proceeded smoothly to give the expected bithiazole 6 in 85% yield (Scheme 1).

The UV-vis spectrum of bithiazole 6 in DCM exhibited a lowest energy absorption
band at λmax at 405 nm (log ε 3.30) with an onset value of 472 nm corresponding to an
optical band gap (Eg

opt) of 2.63 eV (Table 1). The bithiazole was also analyzed using cyclic
voltammetry (CV) that revealed one reversible reduction and one irreversible oxidation
(see Supplementary Materials). The dimer 6 showed an electrochemical HOMO value of
−5.84 eV, a LUMO value of −3.68 eV and an electrochemical band gap (Eg

echem) of 2.16 eV
(Table 1). These values are close to the respective HOMO and LUMO values of PCBM, a
commonly used fullerene acceptor molecule, of −6.2 eV and −3.95 eV [19].
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Scheme 1. Synthesis of (l,u)-5,5′-bis[9-(2-ethylhexyl)-9H-carbazol-3-yl]-4,4′-diphenyl-2,2′-bithiazole,
(l,u)-6.

Table 1. UV-vis and CV of 5,5′-bis[9-(2-ethylhexyl)-9H-carbazol-3-yl]-4,4′-diphenyl-2,2′-bithiazole (6).
All the values correspond to peak onsets.

Eox
(V)

λmax
(nm)

Eg
opt

(eV)
EHOMO

(eV)
Ered
(V)

ELUMO
(eV)

Eg
echem

(eV)

0.74 472 2.63 −5.84 −1.42 −3.68 2.16

Bithiazole 6 showed good optical absorption coverage with P3HT; however, initial
OPV device studies using the title molecule in combination with P3HT in BHJ solar cells
were unsuccessful owing to fabrication issues and were not pursued further. Potentially,
bithiazole 6 could find similar optoelectronic D-A-D applications to the bithienyls men-
tioned above.

3. Materials and Methods

The reaction mixture was monitored by TLC using commercial glass-backed thin-layer
chromatography (TLC) plates (Merck Kieselgel 60 F254). The plates were observed under UV
light at 254 and 365 nm. The melting point was determined using a PolyTherm-A, Wagner &
Munz, Kofler—Hotstage Microscope apparatus (Wagner & Munz, Munich, Germany). The
solvent used for recrystallization is indicated after the melting point. The UV-vis spectrum
was obtained using a Perkin-Elmer Lambda-25 UV/vis spectrophotometer (Perkin-Elmer,
Waltham, MA, USA) and inflections are identified by the abbreviation “inf”. The IR
spectrum was recorded on a Shimadzu FTIR-NIR Prestige-21 spectrometer (Shimadzu,
Kyoto, Japan) with Pike Miracle Ge ATR accessory (Pike Miracle, Madison, WI, USA), and
strong, medium and weak peaks are represented by s, m and w, respectively. 1H and 13C
NMR spectra were recorded on a Bruker Avance 500 instrument (at 500 and 125 MHz,
respectively (Bruker, Billerica, MA, USA)). Deuterated solvents were used for homonuclear
lock and the signals are referenced to the deuterated solvent peaks. Coupling values J are
given in Hz. Attached proton test (APT) NMR studies were used for the assignment of
the 13C peaks as CH3, CH2, CH and Cq (quaternary). The MALDI-TOF mass spectrum
(+ve mode) was recorded on a Bruker Autoflex III Smartbeam instrument (Bruker). Cyclic
voltammetry (CV) measurements were performed on a Princeton Applied Research 263A
potentiostat/galvanostat apparatus (Princeton Applied Research, Oak Ridge, TN, USA).
The elemental analysis was run by the London Metropolitan University Elemental Analysis
Service on a Perkin Elmer 2400 Elemental analyzer (Perkin Elmer, Waltham, MA, USA).
5,5′-Dibromo-4,4′-diphenyl-2,2′-bithiazole (7) [11] and 9-(2-ethylhexyl)-3-(tributylstannyl)-
9H-carbazole (8) [12] were prepared according to the literature procedures.

