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Abstract: 2,7-Bis(pyridin-4-ylethynyl)-9H-carbazole (1) was synthesized by reacting 4-ethynylpyridine
hydrochloride with 2,7-dibromo-9H-carbazole. The full characterization of compound 1 is presented,
and the crystal structure of its monohydrate was determined by single-crystal XRD analysis.
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1. Introduction

Over the past decades, extensive synthetic efforts have led to the fabrication of innova-
tive building blocks with different fluorophore cores such as fluorene [1], carbazole [2], and
thiophene [3] in view of producing supramolecular scaffolds with tunable luminescence
properties for applications in optoelectronics [4], sensing [5], and bioimaging [6]. Among
the neutral carbazole-based building blocks reported so far, pyridyl derivatives such as the
bent 3,6-di(pyridin-4-yl)-9H-carbazole [3,6-(4-Py)2Cz] (Scheme 1) have been successfully
incorporated into discrete and polymeric supramolecular assemblies showing interesting
properties as pH probes [7] and sensors for both cations and anions [8] by exploiting the
intrinsic electron-rich properties of the carbazolyl core that resulted in spectroscopically
active networks.

By extending the size of 3,6-(4-Py)2Cz through the inclusion of ethynyl functionalities,
3,6-bis(pyridin-4-ylethynyl)-9H-carbazole [3,6-(4-PyE)2Cz] (Scheme 1) was prepared, show-
ing its value in the formation of rare architectures such as a Solomon link that was recently
reported, in which the authors emphasized the role of ethynyl moieties in establishing
additional π–π interactions [9].

Passing from the bent 3,6-carbazolyl to the almost linear 2,7-carbazolyl core, the syn-
thesis of 2,7-bis(pyridin-4-yl)-9H-carbazole [2,7-(4-Py)2Cz] was also reported, and this com-
pound was used as a donor for the preparation of supramolecular wires and rectangles along
with its 9H-fluorene and fluoren-9-one congeners, namely, 2,7-di(pyridin-4-yl)-9H-fluorene
[2,7-(4-Py)2Fl] and 2,7-bis(pyridin-4-yl)fluoren-9-one [2,7-(4-Py)2FO] (Scheme 1) [10].

Herein, we report on the synthesis of 2,7-bis(pyridin-4-ylethynyl)-9H-carbazole (1) by
following our previous reports on pyridyl-ethynyl derivatives, namely, 2,7-bis(pyridin-3-
ylethynyl)thiophene [11] [2,7-(3-PyE)2Tp], 2,7-bis(pyridin-3-ylethynyl)fluoren-9-one [2,7-
(3-PyE)2FO] [12], and 2-(2,7-bis(pyridin-3-ylethynyl)fluoren-9-ylidene)malononitrile [2,7-
(3-PyE)2Fmnt] [13] (Scheme 1).
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Scheme 1. Selected pyridyl derivatives: 3,6-(4-Py)2Cz [7,8], 3,6-(4-PyE)2Cz [9], 2,7-(4-Py)2Cz [10], 2,7-
(4-Py)2Fl [10], 2,7-(4-Py)2FO [10], 2,7-(3-PyE)2Tp [11], 2,7-(3-PyE)2FO [12], and 2,7-(3-PyE)2Fmnt [13]. 

2. Results and Discussion 
Compound 1 was synthesized by reacting a slight excess of 4-ethynylpyridine 

hydrochloride (2.2 eq.) with 2,7-dibromo-9H-carbazole in a mixture of dry 
triethylamine/toluene under an inert atmosphere via the Sonogashira coupling (Scheme 
2). After column-chromatographic purification, the product was thoroughly characterized 
by elemental analysis, FT-IR, high-resolution ESI-MS, and NMR techniques (Figures S1–
S3). The alkyne stretching vibration was observed at 2208 cm−1, similar to other pyridyl-
ethynyl derivatives [11–13]. The high-resolution mass spectrum of compound 1 showed 
the monoprotonated peak at m/z 370.1328 as well as the double-charged peak at m/z 
185.5699 (Figure S4). The 1H NMR spectrum of 1 in DMSO-d6 showed signals in the range 
of 11.69–7.42 ppm, with the NH proton resonating at 11.69 ppm and the carbazolyl 
protons centered at 8.25, 7.79, and 7.43 ppm, while the corresponding protons of the para-
substituted pyridyl moieties were found at 8.66 and 7.57 ppm. The 13C NMR spectrum 
recorded in the same solvent is consistent with the chemical structure of 1, with carbon 
signals distributed over the range 150–87 ppm and the two most upfield signals resonating 
at 87.1 and 95.5 ppm, respectively, ascribable to the quaternary carbons of the ethynyl 
groups. 
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Crystal data for 1·H2O: C26H17N3O (Mr = 387.42 g mol−1) monoclinic, P21/n (No. 14), a 
= 9.0349(3) Å, b = 25.4077(7) Å, c = 17.7142(4) Å, β = 97.260(3)°, α = γ = 90°, V = 4033.8(2) Å3, 
T = 100(2) K, Z = 8, Z’ = 2, µ(Cu Kα) = 0.629 mm−1, 37,690 reflections measured, 7385 unique 
(Rint = 0.0562), which were used in all calculations. The final wR2 was 0.2459 (all data) and 
R1 was 0.0907 (I > 2(I)). 

