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Abstract: By strategic use of the valence difference between hard gold(III) and soft gold(I) catalysts,
one-pot synthesis of (Z)-5-benzylidene-4-phenyl-2-(p-tolyl)-4,5-dihydrooxazole (15) from propar-
gylic alcohol (9) and p-toluamide (13) was achieved via gold(III)-catalyzed propargylic substitution
followed by gold(I)-catalyzed cyclization. The structure of 15 was confirmed by X-ray crystallo-
graphic analysis.
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1. Introduction

Oxazoline and oxazole are frequently found as structural constituents of natural
products and biologically active compounds [1,2] and are also useful as reagents and
intermediates in organic synthesis [3–5]. Therefore, many synthetic methods have been
developed, most of which are based on cyclization to oxazolines 4 or cycloisomeriza-
tion to oxazoles 5 from propargylic amides 3 in the presence of transition metals [6,7] or
other reagents [8,9] (Scheme 1). On the other hand, there are no reports of oxazoline 4
synthesis and only a few reports [10–12] of oxazole 5 synthesis by propargylic substitution-
cyclization/cycloisomerization sequences from propargylic alcohol 1 and amide 2, making
this sequential transformation a challenging task because both propargylic substitution
and subsequent cyclization/cycloisomerizarion should proceed effectively (Scheme 1).
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Scheme 1. Synthesis of oxazoline and oxazole.

So far, oxazoles 5 have been synthesized via propargylic substitution/cycloisomerization
from propargylic alcohols 1 and amides 2 by using a combination of two transition metals
(Cp*RuCl(µ2-SMe)2RuCp*Cl/AuCl3/NH4BF4 [10]) or (Zn(OTf)2/TpRuPPh3(CH3CN)2
PF6 [11]). However, these methods are applicable only to terminal propargylic alcohols 1
(R1 = H), affording oxazoles 5 (R1 = H) with a methyl group at the 5-position. Zhan et al.
reported a one-pot synthesis of oxazoles 5 from propargylic alcohols 1 and amides 2 in the
presence of p-toluenesulfonic acid monohydrate (PTSA) [12]. Although this procedure has
a wide scope for the preparation of oxazoles 5 and is superior to the former two methods in
that it requires only a single kind of catalyst, a stoichiometric amount of PTSA is required
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in the reaction. Thus, the development of an efficient procedure for the construction of
oxazoline 4 and oxazole 5 from propargylic alcohol 1 and amide 2 is still required.

We have developed an efficient synthesis of heterocyclic compounds (cyclic ethers [13]/
piperidines [14]/azepanes [15]) from propargylic alcohols by strategic use of oxophilic
(hard) gold(III) and π-philic (soft) gold(I) catalysts. We also extended this procedure to the
gold-catalyzed intermolecular reaction of propargylic alcohols with carbon nucleophiles, af-
fording cyclic compounds (indenes [16]/dihydropyrans [17]). In addition, we developed a
gold-catalyzed synthesis of substituted oxazoles 8 from 3-trimethylsilylpropargylic alcohols
6 and amides 2 via propargylic substitution followed by cycloisomerization in one pot [18]
(Scheme 2). Activation of the triple bond by the gold catalyst and the β-cation-stabilizing
effect (7-Au) of the silicon atom in the propargylic amide 7 are both important for the
cycloisomerization process.
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We also found that the propargylic substitution reaction proceeds to give propargylic
amide 10 as an intermediate when the silyl group at the terminal position of alkyne in
propargylic alcohol is changed to a phenyl group, but the cyclization/cycloisomerization
process to furnish oxazoline 11/oxazole 12 from propargylic amide 10 does not pro-
ceed. To overcome this problem, we planned to dramatically accelerate the cycliza-
tion/cycloisomerization from propargylic amide 10 through the activation of the triple
bond (10-Au) by a soft gold(I) catalyst [19] (Scheme 3). Here, we present a one-pot syn-
thesis of (Z)-5-benzylidene-4-phenyl-2-(p-tolyl)-4,5-dihydrooxazole (15) from propargylic
alcohol 9 and p-toluamide (13) via a gold(III)-catalyzed propargylic substitution followed
by gold(I)-catalyzed cyclization.
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2. Results and Discussion
2.1. Chemistry

The reaction conditions in the first propargylic substitution reaction of propargylic
alcohol 9 and p-toluamide (13) were those identified in our previous work (5 mol% AuBr3/
15 mol% AgOTf in toluene, reflux, 20 min). For the cyclization of propargylic amide 14,
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we investigated the soft gold(I) catalyst Ph3PAuNTf2 (Scheme 4). Finally, treatment of
propargylic alcohol 9 with p-toluamide (13) in the presence of AuBr3 (5 mol%) and AgOTf
(15 mol%) in toluene at reflux for 20 min afforded propargylic amide 14, and then addition
of Ph3PAuNTf2 (5 mol%) and MS 4A resulted in cyclization to furnish oxazoline 15 in 52%
yield in one pot. The NMR spectroscopic data supported the formation of oxazoline 15,
and the expected structure was confirmed by means of X-ray crystallographic analysis [20].
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2.2. X-ray Structure Analysis

X-Ray analysis for a single crystal of oxazoline 15 grown via slow diffusion of
dichloromethane solvent at room temperature revealed a triclinic crystal structure and a P-1
space group (Table 1, Figure 1A, the Supplementary Material). The torsional angle between
the p-tolyl ring and the oxazoline ring is 0.30o and that between the oxazoline ring and
the phenyl ring is 0.01o, indicating that these three rings are nearly co-planar. The crystal
packing was driven by the combination of the intermolecular π−π stacking interaction
(3.4 Å) (Figure 1, (B) green line) between the tolyl group and two intermolecular CH-π
interactions (2.8 Å) (Figure 1, (B) yellow line) between the methyl group and sp2–carbon of
the carbon–carbon double bond.

