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Abstract: Recent literature on this topic highlights the significance of adding malononitrile moiety and
halogen substituents to the squaraine scaffold to create redshifted fluorophores into the near-infrared
optical region. Herein, a redshifted hydrophobic squaraine dye is synthesized via a three-step
pathway. The reported dye is characterized by spectroscopic techniques, such as 1H NMR, 19F
NMR, 13C NMR, and high-resolution mass spectroscopy. Optical properties are also reported using
absorbance and fluorescence studies. The hydrophobicity of the dye was studied with absorbance
and fluorescence spectroscopy in water–methanol mixtures and showed J-aggregates as the water
concentration increased. Density functional theory calculations were conducted to assess its electron
delocalization as well as observe the three-dimensional geometry of the dye as a result of the
dicyanomethylene modification and the two bulky phenyl groups.

Keywords: hydrophobicity; squaraine; near-infrared; fluorescence; fluorine; dicyanomethylene

1. Introduction

Near-infrared squaraine dyes are further being analyzed for their applications as
fluorophores being applied to the field of bioimaging [1–5]. Squaraine dyes have been
known for having a high molar absorptivity and quantum yield, which is crucial for bright
near-infrared fluorophores, but poor/medium stability has been reported as the most
notable drawback of squaraine dyes [6]. This poor stability is attributed to the photo-
isomerization between cis and trans configurations that squaraine fluorophores typically
undergo [7]. For this reason, it is critical to consider exploring different substituents on the
squaraine scaffold to improve its capabilities as a fluorescent agent. It has been reported that
the addition of dicyanomethylene to the central squarate has reported increased wavelength
absorbance maxima compared to the typical squaraine scaffold [1,8–11]. The addition of
this moiety causes a locked cis configuration of the dye resulting in an improvement in
the dye’s stability. The introduction of halogens to the squaraine scaffold has redshifted
fluorophores, which is a significant optical effect when determining contrast agents for
bioimaging in the NIR region [4,12–15]. To further redshift squaraine dyes, researchers
have been modifying the squaraine core with different moieties to observe the optical
effects of the given changes.

Along with the chemical properties described, researchers are considering the dif-
ferent types of applications that squaraine dyes have the potential for based on their
substituents [14]. It is essential to consider the different optical effects that can be seen by
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introducing hydrophobic substituents added to the squaraine scaffold. Optical studies of
hydrophobic NIR dyes have been performed to observe the blueshift in dyes placed in a
polar solvent [16]. However, the introduction of certain globular proteins [17,18] can com-
bat this behavior as hydrophobic pockets of the proteins can interact with the fluorophore,
improve fluorescence intensity, and demonstrate redshifts in optical data.

Herein, we report the synthesis of a fluorinated squaraine dye with a dicyanomethy-
lene moiety in the squaraine core. The fluorine atoms are expected to improve the com-
pound chemical property while introducing the electron-withdrawing effects experienced
by known halogenated dyes [13,15,19]. The phenylpropyl groups will retain the hy-
drophobicity [16,20] of the fluorophore, and the dicyanomethylene will generate some
chemical stability.

2. Results and Discussion
2.1. Synthesis

The synthesis of dye 5 is achieved through a three-step pathway detailed in Scheme 1.
This pathway begins with the synthesis of the modified squaraine linker 2 accomplished
from the reaction of substituted linker 1 with malononitrile under basic conditions in
toluene for 1 h, as reported by the Würthner group [12]. In another step, fluorinated hetero-
cycle 3 reacts with (3-bromopropyl) benzene in reflux overnight to produce heterocyclic
salt 4 [15]. Compound 4 then reacts with squaraine linker 2 in the last step to generate final
product 5 in good yield [6]. After the successful synthesis of dye 5, the purity of the com-
pound was studied with 1H, 13C, and 19F spectra and high-resolution mass spectrometry
(Figures S1–S4, Supplementary Materials).
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Scheme 1. Synthetic preparation of squaraine dye 5.

The chemical structure of compound 5, as seen in Scheme 1, was designed with rotat-
able phenylpropyl groups, fluorine atoms, and dicyanomethylene. The dicyanomethylene
introduced to the squaraine core exhibits a significant bathochromic shift for this scaffold
compared to standard squaraine dyes. The fluorine atoms act as electron-withdrawing
groups to further improve the chemical properties without significantly affecting the overall
size of the compound. The phenylpropyl groups increase the number of rotatable bonds
and increase the hydrophobicity of the compound.

