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Abstract: A hybrid compound 5: (E)-6-hydroxy-2-oxo-2H-chromen-7-yl 3-(4-hydroxy-3-methoxyphenyl)
acrylate composed of (E)-3-(4-hydroxy-3-methoxyphenyl)acrylic acid (ferulic acid) 1 and 6,7-
hydroxycoumarin (esculetin) 3 was prepared in a 61% yield by the esterification reaction of protected
ferulic acid 2a with esculetin 3 in the presence of triethylamine in dichloromethane for 3 h, followed by
deprotection using 3M HCl. The structure of compound 5 was confirmed by 1H, 13C NMR spectroscopy,
mass-spectrometry and elemental analysis.
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1. Introduction

Many coumarin-based derivatives are important structural scaffolds for the synthesis
of potential biologically active compounds with different pharmacological applications [1].
They continue to be designed and synthesized [2] because of their remarkable biological
properties, including anticancer [3], anticonvulsant [4], antimicrobial [5], and antiviral [6]
activities. Coumarins with an intramolecular charge transfer character have also been in-
vestigated for fluorescence sensors [7,8]. Among them, 6,7-dihydroxycoumarin (esculetin)
3 (Figure 1) displayed various biological activities such as anticancer [9,10], free radical
scavenging [11], anti-inflammatory [12], anti-arthritic [13], and hepatoprotective [14]. On
the other hand, (E)-3-(4-hydroxy-3-methoxyphenyl)acrylic acid (ferulic acid) 1 (Figure 1), a
phenolic acid widely present in seeds, vegetables, and fruits, has many pharmacological
effects, including antioxidant [15], anticancer [16], neuroprotective [17], and anti-metabolic
syndrome [18]. It has been widely used in the food, pharmaceutical, and cosmetic indus-
tries. However, there have been no reports on the synthesis of the hybrid compounds
composed of 1 and 3. We report herein the synthesis of a new hybrid compound 5 that
is of potential biological interest, (E)-6-hydroxy-2-oxo-2H-chromen-7-yl 3-(4-hydroxy-3-
methoxyphenyl)acrylate.
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[1]. They continue to be designed and synthesized [2] because of their remarkable biolog-
ical properties, including anticancer [3], anticonvulsant [4], antimicrobial [5], and antiviral 
[6] activities. Coumarins with an intramolecular charge transfer character have also been 
investigated for fluorescence sensors [7,8]. Among them, 6,7-dihydroxycoumarin (es-
culetin) 3 (Figure 1) displayed various biological activities such as anticancer [9,10], free 
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Figure 1. Two biologically active compounds, ferulic acid 1 and esculetin 3. 

2. Results 
The new compound 5 was prepared as shown in Scheme 1. The hydroxy group of 

the starting material 1 was first protected with acetic anhydride and pyridine according 
to the previously reported procedure [19] to give 2, (E)-3-(4-acetoxy-3-methoxyphenyl)- 
acrylic acid. After 2 was activated with oxalyl chloride, including DMF, the resultant 2a 
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Figure 1. Two biologically active compounds, ferulic acid 1 and esculetin 3.

2. Results

The new compound 5 was prepared as shown in Scheme 1. The hydroxy group of
the starting material 1 was first protected with acetic anhydride and pyridine according
to the previously reported procedure [19] to give 2, (E)-3-(4-acetoxy-3-methoxyphenyl)-
acrylic acid. After 2 was activated with oxalyl chloride, including DMF, the resultant 2a
was allowed to react with 3 in dichloromethane at room temperature for 3 h in the presence
of triethylamine to afford an esterified product 4, (E)-6-hydroxy-2-oxo-2H-chromen-7-yl
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3-(4-acetoxy-3-methoxyphenyl)acrylate at a 72% yield. The deprotection of the acetyl group
of 4 was achieved through the use of a 3M HCl solution in acetone at room temperature for
24 h to give a conjugate compound 5 in an 85% yield.
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Scheme 1. Synthesis of the target compound 5.

