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Abstract: A six-coordinated indium(III) complex (APMe)(imSQMe)In(bipy) (1), bearing two types of
redox-active ligands—mono- (imSQMe) and dianion (APMe) of 4,6-di-tert-butyl-N-(2,6-dimethylph
enyl)-o-iminobenzoquinone and 2,2′-bipyridyl—was synthesized and characterized in detail. The
intense, well-resolved ESR spectrum of 1 in dichloromethane solution clearly indicates the spin
density delocalization between both AP and imSQ ligands. The UV-vis spectrum of 1 possesses
an absorption band in the NIR region. The molecular structure of compound 1 was established by
single-crystal X-ray diffraction analysis.

Keywords: indium; redox-active ligand; o-amidophenolate; o-iminobenzosemiquinolate; bipyridyl;
charge transfer; ESR; X-ray diffraction

1. Introduction

Plenty of chromophore systems include rich classes of intramolecular charge transfer
dyes represented by organic [1–4], polymer [5,6], organometallic [7], and coordination
compounds [8]. A design of metal complexes, which contains both donor and acceptor
organic parts coordinated to the metal center and can act as ligand-to-ligand charge-transfer
(LL´CT) chromophores, is one of the actual trends in modern chemistry [9–13]. Since the
structure and therefore absorption profile, redox potentials, and molecular polarity of LLCT
complexes can be tuned easily, these compounds can find application in photochemical
charge-transfer and nonlinear optics [14–20]. Currently, the donor–acceptor complexes
of transition metals (Ni [21–26], Pd [25,27–29], Pt [20,25,28–33]) with redox-active ligands
are the most studied and perspective compounds for application to dye-sensitized solar
cells. The development of sibling LL´CT chromophores based on main-group metals seems
exceedingly attractive since it would allow one to cheapen the potential production process.
Recently, we have synthesized several LL´CT gallium complexes, bearing the quinone-type
redox-active ligands as donor and 2,2′-bipyridyl as acceptor [34–36]. Furthermore, in the
complexes with two differently charged o-quinone ligands, the absorption maximum shifts
to the near IR region [35]. Here, we report the synthesis and characterization of a new
indium(III) complex containing o-iminobenzoquinone ligands in different redox states
(radical anion and dianion) along with neutral 2,2′-bipyridyl in the metal coordination
sphere.

2. Results

The exchange reaction between equimolar quantities of anhydrous InI3, 2,2´-bipyridyl,
and sodium salts of singly and doubly reduced 4,6-di-tert-butyl-N-(2,6-dimethylphenyl)-o-
iminobenzoquinone ((imSQMe)Na and ((APMe)Na2, respectively) leads to the formation of
the hexacoordinated heteroleptic indium complex (APMe)(imSQMe)In(bipy) (1) (Scheme 1).
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formation of the hexacoordinated heteroleptic indium complex (APMe)(imSQMe)In(bipy) 
(1) (Scheme 1). 

 
Scheme 1. Synthesis of Complex 1. 

Complex 1 is extremely sensitive to atmospheric oxygen and moisture, both in solu-
tion and in the crystalline state. It is highly soluble in THF, has moderate solubility in 
dichloromethane, and is insoluble in toluene and saturated hydrocarbons. The composi-
tion and structure of 1 were established by spectroscopic methods (IR, ESR, UV-Vis-NIR 
spectroscopy) as well as by elemental and X-ray diffraction analyses (Supplementary Ma-
terials). 

The IR spectrum of 1 is characterized by a set of lines due to the presence of two 
different charged o-iminobenzoquinone fragments along with the bipyridyl ligand. The 
presence of two differently charged o-iminobenzoquinone ligands in 1 was also detected 
by ESR spectroscopy. The hyperfine structure of the ESR spectrum of 1 (Figure 1) is caused 
by hyperfine coupling of unpaired electron with magnetic nuclei 115In (95.7%, I = 9/2, µN = 
5.534) [37], two equivalent protons 1H (99.98%, I = 1/2, µN = 2.7928) [37] and two equivalent 
nitrogen atoms 14N (99.63%, I = 1, µN = 0.4037) [37] of both o-iminobenzoquinone ligands. 
The detected intense signal specifies the fast (on the ESR time scale) migration of the un-
paired electron between radical anion and dianion redox-active ligands. 

 
Figure 1. ESR spectrum (gi = 2.0069, ai(115In) = 1.47 mT, ai(214N) = 0.34 mT, ai(21H) = 0.29 mT) of 1 in 
dichloromethane at 290 K. 