2.2. Physicochemical Properties of Dye 5 Compared to Commercially Available Squaraine (SQ)

The photophysical properties for the synthesized dye 5 and general squaraine (SQ)
were calculated using ChemAxon (MarvinSketch calculator plugin), as seen in Table 1. The
logD at pH 7.4 for dye 5 was reported to be 7.31. The polarizability of dye 5 was calculated
to be 79.59. The dipole moment of dye 5 was determined to be 15.34 debye compared to
SQ reporting 9.77 debye. Dye 5 contains 10 rotatable bonds compared to standard SQ
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that contains two; this difference is due to the introduction of phenylpropyl groups to the
scaffold. The molecular volume (MV), weight (MW), and surface area (MSA) for dye 5 are
654.11, 716.88, and 1001.06, respectively. These three values are greater than the values
reported for SQ (Figure S5), likely due to the phenylpropyl groups and fluorine atoms
introduced to the scaffold.

Table 1. Physicochemical properties of dye 5 calculated using ChemAxon.

Dye LogD
(pH 7.4) Polarizability

Dipole
Moment
(Debye)

Rotatable
Bonds

MV
(Å3)

MW
(g/mol)

MSA
(Å3)

SQ 2.96 49.01 9.77 2 394.21 424.54 613.90
5 7.31 79.59 15.34 10 654.11 716.88 1001.06

2.3. Optical Properties of Dye 5

The absorbance spectrum of squaraine 5 was obtained at different concentrations of
dye, as shown in Figure 1a. The absorbance maxima were determined to be at wavelength
670 nm. The absorbance values were plotted against the concentration of the dye to
determine the molar absorptivity using the Beer–Lambert Law (Figure 1b). The same
analytical procedure was used to determine the absorbance wavelength maxima and molar
absorptivities of dye 5 in various solvents. The absorbance maxima are presented in Table 2,
and corresponding absorbance graphs are shown in Figures S6–S9. The wavelength of the
fluorescence maximum was determined for dye 5 (0.1 mM) in different solvents. These
values were used to calculate Stokes shifts at each solvent.
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Figure 1. (a) The absorbance spectra of compound 5 in methanol at different concentrations (0.5, 1.0,
1.5, 2.0, 2.5, and 3.0 µM). (b) Linear curve demonstrating Beer–Lambert Law used to determine molar
absorptivity of compound 5 as ε = 208,000 M−1 cm−1.

Table 2. Optical properties of compound 5.

Solvent λabs
(nm)

λem
(nm) Stokes Shift (nm) ε (L mol −1 cm−1) ΦF (%)

Methanol 675 691 16 208,000 25
Ethanol 675 693 18 188,000 52

Acetonitrile 675 691 16 235,000 12
Toluene 700 714 14 222,000 63
DMSO 680 698 18 188,000 34

Rhodamine800 [5] 682 700 18 113,000 25

The absorption maxima of dye 5 were studied in five different solvents. Figure 2 is
a compilation of the absorbance spectra of dye 5 in all five reported solvents. The data
demonstrate that the absorbance maxima in the polar solvents (MeOH, EtOH, and MeCN)
remained at 675 nm, while a small 5 nm shift was observed for the absorbance maximum
in DMSO. The data indicate a redshift in the absorbance maxima when observed in the
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nonpolar solvent toluene by about 25 nm compared to the polar solvents. A similar trend
was observed for the fluorescence wavelength maxima; solvents MeOH, EtOH, and MeCN
observed maxima at 691–693 nm. The DMSO fluorescence maximum was observed at
698 nm, and the nonpolar solvent toluene observed the most significant redshift at 714 nm.
These data indicate that the fluorophore is influenced by the polarity of the solvent it is
exposed to, indicating fluorophore stability in nonpolar solvents.
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Ethanol (EtOH), Acetonitrile (MeCN), Dimethyl Sulfoxide (DMSO), and Toluene.

