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Abstract: 3-(5-Phenyl-2H-tetrazol-2-yl)pyridine was synthesized by treating 5-phenyl-1H-tetrazole
with pyridin-3-ylboronic acid under Chan–Evans–Lam coupling conditions. The structure and
identity were confirmed by 1H, 13C-NMR spectroscopy, IR spectroscopy, UV–Vis spectroscopy, high-
resolution mass spectrometry, and TLC. The molecular structure was studied experimentally by
sequential X-ray diffraction analysis and theoretically by DFT B3LYP quantum chemistry calculation.

Keywords: 3-(5-phenyl-2H-tetrazol-2-yl)pyridine; synthesis; molecular structure; X-ray diffraction
analysis; quantum chemistry calculation; NMR spectroscopy; IR spectroscopy; UV–Vis spectroscopy;
mass spectrometry; quantum chemical calculation

1. Introduction

Tetrazoles are the most nitrogen-rich azoles and used as active ingredients in mod-
ern medicines, and as components of energy-saturated systems and functional materi-
als [1]. Tetrazole derivatives are the active ingredients of highly effective drugs circulating
in the modern world pharmaceutical market. For example, these are antihypertensive
drug (losartan), cephalosporin antibiotic (latamoxef), histamine receptor blocker (2 h, 3 h)
(pemiroplast), and analgesic alfentanil (Figure 1) [2].
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Figure 1. Examples of active ingredients of tetrazolyl-containing drugs. 

The manifestations of such different biological activity are associated with the unique 
features of the high-nitrogen tetrazole ring. It is known that the tetrazole cycle is a bioiso-
steric analog of the cis-amide and carboxyl groups, which ensures the high metabolic sta-
bility of tetrazole derivatives [3]. An important property of tetrazoles is the participation 
of “pyrrole-like” (NH group) and “pyridine-like” nitrogen atoms of the ring of types in 
the formation of multiple hydrogen bonds with the molecular structures of active sites of 
biological targets [2,4]. 

As follows from the above formulas, the active ingredients of most tetrazole-contain-
ing drugs are often “hybrid” heterocyclic systems containing, in addition to the tetrazole, 
at least one more heterocyclic fragment connected to the tetrazole ring by a bridge group 
(linker), sometimes having a rather complex structure. There is much less information 
about “hybrid” heterocyclic systems, in which the tetrazole ring and the “other” hetero-
cyclic fragment are connected by a simple covalent bond. At the same time, it is precisely 
for such “hybrid” heterocyclic systems that multitarget biological activity should be ex-
pected. 

Here, we preliminarily analyzed the data of computer prediction of the biological 
activity of 3-(5-phenyl-2H-tetrazol-2-yl)pyridine 1, obtained using the PASS complex (Pre-
diction of Activity Spectra for Substances), where Pa is the probability of presence, and Pi 
is the absence of a type of biological activity [5]. As follows from the data, 3-(5-phenyl-2H-
tetrazol-2-yl)pyridine 1 can exhibit multitarget biological activity with a probability close 
to 80% as analgesic and neoioid (Pa = 0.795; Pi = 0.005), glycosylphosphatidylinositol 
inhibitor of phospholipase D (Pa = 0.788; Pi = 0.015), antagonist of nicotine receptors alpha-
6-beta-3-beta-4-alpha-5 (Pa = 0.747; Pi = 0.022), and nicotine receptor antagonist alpha-2-
beta-2 (Pa = 0.742; Pi = 0.019). The data obtained allow us to speak about the feasibility of 
synthesizing compound 1 and study its structural parameters, followed by studying the 
biological activity. 

In order to conduct experimental testing of the biological activity of compound 1, it 
is necessary to develop an efficient and safe method for its synthesis based on direct he-
tarylation of available 5-phenyl-1H-tetrazole. 