The electronic absorption spectrum of complex 1 was recorded in the range of 200–
1100 nm in dichloromethane at 298 K (Figure 2). Besides high-intensity absorption bands 
in the near UV range (235 nm, ε = 25137; 289 nm, ε = 17443; 311 nm, ε = 15808) correspond-
ing to the π—π* transitions in aromatic compounds, the visible and near-IR regions con-
tain a broad low-intensity absorption band (765 nm, ε = 907), corresponding to the LL’CT 
between AP and imSQ redox-active ligands. 

Scheme 1. Synthesis of Complex 1.

Complex 1 is extremely sensitive to atmospheric oxygen and moisture, both in so-
lution and in the crystalline state. It is highly soluble in THF, has moderate solubility in
dichloromethane, and is insoluble in toluene and saturated hydrocarbons. The composition
and structure of 1 were established by spectroscopic methods (IR, ESR, UV-Vis-NIR spec-
troscopy) as well as by elemental and X-ray diffraction analyses (Supplementary Materials).

The IR spectrum of 1 is characterized by a set of lines due to the presence of two
different charged o-iminobenzoquinone fragments along with the bipyridyl ligand. The
presence of two differently charged o-iminobenzoquinone ligands in 1 was also detected by
ESR spectroscopy. The hyperfine structure of the ESR spectrum of 1 (Figure 1) is caused
by hyperfine coupling of unpaired electron with magnetic nuclei 115In (95.7%, I = 9/2,
µN = 5.534) [37], two equivalent protons 1H (99.98%, I = 1/2, µN = 2.7928) [37] and two
equivalent nitrogen atoms 14N (99.63%, I = 1, µN = 0.4037) [37] of both o-iminobenzoquinone
ligands. The detected intense signal specifies the fast (on the ESR time scale) migration of
the unpaired electron between radical anion and dianion redox-active ligands.
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Figure 1. ESR spectrum (gi = 2.0069, ai(115In) = 1.47 mT, ai(214N) = 0.34 mT, ai(21H) = 0.29 mT) of 1 in
dichloromethane at 290 K.

The electronic absorption spectrum of complex 1 was recorded in the range of 200–1100 nm
in dichloromethane at 298 K (Figure 2). Besides high-intensity absorption bands in the near
UV range (235 nm, ε = 25137; 289 nm, ε = 17443; 311 nm, ε = 15808) corresponding to the
π—π* transitions in aromatic compounds, the visible and near-IR regions contain a broad
low-intensity absorption band (765 nm, ε = 907), corresponding to the LL’CT between AP
and imSQ redox-active ligands.

Despite the low reflectivity of crystalline samples 1 (see experimental section for
details), we succeeded in selecting a crystal sample grown from CH2CL2/hexane solution
and to carry out single-crystal X-ray diffraction (SC XRD) study. According to SC XRD
data, 1 crystallizes in orthorhombic Pbca space group with unique complex molecule in
asymmetric unit. The asymmetric unit also contains one solvent hexane molecule lying on
the inversion center; thus, 1 crystallizes as a solvate 1· 12 hexane.



Molbank 2023, 2023, M1660 3 of 7Molbank 2023, 2023, x FOR PEER REVIEW 3 of 7 
 

 
Figure 2. Electronic absorption spectrum of 1 recorded at 298 K in CH2Cl2 at C = 10–4 mol L–1. 

Despite the low reflectivity of crystalline samples 1 (see experimental section for de-
tails), we succeeded in selecting a crystal sample grown from CH2CL2/hexane solution and 
to carry out single-crystal X-ray diffraction (SC XRD) study. According to SC XRD data, 1 
crystallizes in orthorhombic Pbca space group with unique complex molecule in asym-
metric unit. The asymmetric unit also contains one solvent hexane molecule lying on the 
inversion center; thus, 1 crystallizes as a solvate 1·½hexane. 

Coordination environment of In3+ cation in 1 is represented by a distorted octahedron 
with nitrogen and oxygen atoms at its vertices (Figure 3). The arrangement of o-iminoben-
zoquinone ligands in 1 results in the trans position of the nitrogen atoms with aryl substi-
tuents. The dihedral angle between mean planes of metallacycles InOCCN is 61.2(2)°. 

 
Figure 3. Molecular structure of 1 (anisotropic displacement ellipsoids of heteroatoms drawn at the 
30% probability level; H atoms are omitted for clarity). 