Compound 1 was recrystallized from a 3:1 DMSO/H2O mixture as colorless crystals 
whose structure was unambiguously elucidated by single-crystal X-ray diffraction 
analysis as the monohydrate form of 1. The compound 1·H2O crystallized in the 
monoclinic P21/n space group with two crystallographically independent molecules of 1 

Scheme 1. Selected pyridyl derivatives: 3,6-(4-Py)2Cz [7,8], 3,6-(4-PyE)2Cz [9], 2,7-(4-Py)2Cz [10],
2,7-(4-Py)2Fl [10], 2,7-(4-Py)2FO [10], 2,7-(3-PyE)2Tp [11], 2,7-(3-PyE)2FO [12], and 2,7-(3-
PyE)2Fmnt [13].

2. Results and Discussion

Compound 1 was synthesized by reacting a slight excess of 4-ethynylpyridine hydrochlo-
ride (2.2 eq.) with 2,7-dibromo-9H-carbazole in a mixture of dry triethylamine/toluene
under an inert atmosphere via the Sonogashira coupling (Scheme 2). After column-
chromatographic purification, the product was thoroughly characterized by elemental
analysis, FT-IR, high-resolution ESI-MS, and NMR techniques (Figures S1–S3). The alkyne
stretching vibration was observed at 2208 cm−1, similar to other pyridyl-ethynyl deriva-
tives [11–13]. The high-resolution mass spectrum of compound 1 showed the monoproto-
nated peak at m/z 370.1328 as well as the double-charged peak at m/z 185.5699 (Figure S4).
The 1H NMR spectrum of 1 in DMSO-d6 showed signals in the range of 11.69–7.42 ppm,
with the NH proton resonating at 11.69 ppm and the carbazolyl protons centered at 8.25,
7.79, and 7.43 ppm, while the corresponding protons of the para-substituted pyridyl moi-
eties were found at 8.66 and 7.57 ppm. The 13C NMR spectrum recorded in the same
solvent is consistent with the chemical structure of 1, with carbon signals distributed over
the range 150–87 ppm and the two most upfield signals resonating at 87.1 and 95.5 ppm,
respectively, ascribable to the quaternary carbons of the ethynyl groups.
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Scheme 2. Synthesis of 2,7-bis(pyridin-4-ylethynyl)-9H-carbazole (1).

Crystal data for 1·H2O: C26H17N3O (Mr = 387.42 g mol−1) monoclinic, P21/n (No. 14),
a = 9.0349(3) Å, b = 25.4077(7) Å, c = 17.7142(4) Å, β = 97.260(3)◦, α = γ = 90◦, V = 4033.8(2) Å3,
T = 100(2) K, Z = 8, Z’ = 2, µ(Cu Kα) = 0.629 mm−1, 37,690 reflections measured, 7385 unique
(Rint = 0.0562), which were used in all calculations. The final wR2 was 0.2459 (all data) and
R1 was 0.0907 (I > 2(I)).

Compound 1 was recrystallized from a 3:1 DMSO/H2O mixture as colorless crystals
whose structure was unambiguously elucidated by single-crystal X-ray diffraction analysis
as the monohydrate form of 1. The compound 1·H2O crystallized in the monoclinic P21/n
space group with two crystallographically independent molecules of 1 in the asymmetric
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unit coupled with two water molecules that are hydrogen-bonded to pyridyl groups
(Figure 1).
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(Thermo Fisher Scientific, Waltham, MA, USA). The solutions were infused into the ESI 

Figure 1. X-ray crystal structure of 1·H2O with thermal ellipsoids drawn at a 30% probability level.
Only H-atoms located on heteroatoms and water molecules are shown for clarity.

The two symmetry-independent carbazole molecules are nearly planar, with the
terminal pyridyl rings rotated by angles ranging between 3◦ and 25◦. It is worth noting that
the rotational barrier for pyridyl groups in similar derivatives was calculated to be a few
kcal·mol−1 [11,14], suggesting that the overall conformation adopted by the donor in the
solid-state is likely to be easily modulated and governed by supramolecular interactions.

The oxygen atoms of water molecules behave as three-connecting nodes between
donor units of 1, acting either as hydrogen bond donors via OH···N hydrogen bonds with
pyridyl rings (shortest dD···A = 2.786(4) Å) or as hydrogen bond acceptors through NH···O
interactions with carbazole protons (shortest dD···A = 2.789(4) Å). The repetition of the
aforementioned interactions within the crystal lattice results in the packing of pairs of
waved H-bonded chains running along the b-axis, as shown in Figure 2.
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Figure 2. View along the c-axis of the hydrogen-bonded chains found in 1·H2O with moieties colored
according to their symmetry equivalence.

3. Materials and Methods
3.1. General

Solvents and reagents were purchased from VWR, TCI, FluoroChem, and Merck.
Triethylamine was distilled over LiAlH4 and degassed by three consecutive freeze-pump-
thaw cycles prior to use. Toluene was distilled over Na and stored with molecular sieves.
The synthesis of 1 was carried out under a dry dinitrogen atmosphere using standard
Schlenk equipment.