The 1H NMR spectrum of 4 showed an expected pattern with two sharp singlets at δ
3.82 and 2.24 ppm, which were attributed to methoxy and acetyl protons, respectively, and
two doublets at δ 7.81 and 6.93 ppm (J = 16.0 Hz) due to trans vinyl protons in the ferulic
acid moiety. It also showed two doublets at δ 7.89 and 6.24 ppm (J = 9.5 Hz) due to the cis
vinyl protons of esculetin moiety, and the aromatic protons were shown as two singlets at δ
7.48, 6.86 and three doublets at δ 7.59 (d, J = 1.7 Hz), 7.36 (dd, J = 8.2, 1.7 Hz) and 7.13 ppm
(d, J = 8.2 Hz). A sharp singlet at δ 10.93 of the low field was shown for a hydroxy proton
of esculetin moiety (Supplementary Materials). In the 13C NMR spectrum, compound 4
displayed three peaks δ 168.8, 165.0, 160.7 ppm for the two carbonyls and newly formed
ester carbon, including sixteen peaks for aromatic and vinyl carbons at δ 153.6, 153.2,
151.7, 146.4, 144.5, 141.9, 136.1, 133.3, 123.8, 122.5 (2C), 117.7, 112.9, 112.8, 111.4, 104.0 ppm,
and two peaks for two methyl carbons at δ 56.6, 20.9 ppm. The mass spectrum showed
m/z = 395 (M+ − 1) corresponding to the molecular formula, C21H16O8, and elemental
analysis also provided satisfactory results.

Compound 5 was confirmed by signals δ 10.88 (s, OH, 1H), 9.64 (s, OH, 1H), 7.88 (d, cis
vinyl proton, J = 9.5 Hz, 1H), 7.71 (d, trans vinyl proton, J = 15.9 Hz, 1H), 7.45 (s, 1H), 7.39 (d,
Ar, J = 1.6 Hz, 1H), 7.18 (dd, Ar, J = 8.2, 1.7 Hz, 1H), 6.85 (s, Ar, 1H), 6.79 (d, Ar, J = 8.2 Hz,
1H), 6.69 (d, trans vinyl proton, J = 15.9 Hz, 1H), 6.24 (d, cis vinyl proton, J = 9.5 Hz, 1H),
3.80 (s, OMe, 3H) in the 1H NMR, and signals δ 165.3, 160.7, 153.7, 153.1, 150.3, 148.5,
147.6, 144.5, 136.3, 125.9, 124.1, 122.5, 116.1, 113.6, 112.8, 112.1, 111.3, 104.0, 56.6 in the 13C
NMR spectrum. It showed the absence of signals such as acetyl protons at δ 2.24 ppm
in the 1H NMR and carbonyl carbon of acetyl at δ 168.8 ppm in the 13C NMR spectrum,
compared to the spectra of compound 4. Two singlets due to two hydroxy groups, including
deprotection, were shown at δ 10.88 and 9.64 ppm in the 1H NMR spectrum. The mass
spectrum provided m/z = 353 (M+-1) corresponding to the molecular formula, C19H14O7,
and elemental analysis gave satisfactory results. The preliminary biological test of DPPH’s
free radical scavenging activity [20,21] for 4 and 5 as an antioxidant exhibited SC50 values
of 40.4 and 2.36 µg/mL, respectively, compared to 1 (2.58 µg/mL) and 3 (0.82 µg/mL) with
ascorbic acid (1.65 µg/mL) as the positive control.

In conclusion, a new hybrid compound 5 was effectively prepared at a 61% yield by
the esterification reaction of a protected ferulic acid 2a with esculetin 3 in the presence of
triethylamine in dichloromethane for 3 h, followed by the deprotection of the acetyl group
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using 3M of HCl in acetone. This compound could be useful as a potential material with
various biological activities.

3. Materials and Methods
3.1. General Information

Ferulic acid, esculetin, oxalic chloride, acetic anhydride, triethylamine, 1,1-diphenyl-
2-picryhydrazyl (DPPH), ascorbic acid, and the dry organic solvents were purchased
from Sigma-Aldrich (St. Louis, MO, USA) and TCI (Tokyo, Japan). The melting point
was determined on the Kofler apparatus. Thin-layer chromatography (TLC) was used to
monitor reactions and was performed using aluminum sheets precoated with silica gel 60
(HF254, Merck, Waltham, MA, USA) and visualized with UV radiation (Fisher Scientific,
Waltham, MA, USA). The 1H and 13C NMR spectrum was recorded in deuterated DMSO
with TMS as the standard on a JEOL JNM-ECZ600R 500 FT-NMR (Tokyo, Japan). The
mass spectrum was obtained with AGILENT1100 LCMS (Santa Clara, CA, USA) under
electrospray ionization (ESI) conditions. The absorbance for the compounds was measured
using a SpectraMax Paradigm multi-mode microplate reader (San Jose, CA, USA).