Generally, direct arylation and hetarylation of 5R-tetrazoles are significantly hin-
dered due to the low mobility of the halogen in the arylation (hetarylation) reagent to 
nucleophilic substitution. Other adverse factors should also be taken into account. For 
example, the low selectivity of the process due to the regioisomeric nature of N-aryl de-
rivatives of 5R-tetrazoles. Often, direct hetarylation of 5R-tetrazoles with hetaryl halides 
is complicated by side processes due to the thermal lability of the intermediates. For ex-
ample, when trying to synthesize 4,6-dimethyl-2-(5-phenyl-2H-tetrazol-2-yl)pyrimidine 
by direct hetarylation of the sodium salt of 5-phenyl-1H-tetrazole with 2-chloro-4,6-dime-
thylpyrimidine, 5,7-dimethyl-3-phenyl-[1,2,4]triazolo[4,3-a]pyrimidine was obtained in-
stead of unannelated tetrazolylpyrimidine. A possible reason for the observed phenome-
non is the thermolytic recycling of the intermediate 6-dimethyl-2-(5-phenyl-2H-tetrazol-
2-yl)pyrimidine, accompanied by the elimination of the N2 molecule and the formation of 
annelated triazolylpyrimidine (Scheme 1) [6]. 

Figure 1. Examples of active ingredients of tetrazolyl-containing drugs.

The manifestations of such different biological activity are associated with the unique
features of the high-nitrogen tetrazole ring. It is known that the tetrazole cycle is a bioisos-
teric analog of the cis-amide and carboxyl groups, which ensures the high metabolic
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stability of tetrazole derivatives [3]. An important property of tetrazoles is the participation
of “pyrrole-like” (NH group) and “pyridine-like” nitrogen atoms of the ring of types in
the formation of multiple hydrogen bonds with the molecular structures of active sites of
biological targets [2,4].

As follows from the above formulas, the active ingredients of most tetrazole-containing
drugs are often “hybrid” heterocyclic systems containing, in addition to the tetrazole, at
least one more heterocyclic fragment connected to the tetrazole ring by a bridge group
(linker), sometimes having a rather complex structure. There is much less information about
“hybrid” heterocyclic systems, in which the tetrazole ring and the “other” heterocyclic
fragment are connected by a simple covalent bond. At the same time, it is precisely for such
“hybrid” heterocyclic systems that multitarget biological activity should be expected.

Here, we preliminarily analyzed the data of computer prediction of the biological
activity of 3-(5-phenyl-2H-tetrazol-2-yl)pyridine 1, obtained using the PASS complex (Pre-
diction of Activity Spectra for Substances), where Pa is the probability of presence, and
Pi is the absence of a type of biological activity [5]. As follows from the data, 3-(5-phenyl-
2H-tetrazol-2-yl)pyridine 1 can exhibit multitarget biological activity with a probability
close to 80% as analgesic and neoioid (Pa = 0.795; Pi = 0.005), glycosylphosphatidylinosi-
tol inhibitor of phospholipase D (Pa = 0.788; Pi = 0.015), antagonist of nicotine receptors
alpha-6-beta-3-beta-4-alpha-5 (Pa = 0.747; Pi = 0.022), and nicotine receptor antagonist
alpha-2-beta-2 (Pa = 0.742; Pi = 0.019). The data obtained allow us to speak about the
feasibility of synthesizing compound 1 and study its structural parameters, followed by
studying the biological activity.

In order to conduct experimental testing of the biological activity of compound 1,
it is necessary to develop an efficient and safe method for its synthesis based on direct
hetarylation of available 5-phenyl-1H-tetrazole.