5,5′-Bis [9-(2-ethylhexyl)-9H-carbazol-3-yl]-4,4′-diphenyl-2,2′-bithiazole (6)

To a stirred mixture of 5,5′-dibromo-4,4′-diphenyl-2,2′-bithiazole (7) (15.0 mg, 0.031
mmol) in anhyd. toluene (1 mL) at, ca., 20 ◦C, 9-(2-ethylhexyl)-3-(tributylstannyl)-9H-
carbazole (8) (52.9 mg, 0.093 mmol) and Pd(Ph3P)2Cl2 (1.1 mg, 0.0016 mmol) were added.
The solution was then deaerated by bubbling Ar gas into the reaction mixture for 10 min
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and then the mixture was heated at reflux under Ar, until no starting material remained
(TLC, 2 h). On cooling to, ca., 20 ◦C, t-BuOMe (10 mL) was added and the mixture was
washed with saturated KF (aq) to remove organotin residues, dried (Na2SO4), adsorbed
onto silica and chromatographed (n-hexane/CH2Cl2, 60:40 v/v) to give the title compound 6
(23 mg, 85%) as orange needles, mp 75–77 ◦C (from MeCN); Rf 0.40 (n-hexane/CH2Cl2,
60:40 v/v); (found: C, 79.42; H, 6.55; N, 6.50. C58H58N4S2 requires C, 79.59; H, 6.68; N,
6.40%); λmax (CH2Cl2)/nm 241 (log ε 3.78), 265 inf (3.54), 298 inf (3.43), 363 inf (3.15), 383 inf
(3.25), 405 (3.30); νmax/cm−1 2955w, 2926m and 2855w (C-H), 1734m, 1684m, 1653m, 1647w,
1624w, 1599m, 1558m, 1506m, 1491m, 1462s, 1443m, 1414w, 1379w, 1348m, 1331m, 1319w,
1275m, 1256w, 1219m, 1204m, 1153m, 1125w, 936m, 914w, 887w, 851w, 802s, 768s, 746s,
729s; δH (500 MHz; CDCl3) 8.20 (2H, d, 4JH-H 1.4, Ar CH), 8.02 (2H, d, 3JH-H 7.7, Ar CH),
7.69–7.67 (4H, m, Ar CH), 7.50–7.47 (4H, m, Ar CH), 7.42 (2H, d, 3JH-H 8.1, Ar CH), 7.35 (2H,
d, 3JH-H 8.6, Ar CH), 7.32–7.29 (6H, m, Ar CH), 7.24 (2H, dd, 3JH-H 7.2, 7.2, Ar CH), 4.19–4.17
(4H, m, CH2), 2.12–2.04 (2H, m, CH), 1.46–1.24 (16H, m, CH2), 0.95 (6H, t, 3JH-H 7.4, CH3),
0.88 (6H, t, 3JH-H 7.2, CH3); δC (125 MHz; CDCl3) 158.5 (Cq), 150.1 (Cq), 141.3 (Cq), 140.8
(Cq), 136.6 (Cq), 134.9 (Cq), 129.1 (CH), 127.8 (CH), 127.3 (CH), 126.1 (CH), 123.1 (Cq), 122.5
(Cq), 121.5 (Cq), 120.4 (CH), 119.2 (CH), 109.3 (CH), 109.2 (CH), 47.6 (CH2), 39.4 (CH), 31.0
(CH2), 28.8 (CH2), 24.4 (CH2), 23.0 (CH2), 14.0 (CH3), 10.9 (CH3); m/z (MALDI-TOF) 875
(MH+, 21%), 776 (MH+-C7H15, 100).

Supplementary Materials: The following supporting information can be downloaded online: molfile,
Figure S1: Cyclic voltammogram of bithiazole 6; Figure S2: UV-vis absorption spectrum of bithiazole
6, 1H, 13C NMR and mass spectra.
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