3.2. Synthesis of (E)-6-hydroxy-2-oxo-2H-chromen-7-yl 3-(4-acetoxy-3-methoxyphenyl)acrylate (4)

To a stirred solution of 2 (1.0 g, 4.23 mmol) in dry dichloromethane (20 mL), a few
drops of DMF was added in the form of oxalyl chloride (1.07 g, 8.45 mmol) and stirred at
room temperature for 2 h. After the evaporation of the solution, the mixture was diluted
with dichloromethane (20 mL) and was added with 3 (0.75 g, 4.23 mmol) and triethylamine
(1.19 mL, 8.50 mmol). The resulting solution was stirred at room temperature for 3 h with
monitoring. When the reaction was complete, the mixture was washed with a 0.1M HCl
solution (10 mL) and water (10 mL) and extracted with dichloromethane (2 × 15 mL). The
organic extracts were dried over MgSO4, filtered, and concentrated to dryness. The crude
product was purified by column chromatography (eluent: ethyl acetate/n-hexane = 1/1,
v/v) and recrystallized from ethanol to give a white solid of 4 at a 72% yield (1.20 g).
Mp 212–213 ◦C; TLC Rf = 0.48 (dichloromethane/MeOH = 90/10). 1H NMR (500 MHz,
DMSO-d6) (ppm) δ 10.93 (s, 1H), 7.89 (d, J = 9.5 Hz, 1H), 7.81 (d, J = 16.0 Hz, 1H), 7.59 (d,
J = 1.7 Hz, 1H), 7.48 (s, 1H), 7.36 (dd, J = 8.2, 1.7 Hz, 1H), 7.13 (d, J = 8.2 Hz, 1H), 6.93 (d,
J = 16.0 Hz, 1H), 6.86 (s, 1H), 6.24 (d, J = 9.5 Hz, 1H), 3.81 (s, 3H), 2.24 (s, 3H). 13C NMR
(126 MHz, DMSO-d6) (ppm) δ 168.8, 165.0, 160.7, 153.6, 153.2, 151.7, 146.4, 144.5, 141.9,
136.1, 133.3, 123.8, 122.5 (2C), 116.1, 113.6, 112.8, 112.1, 111.3, 104.0, 56.3. MS (ESI) m/z = 395
(M+ − 1). Anal. calcd. for C21H16O8, %: C, 63.64; H, 4.07. Found, %: C, 63.88; H, 4.20.

3.3. Synthesis of (E)-6-hydroxy-2-oxo-2H-chromen-7-yl 3-(4-hydroxy-3-methoxyphenyl)acrylate (5)

A solution of 4 (1.0 g, 2.82 mmol) in acetone (15 mL) containing 3M HCl (1 mL)
was heated at 60 ◦C while stirring for 24 h. After the reaction was complete, the mix-
ture was added to saturated aqueous sodium bicarbonate (10 mL) and was extracted
with ethyl acetate (2 × 15 mL). The organic extracts were dried over MgSO4, filtered,
and concentrated under reduced pressure. The crude product was purified by column
chromatography (eluent: dichloromethane/MeOH = 95/5, v/v) and recrystallized from
ethanol to give a white solid of 5 at an 85% yield (0.84 g). Mp 232–233 ◦C; TLC Rf = 0.38
(dichloromethane/MeOH = 90/10). 1H NMR (500 MHz, DMSO-d6) (ppm) δ 10.88 (s, 1H),
9.64 (s, 1H), 7.88 (d, J = 9.5 Hz, 1H), 7.71 (d, J = 15.9 Hz, 1H), 7.45 (s, 1H), 7.39 (d, J = 1.6 Hz,
1H), 7.18 (dd, J = 8.2, 1.7 Hz, 1H), 6.85 (s, 1H), 6.79 (d, J = 8.2 Hz, 1H), 6.69 (d, J = 15.9 Hz,
1H), 6.24 (d, J = 9.5 Hz, 1H), 3.80 (s, 3H). 13C NMR (126 MHz, DMSO-d6) (ppm) δ 165.3,
160.7, 153.7, 153.1, 150.3, 148.5, 147.6, 144.5, 136.3, 125.9, 124.1, 122.5, 116.1, 113.6, 112.8,
112.1, 111.3, 104.0, 56.6. MS (ESI) m/z = 353 (M+ − 1). Anal. calcd. for C19H14O7, %: C,
64.41; H, 3.98. Found, %: C, 64.30; H, 4.09.
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3.4. DPPH Radical Scavenging Assay for the Compounds

Each sample was dissolved in methanol at various concentrations ranging from 0 to
100 µg/mL. Then, 50 µL of the sample solution was mixed with 450 µL of a DPPH solution
(400 µM) and incubated for 30 min at 4 ◦C. The absorbance was measured at 517 nm using a
microplate reader (SpectraMax Paradigm). The SC50, which is the minimum concentration
(µg/mL) required scavenging at 50% of the DPPH radicals, was calculated based on the
measured absorbance. Ascorbic acid was used as a positive control.

Supplementary Materials: The following supporting information can be downloaded online.
Figures S1–S6: 1H NMR, 13C NMR, and Mass spectra of compound 4 and 5.
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