Generally, direct arylation and hetarylation of 5R-tetrazoles are significantly hindered
due to the low mobility of the halogen in the arylation (hetarylation) reagent to nucleophilic
substitution. Other adverse factors should also be taken into account. For example, the
low selectivity of the process due to the regioisomeric nature of N-aryl derivatives of
5R-tetrazoles. Often, direct hetarylation of 5R-tetrazoles with hetaryl halides is complicated
by side processes due to the thermal lability of the intermediates. For example, when trying
to synthesize 4,6-dimethyl-2-(5-phenyl-2H-tetrazol-2-yl)pyrimidine by direct hetarylation
of the sodium salt of 5-phenyl-1H-tetrazole with 2-chloro-4,6-dimethylpyrimidine, 5,7-
dimethyl-3-phenyl-[1,2,4]triazolo[4,3-a]pyrimidine was obtained instead of unannelated
tetrazolylpyrimidine. A possible reason for the observed phenomenon is the thermolytic
recycling of the intermediate 6-dimethyl-2-(5-phenyl-2H-tetrazol-2-yl)pyrimidine, accom-
panied by the elimination of the N2 molecule and the formation of annelated triazolylpyrim-
idine (Scheme 1) [6].
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necessary to use reagents that are inaccessible and, in some cases, dangerous to handle. 
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series—3-(5-phenyl-2H-tetrazol-2-yl)pyridine 1, published in [8]. The final stage of the 
multistage synthesis of compound 1 is shown below (Scheme 2). 
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reaction of the pyridine-3-diazonium salt on N’-benzylidenebenzenesulfonylhydrazide. 
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of a practically acceptable method due to the peculiarities of the synthesis and the complex 
handling of these arylizing agents [9]. We suggested that the most promising alternative 
to direct hetarylation of 5R-tetrazoles could be Chan–Evans–Lam cross-coupling, which 
is analogous to O- and N-arylation of nitrogenous bases (nucleophiles) with hetery-
lboronic acids [10–12]. Arylation of various N-nucleophiles under the conditions of Chan–
Evans–Lam cross-coupling has recently attracted increasing attention of researchers due 
to its high selectivity and relatively mild reaction conditions [13–17]. Successful examples 
of selective N2-arylation [18] and N2-vinylation of 5R-tetrazoles under Chan–Evans–Lam 
cross-coupling conditions turned out to be the most useful for this work [19]. The results 
obtained by Han et al. [20], which we chose as prototypes to achieve the goal of the work, 
had the greatest influence on our choice. 

The aim of this work is the synthesis of 3-(5-phenyl-2H-tetrazol-2-yl)pyridine 1 using 
copper-catalyzed aerobic oxidative coupling of 5-phenyl-1H-tetrazole with pyridine-3-
ylboronic acid. 

2. Results and Discussion 
2.1. Synthesis of 3-(5-phenyl-2H-tetrazol-2-yl)pyridine 1 

We implemented Cu-catalyzed coupling of 5-phenyl-1H-tetrazole 2 with pyridine-3-
ylboronic acid 3 under the conditions recommended in [20] and obtained 3-(5-phenyl-2H-
tetrazol-2-yl)pyridine 1 in 87% yield (Scheme 3). 

Scheme 1. Synthesis of 5,7-dimethyl-3-phenyl-[1,2,4]triazolo[4,3-a]pyrimidine by hetarylation of the
5-phenyl-1H-tetrazole sodium salt with 2-chloro-4,6-dimethylpyrimidine.

Classical methods for the synthesis of 2,5-diaryltetrazoles are based on the reactions
of arylidenearylsulfonylhydrazides with diazonium salts [7]. It is highly inexpedient to
extend this method to the synthesis of 2-hetaryltetrazoles, since for this purpose it will be
necessary to use reagents that are inaccessible and, in some cases, dangerous to handle.
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An illustrative example is the synthesis of a representative of the 2-heteryl-5R-tetrazole
series—3-(5-phenyl-2H-tetrazol-2-yl)pyridine 1, published in [8]. The final stage of the
multistage synthesis of compound 1 is shown below (Scheme 2).
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Scheme 2. The final step in the synthesis of 3-(5-phenyl-2H-tetrazol-2-yl)pyridine 1 based on the
reaction of the pyridine-3-diazonium salt on N′-benzylidenebenzenesulfonylhydrazide.

N2-Arylation of 5R-tetrazoles with diaryliodonium salts also cannot claim the status
of a practically acceptable method due to the peculiarities of the synthesis and the complex
handling of these arylizing agents [9]. We suggested that the most promising alternative to
direct hetarylation of 5R-tetrazoles could be Chan–Evans–Lam cross-coupling, which is
analogous to O- and N-arylation of nitrogenous bases (nucleophiles) with heterylboronic
acids [10–12]. Arylation of various N-nucleophiles under the conditions of Chan–Evans–
Lam cross-coupling has recently attracted increasing attention of researchers due to its
high selectivity and relatively mild reaction conditions [13–17]. Successful examples of
selective N2-arylation [18] and N2-vinylation of 5R-tetrazoles under Chan–Evans–Lam
cross-coupling conditions turned out to be the most useful for this work [19]. The results
obtained by Han et al. [20], which we chose as prototypes to achieve the goal of the work,
had the greatest influence on our choice.

The aim of this work is the synthesis of 3-(5-phenyl-2H-tetrazol-2-yl)pyridine 1 using
copper-catalyzed aerobic oxidative coupling of 5-phenyl-1H-tetrazole with pyridine-3-
ylboronic acid.