The redox states of o-iminobenzoquinone ligands in 1 are of particular interest. The 
C(1)-O(1), C(2)-N(2), and C(1)-C(2) bond lengths are 1.376(10) Å, 1.386(9), and 1.427(11) 
Å, respectively, and comparable with those distances in indium(III) complexes with di-
anionic o-iminobenzoquinone ligand (AP)InI(TMEDA) (C-O 1.351(2) Å; C-N 1.402(3) Å; 
C-C 1.425(3) Å) (CCDC 770657) [38] and [In(AP)2]-[Na(DME)3]+ (C-O 1.355(3), 1.364(3) Å; 
C-N 1.394(3), 1.397(3) Å; C-C 1.423(3), 1.432(3) Å) (CCDC 928221) [39]. The metallacycle 
In(1)O(1)C(1)C(2)N(1) is not planar; the dihedral angle between the O(1)In(1)N(1) and 
O(1)C(1)C(2)N(1) planes is 164.9(5)°. The In(1)-O(1) and In(1)-N(1) distances are 2.101(5) 
Å and 2.250(8) Å, respectively. While the In-O in 1 is slightly shorter than similar distances 
in previously reported six-coordinated In3+ complexes with radical anion o-iminobenzo-
quinone ligands (imSQ)2InSS (2.1700(10), 2.1688(10) Å), (imSQ)InCl2(TMEDA) (2.163(3) Å) 
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the In-N distances in 1 are comparable to analogues characteristics of these complexes 

Figure 2. Electronic absorption spectrum of 1 recorded at 298 K in CH2Cl2 at C = 10–4 mol L–1.

Coordination environment of In3+ cation in 1 is represented by a distorted octahe-
dron with nitrogen and oxygen atoms at its vertices (Figure 3). The arrangement of
o-iminobenzoquinone ligands in 1 results in the trans position of the nitrogen atoms with
aryl substi-tuents. The dihedral angle between mean planes of metallacycles InOCCN is
61.2(2)◦.

Molbank 2023, 2023, x FOR PEER REVIEW 3 of 7 
 

 
Figure 2. Electronic absorption spectrum of 1 recorded at 298 K in CH2Cl2 at C = 10–4 mol L–1. 

Despite the low reflectivity of crystalline samples 1 (see experimental section for de-
tails), we succeeded in selecting a crystal sample grown from CH2CL2/hexane solution and 
to carry out single-crystal X-ray diffraction (SC XRD) study. According to SC XRD data, 1 
crystallizes in orthorhombic Pbca space group with unique complex molecule in asym-
metric unit. The asymmetric unit also contains one solvent hexane molecule lying on the 
inversion center; thus, 1 crystallizes as a solvate 1·½hexane. 

Coordination environment of In3+ cation in 1 is represented by a distorted octahedron 
with nitrogen and oxygen atoms at its vertices (Figure 3). The arrangement of o-iminoben-
zoquinone ligands in 1 results in the trans position of the nitrogen atoms with aryl substi-
tuents. The dihedral angle between mean planes of metallacycles InOCCN is 61.2(2)°. 

 
Figure 3. Molecular structure of 1 (anisotropic displacement ellipsoids of heteroatoms drawn at the 
30% probability level; H atoms are omitted for clarity). 

The redox states of o-iminobenzoquinone ligands in 1 are of particular interest. The 
C(1)-O(1), C(2)-N(2), and C(1)-C(2) bond lengths are 1.376(10) Å, 1.386(9), and 1.427(11) 
Å, respectively, and comparable with those distances in indium(III) complexes with di-
anionic o-iminobenzoquinone ligand (AP)InI(TMEDA) (C-O 1.351(2) Å; C-N 1.402(3) Å; 
C-C 1.425(3) Å) (CCDC 770657) [38] and [In(AP)2]-[Na(DME)3]+ (C-O 1.355(3), 1.364(3) Å; 
C-N 1.394(3), 1.397(3) Å; C-C 1.423(3), 1.432(3) Å) (CCDC 928221) [39]. The metallacycle 
In(1)O(1)C(1)C(2)N(1) is not planar; the dihedral angle between the O(1)In(1)N(1) and 
O(1)C(1)C(2)N(1) planes is 164.9(5)°. The In(1)-O(1) and In(1)-N(1) distances are 2.101(5) 
Å and 2.250(8) Å, respectively. While the In-O in 1 is slightly shorter than similar distances 
in previously reported six-coordinated In3+ complexes with radical anion o-iminobenzo-
quinone ligands (imSQ)2InSS (2.1700(10), 2.1688(10) Å), (imSQ)InCl2(TMEDA) (2.163(3) Å) 
(CCDC 1002475, 1002476) [40], (imSQ)InI2(TMEDA) (2.1459(17) Å), (CCDC 770659) [38], 
the In-N distances in 1 are comparable to analogues characteristics of these complexes 

Figure 3. Molecular structure of 1 (anisotropic displacement ellipsoids of heteroatoms drawn at the
30% probability level; H atoms are omitted for clarity).