Table 2 also exemplifies the molar absorptivity of dye 5 in the different solvents
and quantum yields, two significant properties that contribute to a compound’s molec-
ular brightness [20]. It is noted that molar absorptivities of 235,000 L mol−1 cm−1 and
222,000 L mol−1 cm−1 were noticed in MeCN and toluene, respectively. The highest qua-
tum yield (63%) was analyzed from the measurements obtained from toluene. This result
indicates that dye 5 has the most optimal optical properties in toluene, thus indicating a
favorability for hydrophobic solvents for the highest molecular brightness.

Solvatochromism of Dye 5

The absorbance wavelength maxima of a dye are affected by the solvent polarity, and
this property is known as solvatochromism [21]. The absorbance maxima can shift, or the
intensity may decrease according to the solvent’s polarity. Solvatochromism is an important
feature of organic molecules because it gives information about the polarity of the molecule
and helps researchers to predict the potential applications [22]. The solvatochromism of
dye 5 in five different solvents is presented in Figure 2. The absorbance maximum is
approximately 675 nm in methanol, ethanol, acetonitrile, and dimethylsulfoxide (DMSO),
and there is a 5 nm redshift in DMSO. However, absorbance maximum of dye 5 in toluene
is 700 nm, showing a 25 nm redshift compared to the other four solvents.

The fluorescence intensities for dye 5 and squaraine standard SQ in methanol were
obtained. The fluorescence intensity of the two dyes at the same concentration can be
observed in Figure 3. This figure shows the significant difference in the fluorescence maxima
of the two dyes where dye 5 is significantly more intense. We also see a 55 nm difference
in the wavelength maxima between the two peaks, demonstrating the bathochromic shift
exhibited by the introduction of dicyanomethylene modification.
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Figure 3. Fluorescence intensity of dye 5 (0.0125 µM) compared to SQ (0.0125 µM) in methanol.

The hydrophobic behavior of dye 5 is observed in Figure 4. The figure indicates the
absorbance spectra of the fluorophore in methanol and observes the change in absorp-
tion maxima with increasing proportions of water. It is seen that at 0 to 30% water, the
absorbance spectra mostly retain their shape, demonstrating a strong monomeric signal.
The intensity of the shape begins to diminish between 10 and 30% somewhat gradually.
In the 40% water solution, the spectrum shows a clear formation of J-aggregates while
still showing the monomer band (M). From 50 to 100%, only the dimer band (D) is shown,
indicating the aggregation of the dye due to its hydrophobicity.
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Figure 4. Absorbance spectra of compound 5 (3 µM) in increasing percentages of water (0, 10, 20, 30,
40, 50, 60, 70, 80, 90, and 100%) show a high degree of dimerization and formation of J-aggregates.

The effect of aggregation can also be visualized by observing the fluorescence intensity
in increasing concentrations of water. This decrease in fluorescence intensity as presented
in Figure 5, is seen through self-quenching upon dimerization of the fluorophore in the
solution. The formation of the nonfluorescent aggregate corresponds to the decrease in
fluorescence intensity and the slight blueshift being observed at increasing amounts of
water. The fluorescence intensity gradually decreases between 0 and 30%, similar to the
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behavior observed in Figure 4. At 40% water, we see the signal shape indicating a mix of
monomeric and dimeric forms of the fluorophore, and then after 50% water, we see mostly
the dimerization mostly diminishing the fluorescence signal.
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2.4. Density Functional Theory Calculations of Dye 5

Density functional theory (DFT) calculations for dye 5 were obtained from Spartan 18
V1.4.5 software. The software was used to determine the electron distribution within the
highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital
(LUMO) of squaraine dye 5, and it provides the optimal three-dimensional geometry
of the molecule. The modeled HOMO and LUMO orbitals demonstrated in Figure 6
show electron distribution between the indole rings and the squaraine core. The chemical
structure of symmetrical dye 5 is shown in Scheme 1, demonstrating two fluorine atoms
on the indolium rings and two phenylpropyl groups appended to the nitrogen atom of
the heterocycle. The two heterocycles are joined together by a conjugated cyclobutene
ring containing a dicyanomethylene group. These features are shown in the optimized
molecular geometry seen in Figure 6. The HOMO energy level is shown to be −5.26 eV,
and the LUMO energy level was determined to be −3.33 eV. The dicyanomethylene, the
negatively charged oxygen, and the heterocycle containing uncharged nitrogen contribute
to the HOMO energy level. The LUMO energy level shows electron distribution across
the opposite heterocycle containing positively charged nitrogen and the carbons of the
cyclobutene bound to the heterocycles. The difference between the two energy levels
was calculated to be 1.93 eV as an energy gap. The figure shows electron delocalization
occurring across the conjugated system of the dye, excluding the phenylpropyl groups
because these are separated from the conjugated system by three sp3 carbons.