2. Results and Discussion
2.1. Synthesis of 3-(5-Phenyl-2H-tetrazol-2-yl)pyridine 1

We implemented Cu-catalyzed coupling of 5-phenyl-1H-tetrazole 2 with pyridine-3-
ylboronic acid 3 under the conditions recommended in [20] and obtained 3-(5-phenyl-2H-
tetrazol-2-yl)pyridine 1 in 87% yield (Scheme 3).
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Scheme 3. Synthesis of 3-(5-phenyl-2H-tetrazol-2-yl)pyridine 1 by hetarylation of 5-phenyl-1H-
tetrazole 2 with pyridine-3-ylboronic acid 3 in DMSO.

We consider that this method for the synthesis of 3-(5-phenyl-2H-tetrazol-2-yl)pyridine 1
is characterized by the availability and safety of reagents, a smaller number of stages com-
pared to the method described in [8]. We further described in detail a sample of previously
inaccessible 3-(5-phenyl-2H-tetrazol-2-yl)pyridine 1, using the instrumental and theoretical
methods of investigation.
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Samples of 3-(5-phenyl-2H-tetrazol-2-yl)pyridine 1 will be further transferred for
experimental testing of biological activity in accordance with computer prediction data
given above.

2.2. Differential Scanning Calorimetry (DSC)

After purification of a sample of compound 1 by column chromatography and addi-
tional crystallization (benzene/octan 1:1), we obtained melting points that differ markedly
from each other. The melting point value obtained in the capillary is 125–126 ◦C, using the
Kofler table—122–123 ◦C. The highest value of the melting point is 128–129 ◦C, indicated
in the article [8]. To obtain objective information on the melting point of 3-(5-phenyl-2H-
tetrazol-2-yl)pyridine 1, we used differential scanning calorimetry data. The method makes
it possible to record with high accuracy the thermal effects that occur during slow (1◦/min)
heating of a small sample of a substance (up to 2 mg), which makes it possible to accurately
fix the onset of melting. The melting point was determined to be 120.3 ± 0.2 ◦C (Figure 2).
Such a difference in the obtained value of the melting temperature can be due to the min-
imization of the heating inertia of a small sample of the substance with effective control
of the heating rate. The specific heat of fusion determined from the DSC thermograms is
119 ± 2 J/g.
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Figure 2. DSC thermogram of 3-(5-phenyl-2H-tetrazol-2-yl)pyridine 1.

A peculiarity of the thermal decomposition of 2,5-disubstituted tetrazoles is the ease
of elimination of N2, leading to the formation of nitrilimines in various structures [21–23].
This is the reason for the low thermal stability of 3-(5-phenyl-2H-tetrazol-2-yl)pyridine 1.
After passing into the melt, it undergoes thermal degradation at 142.5 ◦C, which is recorded
in the DSC thermograms as an exo peak.

2.3. X-ray Diffraction Analysis and Quantum Chemistry Calculation

The spatial structure of 3-(5-phenyl-2H-tetrazol-2-yl)pyridine 1 was recorded in solid
state. The structure is shown in Figure 3.



Molbank 2023, 2023, M1598 5 of 12

Molbank 2023, 2023, x FOR PEER REVIEW 5 of 13 
 

 
Figure 2. DSC thermogram of 3-(5-phenyl-2H-tetrazol-2-yl)pyridine 1. 

2.3. X-ray diffraction Analysis and Quantum Chemistry Calculation 
The spatial structure of 3-(5-phenyl-2H-tetrazol-2-yl)pyridine 1 was recorded in solid 

state. The structure is shown in Figure 3. 

 

(a) 

 

(b) 

Figure 3. Structure of compound 1 obtained from X-ray diffraction analysis: (a) front view; (b) side 
view. 

Figure 3. Structure of compound 1 obtained from X-ray diffraction analysis: (a) front view; (b) side view.

The crystal data for compound 1 are presented in Table 1.

Table 1. Crystal data and structure refinement parameters for 3-(5-phenyl-2H-tetrazol-2-yl)pyridine 1.