The redox states of o-iminobenzoquinone ligands in 1 are of particular interest. The
C(1)-O(1), C(2)-N(2), and C(1)-C(2) bond lengths are 1.376(10) Å, 1.386(9), and 1.427(11) Å,
respectively, and comparable with those distances in indium(III) complexes with di-anionic
o-iminobenzoquinone ligand (AP)InI(TMEDA) (C-O 1.351(2) Å; C-N 1.402(3) Å; C-C
1.425(3) Å) (CCDC 770657) [38] and [In(AP)2]-[Na(DME)3]+ (C-O 1.355(3), 1.364(3) Å;
C-N 1.394(3), 1.397(3) Å; C-C 1.423(3), 1.432(3) Å) (CCDC 928221) [39]. The metallacy-
cle In(1)O(1)C(1)C(2)N(1) is not planar; the dihedral angle between the O(1)In(1)N(1)
and O(1)C(1)C(2)N(1) planes is 164.9(5)◦. The In(1)-O(1) and In(1)-N(1) distances are
2.101(5) Å and 2.250(8) Å, respectively. While the In-O in 1 is slightly shorter than similar
distances in previously reported six-coordinated In3+ complexes with radical anion o-
iminobenzoquinone ligands (imSQ)2InSS (2.1700(10), 2.1688(10) Å), (imSQ)InCl2(TMEDA)
(2.163(3) Å) (CCDC 1002475, 1002476) [40], (imSQ)InI2(TMEDA) (2.1459(17) Å), (CCDC
770659) [38], the In-N distances in 1 are comparable to analogues characteristics of these
complexes (2.2517(12)-2.271(2) Å), which can be explained by the steric saturation of the
In3+ cation coordination sphere in 1. Indeed, the geometry of the 2,2′-bipyridyl moiety in 1
is distorted (torsion angle N-C-C-N is 17.6(9)◦) comparing to the related six-coordinated
indium complex with o-quinone ligands (Cat)In(SQ)(bipy) (3.53(7)◦) (CCDC 780470) [41],
and the In-Nbipy bond lengths in 1 (2.283(7), 2.326(7) Å) are noticeably longer than in
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(Cat)In(SQ)(bipy) (2.276(2), 2.279(2) Å). Thus, the O(1)N(1)-ligand state is characterized as
dianionic.

While the bond lengths N(2)-C(24) (1.386(10) Å) and C(23)-C(24) (1.422(12) Å) are com-
parable to the distances N(1)-C(2) and C(1)-C(2), the bond length O(2)-C(23) is 1.307(10) Å
and noticeably shorter than O(1)-C(1). The metallacycle In(1)O(2)C(23)C(24)N(2) is more
planar than in the other ligand; the dihedral angle between the O(2)In(1)N(2) and O(2)C(23)
C(24)N(2) planes is 171.3(5)◦. The In(1)-O(2) and In(1)-N(2) bond lengths are 2.090(5) Å and
2.300(8) Å, respectively. Despite distortions in the geometry of the metallocycle, this ligand
can be characterized as a radical anion.

The analysis of bond lengths in o-iminobenzoquinone ligands in 1 was carried out
using metrical oxidation state (MOS) approach [42] as well. The calculated MOS are
−1.95 ± 0.21 for O(1)N(1)-ligand and −1.52 ± 0.19 for O(2)N(2)-ligand and match satisfac-
torily the formal oxidation state of ligands supposed for the electronic structure of 1.

3. Materials and Methods

All operations for the synthesis of (APMe)(imSQMe)In(bipy) (1) were carried out in
the absence of atmospheric oxygen and moisture. Solvents were purified using standard
methods [43]. Commercial reagents (sodium, indium, 2,2′-bipyridyl) were purchased
from Aldrich. Anhydrous indium(III) iodide was obtained by stirring an excess of the
metal with a stoichiometric amount of iodine in dry diethyl ether until the solution be-
came colorless and used in situ. The sodium and disodium salts of 4,6-di-tert-butyl-N-
(2,6-dimethylphenyl)-o-iminobenzoquinone ((imSQMe)Na and (APMe)Na2, respectively)
were synthesized from o-iminobenzoquinone (imQMe) [44] and used in situ. To obtain
(APMe)Na2 imQMe (0.1 g, 0.31 mmol) was stirred with an excess of sodium dispersion
(1.5 g, 65.2 mmol) in THF (20 ml) until solution color became light yellow. The oxidation
of (APMe)Na2 (0.31 mmol) by the equivalent of imQMe (0.1 g, 0.31 mmol) leads to the
formation of deep blue (imSQMe)Na (0.62 mmol). Elemental analysis was performed using
the elemental analyzer Elementar Vario EL cube. The IR spectrum was recorded on an FSM
1201 spectrometer in a Nujol (range: 4000–400 cm–1). The ESR spectrum was obtained using
a Bruker Magnettech ESR5000 spectrometer. The electronic spectrum of 1 was recorded on a
Perkin–Elmer Lambda 25 UV/Vis spectrometer (range: 220–1100 nm) at room temperature.