The software was also used to visualize the optimal molecular geometry of the com-
pound. In Figure 6, one can observe the twist in geometry associated with the bulky
substituents facing away from the dicyanomethylene group. This twist in the geometry
resembles the configuration observed for other squaraines containing this dicyanomethy-
lene modification that is not observed in unmodified squaraines. This twist in structure
geometry demonstrates the optimal three-dimensional geometry of the compound with
all its bulky groups. The introduction of the dicyanomethylene modification introduces
a rigidity of the squaraine conformation, thus adding a level of chemical stabilty to the
compound not observed in typical squaraines.
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3. Materials and Methods
3.1. Materials

The reagents and solvents shown in Scheme 1 were obtained from Combi-Blocks
(San Diego, CA, USA), Alfa Aesar (Ward Hill, MA, USA), and Sigma Aldrich (St. Louis,
MO, USA). Reaction progress was monitored through thin-layer chromatography utiliz-
ing glass-backed 250 µm Silica XHL TLC Plates w/UV254 from Sorbent Technologies
(Norcross, GA, USA) with 5% methanol in a dichloromethane mobile phase solvent system.
Compounds were purified using flash column chromatography using 63–200 µm, 60A
silica gel from Sorbent Technologies (Norcross, GA, USA). Characterization of compounds
was accomplished using 1H NMR and 19F NMR obtained from 400 MHz Bruker Avance
Spectrometer from Bruker Corporation (Billerica, MA, USA). NMR samples were prepared
using NMR solvents obtained from Cambridge Isotope Laboratories (Andover, MA, USA).
HRMS was obtained from the Georgia State University Mass Spectrometry Facility us-
ing Waters Q-TOF micro (ESI-Q-TOF) mass spectrometer (Waters Corporation, Milford,
MA, USA).

3.2. Synthesis

Synthesis of triethylammonium 2-butoxy-3-(dicyanomethylene)-4-oxocyclobut-1-en-1-
plate (2) is reported in the literature by the Würthner group [12].

Synthesis of 5-fluoro-2,3,3-trimethyl-1-(3-phenylpropyl)-3H-indol-1-ium bromide (4).
This compound is reported in the literature by the Henary group [20].

Synthesis of (Z)-3-(dicyanomethylene)-4-((5-fluoro-3,3-dimethyl-1-(3-phenylpropyl)-
3H-indol-1-ium-2-yl) methylene)-2-(((E)-5-fluoro-3,3-dimethyl-1-(3-phenylpropyl)indolin-
2-ylidene) methyl) cyclobut-1-en-1-olate (5): In a 50-mL round-bottom flask, fluorinated
indolium salt 4 (2 mol eq) reacted with squaraine linker 2 (1 mol eq) in a butanol/toluene
solvent mixture overnight under reflux. The reaction mixture was then dried under vacuum
to remove solvent mixture. The crude product was purified using alumina flash column
chromatography, 0–5% methanol/dichloromethane solvent system. Final compound was
obtained in 52% yield. MP: 192–194 ◦C; 1H NMR (400 MHz, CDCl3) δ1.75 (s, 6H), 2.14
(d, J = 7.2 Hz, 2H), 2.80 (t, J = 11.3 Hz, 2H), 4.00 (t, J = 16.0 Hz, 2H), 6.55 (s, 1H), 6.70 (m,
1H), 6.90 (m, 1H), 7.00 (m, 1H), 7.20 (m, 3H), 7.55 (m, 2H). 19F NMR (400 MHz, DMSO-
d6) δ−117.62. 13C NMR (100 MHz, CDCl3) δ 26.6, 28.8, 32.7, 40.9, 43.9, 49.6, 49.6, 89.3,
110.2, 110.5, 110.6, 110.7, 114.6, 114. 119.01, 126.3, 128.5, 128.6, 137.8, 140.6, 144.2, 144.3,
159.3, 161.8, 166.7, 167.7, 171.6, 172.9. High-resolution mass spectrum [M]+ calculated for
[C47H42F2N4O]+ 716.3327; found 716.2811.