Crystal Data Structure Refinement Parameters

CCDC number 2,237,254
Empirical formula C12H9N5

Molecular mass 223.24
Temperature, K 100(2)
Crystal system monoclinic

Space group I2/a
a, Å 20.8450(9)
b, Å 4.6353(2)
c, Å 22.7163(11)
α, ◦ 90
β, ◦ 107.329(5)
γ, ◦ 90

Volume, Å3 2095.29(17)
Z 8

ρcalc, g/cm3 1.415
µ, mm−1 0.744

F (000) 928.0
Crystal size/mm3 0.12 × 0.04 × 0.02

Radiation Cu Kα (λ = 1.54184)
2Θ range for data collection/◦ 8.154 to 138.37

Index ranges −25 ≤ h ≤ 25, −5 ≤ k ≤ 3, −27 ≤ l ≤ 27
Reflections collected 7480

Independent reflections 1949 [Rint = 0.0263, Rsigma = 0.0262]
Data/restraints/parameters 1949/0/154

Goodness-of-fit on F2 1.064
Final R indices [I ≥ 2σ (I)] R1 = 0.0386, wR2 = 0.0966
Final R indices [all data] R1 = 0.0433, wR2 = 0.0996

Largest diff. peak/hole/e Å−3 0.17/−0.18
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The molecular structure of 3-(5-phenyl-2H-tetrazol-2-yl)pyridine 1 obtained by X-ray
analysis with the numbering of atoms is given in Figure 4.
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Obviously, two different rotamers, which were formed by the rotation of the pyridine
heterocycle through the N2-C4 bond, are possible for compound 1 (Figure 5).
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Energies (E) and dipole moments (µ) of different rotamers of 3-(5-phenyl-2H-tetrazol-
2-yl)pyridine 1 are shown in Table 2.

Table 2. Energies (E) and dipole moments (µ) of different rotamers of 3-(5-phenyl-2H-tetrazol-2-yl)pyridine
1 calculated by means of DFT B3LYP method in the gas phase and ethanol (IEFPCM model).

Rotamer

Basis Set and Solvation Model

6-311+G(d,p), Gas Phase aug-cc-pVQZ, Gas Phase 6-311+G(d,p), Ethanol

E, au µ, D E, au µ, D E, au

1a −736.38507 0.34 −736.71644 0.33 −736.39514
1b −736.38479 3.83 −736.71618 3.68 −736.39508

∆E *. kcal/mol 0.17 0.16 0.04

* Energy of rotamer 1a is equal to 0.

As can be seen in Table 3, according to the X-ray data, this compound has a structure
close to planar, and the torsion angle between the phenyl substituent and tetrazole cycle
is about 180 degrees, whereas the angle between the planes of the tetrazole and pyridine
heterocycles is about 11 degrees.

In the second case, we can assume that the conjugation between the fragments is some-
what weaker because of the somewhat lower aromaticity of the heterocycles compared to
that of the benzene cycle. According to the quantum chemical calculation, the absolute
planar conjugated structure of the compound is observed. The geometrical parameters
given in Table 3 are in good correspondence with the known data for 2,5-disubstituted
2H-tetrazoles [24,25]. The values of bond lengths and valence angles determined experi-
mentally in the crystal and calculated theoretically are generally in good agreement with
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each other. A slightly better accordance is observed for the case when the influence of
the polar solvent is taken into account. At the same time, calculations in the basis set
aug-cc-pVQZ do not improve the agreement.

Table 3. Selected geometrical parameters of most preferable rotamer 3-(5-phenyl-2H-tetrazol-2-
yl)pyridine 1a obtained by X-ray analysis and calculated by DFT B3LYP method at different basis sets
in the gas phase and ethanol (IEFPCM model).

Parameter X-ray, exp.
DFT B3LYP, Calculated

6-311+G(d,p)
Gas Phase

6-311+G(d,p)
Ethanol

aug-cc-pVQZ
Gas Phase

Bond lengths,
angstroms

N1–C1 1.344 1.336 1.338 1.332
C5–N1 1.336 1.333 1.335 1.329
N2–C4 1.424 1.421 1.423 1.417
N2–N3 1.337 1.337 1.333 1.331
N3–N4 1.315 1.299 1.303 1.296
N4–C6 1.363 1.366 1.365 1.362
C6–N5 1.331 1.331 1.331 1.327
N5–N2 1.337 1.332 1.331 1.328
C7–C6 1.461 1.465 1.466 1.462