FT-IR measurements were recorded at room temperature on a Thermo-Nicolet 5700 spec-
trometer using KBr pellets with a KBr beam splitter and KBr windows (4000−400 cm−1,
resolution 4 cm−1). NMR spectra were carried out in DMSO-d6 at room temperature on
a Bruker Avance III HD 600 spectrometer. Chemical shifts are reported in ppm (δ) and
were calibrated to the solvent residue. Coupling constants J are given in Hz units. Positive
ESI-MS spectra were recorded on a high-resolution LTQ Orbitrap Elite™ mass spectrometer
(Thermo Fisher Scientific, Waltham, MA, USA). The solutions were infused into the ESI
source at a flow rate of 5.00 µL/min. Spectra were recorded in the range of m/z 300–600
with a resolution of 240,000 (FWHM). Instrument conditions were as follows: spray volt-
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age 3500 V, capillary temperature 275 ◦C, sheath gas 12 (arbitrary units), auxiliary gas 3
(arbitrary units), sweep gas 0 (arbitrary units), probe heater temperature 50 ◦C. Elemental
analysis was performed with a CHNS/O PE 2400 series II elemental analyzer (T = 925 ◦C).
The melting point was determined on a FALC mod. C apparatus (up to 290 ◦C).

X-ray diffraction data for 1·H2O were collected at 100(2) K on a Rigaku 007HF diffrac-
tometer, equipped with Varimax confocal mirrors, an AFC11 goniometer, and a HyPix
6000 detector. The structure was solved with the ShelXT [15] solution program using dual
methods, and the model was refined with ShelXL 2018/3 [16] using full matrix least squares
minimization on F2. Olex2 1.5 [17] was used as the graphical interface. All crystals screened
were twinned; therefore, data were collected on the crystal that showed the least observable
amount of twinning. It was not possible to integrate and account for the X-ray diffraction
of the minor twin component, thus lowering the quality statistics of the refinement. The
water molecules were modeled and refined as ridged bodies with idealized geometries, as
they refined to unrealistic geometries.

3.2. Synthesis of 2,7-Bis(pyridin-4-ylethynyl)-9H-carbazole (1)

2,7-Dibromo-9H-carbazole (0.325 g; 1.00 mmol), 4-ethynylpyridine hydrochloride
(0.307 g; 2.20 mmol), copper(I) iodide (0.019 g; 0.10 mmol), and Pd(PPh3)2Cl2 (0.070 g;
0.10 mmol) were added to a 50 mL three-necked round bottom flask under dinitrogen
atmosphere. Freshly distilled and degassed triethylamine (5 mL) and dry toluene (15 mL)
were added via cannula, and the mixture was heated to reflux for 48 h. After cooling to 0 ◦C,
the black precipitate was filtered under reduced pressure and purified by flash column
chromatography on silica gel using a 2:1 CH2Cl2/ethyl acetate mixture as eluent. The pure
product was isolated as an off-white solid (0.072 g; Y = 19%). M.p. = 230 ◦C. Elemental
analysis calcd (%) for C26H15N3: C 84.53, H 4.09, N 11.37. Found: C 84.34, H 3.61, N 11.05.
HR-ESI(+)-MS (MeCN solution) m/z: 370.1328 (calcd. 370.1333) for [C26H16N3]+ [M + H]+;
m/z: 185.5699 (calcd. 185.5706) for [C26H17N3]2+ [M + 2H]2+. FT-IR (KBr, 4000–400 cm−1):
3427s ν(N−H), 2208m ν(C≡C), 1628m, 1593m, 1537w, 1479w, 1439mw, 1408mw, 1385ms,
1329m, 1244w, 1209w, 997w, 872mw, 812ms, 808ms, 731w, 633w, 544w, 467w, 418w cm−1.
1H NMR (600 MHz, DMSO-d6) δ 11.69 (s, 1H, NH), 8.66 (s, 4H, py), 8.26 (d, J = 8.1 Hz, 2H,
Cz), 7.79 (s, 2H, Cz), 7.58 (d, J = 5.0 Hz, 4H, py), 7.43 (d, J = 8.1 Hz, 2H, Cz) ppm. 13C{1H}
NMR (151 MHz, DMSO-d6) δ: 150.4, 140.6, 130.9, 125.9, 123.3, 123.2, 121.7, 119.0, 115.1, 95.5,
87.1 ppm.

4. Conclusions

The donor 2,7-bis(pyridin-4-ylethynyl)-9H-carbazole (1) was successfully prepared,
and its monohydrate form was structurally characterized by crystallographic means. Fur-
ther studies are ongoing in our laboratories to explore the supramolecular chemistry of
1 towards various complementary building blocks.

Supplementary Materials: The following supporting information can be downloaded, Figure S1:
FT-IR spectrum; Figures S2 and S3: 1H and 13C{1H} NMR spectra; Figure S4: HR-ESI(+) MS spectrum;
Table S1: Crystal data and refinement parameters; Tables S2 and S3: Bond lengths and angles.
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