Molbank 2023, 2023, M1576 8 of 10

3.3. Analytical Instrumentation

Absorbance spectra for squaraine dye 5 were obtained using Varian Cary 50 Spec-
trophotometer (Agilent Technologies, Santa Clara, CA, USA). This instrument was inter-
faced to a PC with spectral bandwidth of 2 nm. Fluorescence spectra for squaraine dye
5 were obtained using Shimadzu RF-1501 Spectrofluorometer (Shimadzu Instruments,
Columbia, MD, USA) interfaced to a PC with spectral bandwidth set to 10 nm and sensitiv-
ity set to a high setting. Absorbance and fluorescence cuvettes (Sigma Aldrich, St. Louis,
MO, USA) with a path length of 1.00 cm were used, and all calculations were performed
using Microsoft Excel 2019 (Microsoft Corporation, Redmond, WA, USA).

3.4. Analytical Instrumentation

Squaraine dye 5 samples were weighed on an analytical balance (5-digit) into amber
glass vials from Fischer Scientific (Pittsburg, PA, USA). A 1 mM solution of dye 5 was made
in dimethyl sulfoxide. The vial was capped and sonicated for 20 min.

3.5. Determination of Molar Absorptivity

The 1 mM stock solutions of dye 5 were diluted into different concentrations (0.5 µM,
1.0 µM, 1.5 µM, 2.0 µM, 2.5 µM, and 3.0 µM) in methanol. The most concentrated sample
demonstrated an absorbance value of less than one, and the absorbance maximum (wave-
length) in nanometers was recorded. Absorbance values at that wavelength were recorded
for the different concentrations and were plotted against the corresponding concentrations
in Microsoft Excel to determine molar absorptivity from the linear slope.

3.6. Optical Hydrophobicity Studies

Several 5 mL solvent samples containing various percentages of water were prepared
(0, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100% water). A corresponding blank (baseline)
was measured before the samples at different percentages of water were measured. For
each sample, 10 µL of the 1 mM stock solution was diluted into the corresponding solvent
samples (3 µM solution), and absorbance spectra were observed. The data from absorbance
spectra were plotted on Microsoft Excel as absorbance versus wavelength to observe
absorbance changes based on the percentage of water in the solvent. Similarly, the stock
solution was used to prepare 0.005 µM samples of dye in corresponding solvent samples to
measure fluorescence intensity versus wavelength as a result of an increasing percentage of
water.

3.7. Physicochemical Studies

Spartan 18 V1.4.5 software (Wavefunction Inc., Irvine, CA, USA) was used to generate
DFT calculations at the B3LYP level and a 6-311+G**. HOMO/LUMO energy levels and
optimized geometries were generated. ChemAxon MarvinSketch (Budapest, Hungary) was
used to calculate LogD at pH 7.4, polarizability, dipole moment, rotatable bonds, molecular
volume, molecular weight, and molecular surface area for both compound 5 and standard
squaraine (SQ).

4. Conclusions

In this study, we reported the synthesis of a fluorine-containing squaraine dye with a
dicyanomethylene moiety in the squaraine core. The fluorine atom and the propyl phenyl
group on the compound introduce hydrophobicity to the structure. The dye shows λmax
between 675–700 nm in various solvents, and the largest redshift is observed in toluene
due to the hydrophobicity of the compound. The molar extinction coefficients range
from 188,000 to 235,000 M−1 cm−1. The hydrophobic behavior of the dye was studied in
methanol with the addition of an increasing water ratio. The sharp monomeric peak of
the dye disappears after 30% water addition and forms the J-aggregate peaks. As the dye
aggregates with increasing water proportions, the fluorescence also diminishes. While
the electron density is on the dicyano moiety and the heterocycle containing uncharged
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nitrogen, the electron density on LUMO was located on the positively charged nitrogen
heterocycle. The difference between the HOMO and LUMO levels was calculated as
1.93 eV.

Supplementary Materials: Spectroscopic data are available; NMR (Figures S1–S3) and Linear regres-
sion plots (Figures S6–S9).
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