Bond angles,
degrees

N2–C4–C5 119.5 120.0 119.8 120.1
C3–C4–N2 120.4 120.3 120.4 120.3
N3–N2–C4 122.7 123.0 123.1 120.0

Torsion angles,
degrees

C8–C7–C6–N5 0 0 0 0
N3–N2–C4–C3 11.7 0 0 0

2.4. UV–Vis Spectroscopy

UV–Vis absorption spectrum of 3-(5-phenyl-2H-tetrazol-2-yl)pyridine 1 in ethanol
was recorded experimentally (Figure S5, Supplementary Materials) and also calculated
by means of TD-SCF approach using DFT and B3LYP functional at 6-311+G(dp) level in
ethanol (IEFPCM model). According to the experimental results obtained, the spectrum
contains three main bands λmax., nm (εmax., l mol−1 cm−1): 274 (23,600); 236 (26,200), and
202 (about 40,000), and the long-wave band exhibits a clear vibrational structure. The results
of quantum-chemical calculations for rotamer 1a agree satisfactorily with the experimental
data. Thus, the absorption bands for 1a include several singlet electronic transitions, among
the major ones are the following, λ, nm (f): 302 (0.46); 260 (0.06); 256 (0.37); 238 (0.1);
223(0.02); 216 (0.21); 210 (0.17); and 195 (0.37).

2.5. Mass-Spectrometry

In order to confirm the structure of the synthesized compound and study the pathways
of mass spectrometric fragmentation, high-resolution mass spectra in full scan mode and
tandem spectra using electrospray mass spectroscopy (ESI–MS) in positive mode were
obtained. Due to the presence of N atoms in the structure, the experimental compound can
be protonated easily. Despite this, in the spectrum recorded in full scan regime, the signal
with m/z 224.09325, which corresponds to [M + H]+ with error 0.8 ppm, was recorded
with relative abundance of only 10% (Table 4, Scheme 4). We can assume that the capillary
temperature of 150 ◦C causes fragmentation of the protonated molecule of the studied
compound already in the source. The most intensive signal in full scan spectrum was m/z
196.08716. The best possible molecular formula for this ion was C12H10N3

+ (error 1.2 ppm),
which could be attributed to the structure [M + H–N2]+. The same pattern was noted by
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Fraser and Haque for 2-methyl-5-phenyl-2H-tetrazole, which involved loss of nitrogen
from the weak molecular ion to give the base peak [26], but further fragmentation was
different. In our study, structure [M + H–N2]+ remained quite stable due to the conjugated
structure. Further fragmentation of this ion with the elimination of the second nitrogen
molecule was observed in tandem analysis (CID mode, applied fragmentation energy 35%),
the most intense signal with m/z 168.08091 corresponds to the formula C12H10N+ (error
0.8 ppm). Similar mass-fragmentation was mentioned by Shurukhin and colleagues in
the case of the 5-aryl(heteroaryl)tetrazoles elimination of two molecules of N2 from the
molecular ion [27]. In addition, in the tandem spectrum, a signal with m/z 141.0699 of low
intensity was noted, corresponding to the C11H9

+ structure with an error of 0.2 ppm, which
could be formed after the detachment of the HCN molecule from the pyridine ring.
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Table 4. ESI–MSn data (relative abundance, %).

MSn Precursor Ions Fragments Accurate
Mass (Intensity, %)

Best Possible Ion
Formulae Error in ppm Possible Structure

MS1 – 224.09325 (10) C12H10N5
+ 0.795 [M + H]+

MS1 – 196.08716 (100) C12H10N3
+ 1.204 [M + H–N2]+

MS2 196.08716 168.08091 (100) C12H10N+ 0.798 [M + H–2N2]+

MS2 196.08716 141.0699 (2) C11H9
+ 0.164 [M + H–2N2–HCN]+

2.6. NMR Spectroscopy
1H and 13C-NMR spectroscopy was used to identify 3-(5-phenyl-2H-tetrazol-2-yl)-

pyridine 1 (Figures S1 and S2). According to the 1H-NMR spectrum, one can unambigu-
ously identify the signals of protons with δ 9.37, 8.83, 8.57, and 7.78–7.74 ppm as pyridine
ring protons; proton signals with δ 8.22–8.16 and 7.68–7.57 ppm belong to the phenyl group.