3.1. Synthesis of 1

A freshly prepared bright-yellow solution of (APMe)Na2 (0.62 mmol) in THF (10 mL)
was added to a colorless solution of InI3 (0.62 mmol) in the same solvent (5 mL), and
herewith the reaction mixture became brownish-orange. After that, the deep blue solution
of (imSQMe)Na (0.62 mmol) in THF was added thereto upon stirring, and the color of
the reaction mixture transformed to deep-green one. Finally, after 2,2′-bipyridyl addition
(97 mg, 0.62 mmol), the reaction was kept at room temperature for 30 min. Then solvent
was evaporated under reduced pressure, dry residue dissolved in dichloromethane (30 mL),
and the reaction mixture was separated from the NaI precipitate by filtration. The green
filtrate was concentrated and mixed up with hexane (10 mL) to provide better product
precipitation. The pale-green precipitate of 1 was collected by filtration and dried in a
vacuum (yield 75%). Elemental analysis: Calculated (%) for C54H66InN4O2: C 70.66, H 7.25,
N 6.10; Found (%): C 70.89, H 7.43, N 5.99. UV–vis (CH2Cl2) nm (ε, M−1 cm−1): 235
(25,137), 289 (17,443), 311sh (15,808), 418sh (1322), 765 (907). IR (Nujol, KBr) cm−1: 1605 (m),
1598 (s), 1580 (m), 1568 (m), 1547 (m), 1355 (s), 1331 (s), 1316 (m), 1284 (s), 1259 (s), 1247 (s),
1232 (s), 1204 (m), 1173 (m), 1159 (m), 1126 (w), 1116 (w), 1097 (m), 1061 (w), 1042 (w),
1020 (s), 989 (m), 918 (w), 913 (w), 887 (m), 868 (m), 858 (w), 842 (w), 830 (w), 817 (w), 760 (s),
735 (m), 650 (m), 631 (w), 621 (w), 603 (w), 541 (w), 529 (w), 494 (w), 480 (w).

3.2. Single-Crystal X-ray Structure Analysis

The SC XRD data for 1 were collected with Rigaku OD Xcalibur E diffractometer (MoKα-
radiation, ω-scans technique, λ = 0.71073 Å, T = 298.0(2) K) using CrysAlisPro [45] software
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package. Analytical numeric absorption correction using a multifaceted crystal model was
performed. The structures were solved via intrinsic phasing algorithm and were refined by
full-matrix least squares on F2 for all data using SHELX [46,47]. All non-hydrogen atoms
in 1 were found from Fourier syntheses of electron density and refined anisotropically.
All hydrogen atoms were placed in calculated positions and refined isotropically in the
“riding” model with U(H)iso = 1.2Ueq of their parent atoms (U(H)iso = 1.5Ueq for methyl
groups).

Crystal data for 1: C54H66InN4O2· 12 C6H14, M = 961.01, Pbca, a = 17.4861(16) Å,
b = 23.472(2) Å, c = 26.342(4) Å, V = 10812(2) Å3, Z = 8, dcalc = 1.181 g/cm3. Green plate
single crystal with dimensions 0.19 × 0.16 × 0.08 mm was selected and intensities of
55,759 reflections were collected (µ = 0.479 mm–1, θmax = 25.03◦). After merging of equiva-
lence reflections and absorption corrections, 9532 independent reflections (Rint = 0.2068)
were used for the structure solution and refinement. Final R factors R1 = 0.0865 [for 3263 re-
flections with F2 > 2σ(F2)], wR2 = 0.2356 (for all reflections), S = 1.011, and largest diff. peak
and hole are 0.52 and −0.38 e/Å3, respectively.

Supplementary Materials: The following materials are available online: crystallographic informa-
tion; IR, ESR, electronic spectroscopy data of compound 1.
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