Table 1. Summary of the crystallographic data and refinement statistics for 15.

Parameter Data

Identification code C23H19NO

Formula weight 325.29

Temperature/K 293(2)

Crystal system triclinic

Space group P-1

Unit cell dimensions

a/Å 8.0541(4) α/o 81.010(4)

b/Å 9.3301 (5) β/o 89.182(4)

c/Å 11.8454(6) γ/o 72.271(5)

Volume/Å3 836.91(8)

Z 2

ρcalc g/cm3 1.291

µ/mm−1 0.611

F(000) 344.0

Crystal size/mm-1 0.25 × 0.15 × 0.20

Radiation Cu Kα (λ = 1.54184)

2Θ range for data collection/◦ 16.83 to 102.658

Index ranges −8 ≤ h ≤ 8, −9 ≤ k ≤ 9, −5 ≤ l ≤ 11

Reflections collected 1752
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Table 1. Cont.

Parameter Data

Independent reflections 1462 [Rint = 0.0045, Rsigma = 0.0121]

Data/restraints/parameters 1462/0/227

Goodness-of-fit on F2 1.056

Final R indexes [I ≥ 2σ (I)] R1 = 0.0301, wR2 = 0.0781

Final R indexes [all data] R1 = 0.0316, wR2 = 0.0793

Largest diff. peak/hole/e Å−3 0.17/−0.17
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3. Materials and Methods
3.1. General Information

1H and 13C NMR spectra were recorded with a BRUKER AV-300 spectrometer (Bruker,
Billerica, MA, USA) at room temperature, with tetramethylsilane as an internal standard
(CDCl3 solution). Chemical shifts were recorded in ppm, and coupling constants (J) in Hz.
Infrared (IR) spectra were recorded with a Shimadzu IRSpirit-T. Mass spectra (Shimadzu,
Kyoto, Japan) were recorded on JEOL JMS-700 spectrometers (JEOL, Tokyo, Japan). Merck
silica gel 60 (1.09385) and Merck silica gel 60 F254 were used for column chromatography
and thin layer chromatography (TLC), respectively.

3.2. Synthesis of (Z)-5-benzylidene-4-phenyl-2-(p-tolyl)-4,5-dihydrooxazole (15)

AuBr3 (5.3 mg, 0.012 mmol, 5 mol%) and AgOTf (9.4 mg, 0.036 mmol, 15 mol%)
were added at room temperature to a solution of 1,3-diphenylprop-2-yn-1-ol (9) (50 mg,
0.24 mmol) and p-toluamide (13) (33 mg, 0.24 mmol) in toluene (4 mL), and the mixture
was heated at reflux for 20 min. After confirming consumption of the starting alcohol 9
and the production of propargylic amide 14, Ph3PAuNTf2 (19 mg, 0.012 mmol, 5 mol%)
and MS 4A (100 mg) were added at room temperature. The reaction mixture was stirred at
60 oC for 24 h, then filtered, and the filtrate was concentrated in vacuo. The crude product
was subjected to column chromatography on silica gel (hexane:AcOEt = 20:1) to give the
oxazoline 15 (41 mg, 52%).

Mp. 152-153 oC; IR (ATR) 3085, 3061, 3028, 2921, 1695, 1647, 1611, 1493, 1452, 1278, 1179,
1059, 1019 cm-1; 1H-NMR (300 MHz, CDCl3) δ 8.05 (2H, d, J = 8.4 Hz), 7.59 (2H, d, J =8.4 Hz),
7.40-7.29 (9H, m), 7.25-7.18 (1H, m), 5.93 (1H, d, J = 2.4 Hz), 5.52 (1H, d, J = 2.4 Hz), 2.45
(3H, s); 13C-NMR (75 MHz, CDCl3) δ 163.0, 155.5, 142.8, 140.4, 134.8, 129.4, 128.9, 128.5,
128.4, 128.1, 128.0, 127.6, 126.3, 123.6, 102.8, 74.1, 21.7; HRMS (EI) m/z calcd for C23H19NO
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325.1467, found 325.1473. The supporting 1H-NMR, 13C-NMR, IR and mass spectra are
presented in the Supplementary Material Files.

4. Conclusions

By the strategic use of the valence difference between hard gold(III) and soft gold(I) cata-
lysts, we were able to synthesize (Z)-5-benzylidene-4-phenyl-2-(p-tolyl)-4,5-dihydrooxazole
(15) by gold(III)-catalyzed propargylic substitution, followed by gold(I)-catalyzed cyclization
in one pot. We are currently examining the application of this method to the synthesis of
various (Z)-5-benzylidene-4-phenyl-2-(p-tolyl)-4,5-dihydrooxazole derivatives.

Supplementary Materials: The following materials are available online. Figure S1. 1H, 13C-
NMR, IR, HRMS and X-ray data (CCDC-2239857) of (Z)-5-benzylidene-4-phenyl-2-(p-tolyl)-4,5-
dihydrooxazole (15).
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