It is known that the chemical shift of the carbon of the 2,5-disubstituted and 1,5-disubstituted
tetrazole ring differs by about 10 ppm. For example, for 1-methyl-5-phenyltetrazole δ = 154.2 ppm,
and for 2-methyl-5-phenyltetrazole δ = 164.25 ppm [1]. The obtained data of the chemical shift of
the carbon of compound 1 (δ = 164.85 ppm) unambiguously show the formation of the N2-isomer,
which indicates the selectivity of the reaction. The formation of the N2-isomer is also confirmed
by X-ray diffraction analysis.

3. Materials and Methods
3.1. Synthesis of 3-(5-Phenyl-2H-tetrazol-2-yl)-pyridine 1

The commercial samples of 5-phenyl-1H-tetrazole (CAS 18039-42-4, Acros Organics)
and pyridin-3-ylboronic acid (CAS 1692-25-7, Boron molecular) were used.

To a solution of 0.297 g (2.03 mmol) of 5-phenyl-1H-tetrazole 2 in 12 mL of dry DMSO
0.5 g (4.07 mmol) of pyridin-3-ylboronic acid 3, 0.05 g (5% mol.) of Cu2O and 0.7 g of 4 Å
molecular sieves (4 Å MS) were added. Then, oxygen gas was bubbled through the obtained
suspension. The reaction mixture was stirred for 15 h at 100 ◦C using calcium chloride tube
to prevent access of air moisture. After cooling to room temperature, a suspension was
filtered, and the obtained filtrate was diluted with 50 mL of water and extracted with ethyl
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acetate (3 × 15 mL). The organic layers were combined and dried over anhydrous Na2SO4,
filtered, and evaporated. The residue was purified by column chromatography on silica
gel (petroleum ether/ethyl acetate = 4/1) to afford the corresponding coupled product
(1.77 mmol, 0.395 g, 87%) as a colorless crystal, mp: 125–126 ◦C. 1H-NMR (400 MHz,
DMSO-d6) δ, ppm: 9.37 (d, J = 2.6 Hz, 1H), 8.83 (dd, J = 4.8, 1.5 Hz, 1H), 8.57 (ddd, J = 8.3,
2.7, 1.5 Hz, 1H), 8.22–8.16 (m, 2H), 7.78–7.74 (dd, J = 8.3, 4.8 Hz, 1H), and 7.68–7.57 (m, 3H).
13C-NMR spectrum (101 MHz, DMSO-d6) δ, ppm: 164.85, 151.09, 141.09, 131.17, 129.43,
128.00, 126.75, and 124.87. ESI-MS: Calcd. for [C12H9N5 + H]+: 224.09361, Found: 224.09325.
FT–IR (KBr, cm−1): 3442, 3074 (C–H, ν), 2924 (C–H, ν), 2853 (C–H, ν), 1583 (C–C, ν), 1530
(C–C, ν), 1484 (C–C, ν), 1450 (C–C, ν), 1286, 1216, 1194, 1021, 1009, 991, 814, 791, 733, 693,
681, and 615.

3.2. Materials and Equipment
3.2.1. Mass-Spectrometry

The target compound was identified by high-performance liquid chromatography–
high-resolution mass spectrometry (HPLC–MS–HR) using a Prominence LC–20 HPLC
system (Shimadzu, Duisburg, Germany) in combination with an LTQ Orbitrap XL mass
spectrometer (Thermo Fisher Scientific, San Jose, CA, USA). A Luna Omega C18 reverse
phase column (100 × 2.1 mm, 3 µm, Phenomenex, Torrance, CA, USA) was used in the
gradient elution mode at a flow rate of 0.3 mL/min with a mixture of water and acetonitrile.
Mass spectrometric analysis was performed under electrospray ionization conditions in
the positive ion detection mode. Ion mass scanning range was m/z 70–250. Capillary
temperature was 150 ◦C. The target compound was identified based on accurate ion mass
measurements with a resolution of 30.000 and accuracy within 5 ppm. Fragment spectra
were obtained in a linear ion trap, the collision energy was 35% in the CID mode (Collision
Initiated Dissociation).

3.2.2. Differential Scanning Calorimetry (DSC)

Differential scanning calorimetry (DSC) was performed using a Shimadzu DSC-60
Plus differential scanning calorimeter (Kyoto, Japan). The analysis was carried out in N2
atmosphere (flow rate 100 mL/min) with samples of approximately 2.8 mg at a scanning
speed of 3, 10, 20, and 30 ◦C/min in the temperature range from 273 to 573 K. Data
processing was carried out using the ShimadzuCorporation©ta60 Version 2.21.

3.2.3. X-ray Diffraction Analysis

A suitable crystal was studied using Rigaku «XtaLAB Synergy-S» diffractometer
(monochromated Cu Kα radiation, λ = 1.54184 Å). The temperature was kept at 100 K
throughout the experiment. Empirical absorption correction was applied in CrysAlisPro
(Agilent Technologies, 2014) program complex using spherical harmonics, implemented in
SCALE3 ABSPACK scaling algorithm. The structures were solved by SHELXT [28] program,
using least squares minimization in anisotropic (for non-hydrogen atoms) approximation
and refined with the SHELXL package [29] incorporated in the Olex2 program package [30].
The hydrogen atoms were introduced to the geometrically calculated positions and refined
by attaching themselves to the corresponding parent atoms.

Supplementary crystallographic data for this paper have been deposited at Cambridge
Crystallographic Data Centre (CCDC 2237254) and can be obtained free of charge via
www.ccdc.cam.ac.uk/data_request/cif, accessed on 8 February 2023.

3.2.4. NMR Spectroscopy

The solution 1H, 13C-NMR spectra were recorded on a Bruker Avance III 400 MHz
spectrometer in DMSO-d6.

www.ccdc.cam.ac.uk/data_request/cif
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3.2.5. IR Spectroscopy

Spectra were registered using Infrared Fourier spectrometer Shimadzu IRAffinity-1
in KBr and attenuated total reflectance (ATR) accessory, model Quest Single Reflection
(SPECAC).

3.2.6. UV–Vis Spectroscopy

UV-Spectra were registered using UV–Vis spectrometer Shimadzu 2401 in ethanol.

3.2.7. Quantum Chemistry Calculation

All calculations were performed using density functional theory (DFT) approach and
B3LYP as functional using the Gaussian16 software package [31]. Molecules visualization
was carried out in GaussView 6.0 [32]. Geometry optimization, and energy and frequency
calculations were calculated using 6-311+G(d,p) and aug-cc-pVQZ as basis sets and IEFPCM
model (ethanol, ε = 24.852) model to take into account indirect impact of a solvent. All
stationary points were proved to be minima by frequency calculations at the same level.
Zero-point and thermal corrections (T = 298.15 K) to total energy have been made in the
case of B3LYP/6-311+G(d,p).

4. Conclusions

As a result of Chan–Evans–Lam cross-coupling of 5-phenyl-1H-tetrazole and pyridine-
3-ylboronic acid, 3-(5-phenyl-2H-tetrazol-2-yl)pyridine 1 was obtained in 87% yield. The
structure and identity of compound 1 were confirmed by precision instrumental methods,
including X-Ray analysis, 1H, 13C-NMR spectroscopy, high-resolution mass spectrometry,
IR spectroscopy, UV–Vis spectroscopy, and differential scanning calorimetry. X-ray diffrac-
tion analysis and UV–Vis spectroscopy data are compared with the results of ab initio
quantum-chemical calculations. It is assumed that in the gas phase and ethanol solution,
compound 1, in contrast to the crystal, may exist as two rotamers 1a, 1b. Rotamer 1a, which
has lower energy, predominates. In the near future, we plan to investigate the in vitro and
in vivo multitarget activity of 3-(5-phenyl-2H-tetrazol-2-yl)pyridine 1 in accordance with
computer prediction data.

Supplementary Materials: The following supporting information can be downloaded online, Figure S1:
1H-NMR spectrum of 3-(5-phenyl-2H-tetrazol-2-yl)-pyridine in DMSO-d6; Figure S2: 13C-NMR spectrum
of 3-(5-phenyl-2H-tetrazol-2-yl)-pyridine in DMSO-d6; Figure S3: IR spectrum of 3-(5-phenyl-2H-tetrazol-
2-yl)-pyridine (in KBr); Figure S4: DSC thermogram of 3-(5-phenyl-2H-tetrazol-2-yl)pyridine; Figure S5:
UV–Vis absorption spectrum of 3-(5-phenyl-2H-tetrazol-2-yl)pyridine.
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