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Abstract: Highly purified 5-vinyl-1H-tetrazole was synthesized, which is in great demand in modern
medicine and industry as a monomer for obtaining nitrogen-rich macromolecular compounds and a
reagent for the complete synthesis of biological compounds. The molecular structure was studied
experimentally with sequential X-ray diffraction analysis and theoretically with ab initio quantum
chemical calculations. The data from differential scanning calorimetry, nuclear magnetic resonance
(1H, 13C, 1H-15N, HMBC), high-resolution mass spectrometry and vibrational spectroscopy were
analyzed. The results are useful for evaluating the possibility of extending the polymerization
of 5-vinyl-1H-tetrazole to synthesize polymers with predictable molecular weight and thermody-
namic parameters.
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1. Introduction

Tetrazoles are the most nitrogen-rich azoles and are used as active ingredients in
modern medicines, components of energy-saturated systems and functional materials [1,2].
It is notable that tetrazoles as well as 1,2,3-triazoles are the main objects of the Click-
Chemistry and Bioorthogonal Chemistry concept of Carolyn R. Bertozzi, Morten Meldal
and K. Barry Sharpless, who were awarded the Nobel Prize for Chemistry in 2022 [3].

A special member of this series of heterocyclic compounds is 5-vinyl-1H-tetrazole 1
and its N-alkyl derivatives, for example, compounds 2 and 3 (Figure 1) [4].
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substituted 5-vinyltetrazoles 2 and 3, which have turned out to be interesting intermediate 
reagents for the complete synthesis of compounds with potential biological activity. In 
this context, recently, we have disclosed the Palladium-catalyzed Mizoroki-Heck cross-
coupling reactions between N-methyl-5-vinyltetrazoles and aryl iodides in the presence 
of copper salts for the synthesis of 5-styryltetrazoles [6,7]. 

It is noteworthy that 5-vinyl-1H-tetrazole 1 is unique: in addition to the polarized С=С 
bond at the endocyclic carbon atom in the tetrazole ring, it has a “pyrrole” nitrogen atom—
the NH group, capable of dissociation in accordance with the Brønsted–Lowry theory and 
forming H-bonded complexes with hydrogen-atom acceptors. This fact significantly ex-
pands the possibilities of 5-vinyltetrazoles’ functionalization, due not only to the reactivity 
of the C-vinyl group but also to reactions involving endocyclic nitrogen atoms of the te-
trazole ring [8]. However, the known methods of synthesis are not suitable to obtain 5-vinyl-
1H-tetrazole 1 with acceptable purification and good yields. The actual problem is to de-
velop a rational synthesis method for tetrazole 1 and receive complete information about its 
molecular structure, stability, reactional properties and spectral properties. 

2. Results and Discussion 
2.1. Synthesis of 5-Vinyl-1H-Tetrazole 

First, 5-vinyltetrazole 1 was synthesized by Arnold C. and Thatcher D. from acrylo-
nitrile or 5-chloroethyltetrazole according to Scheme 1 [9]. 

 
Scheme 1. The first synthesis of 5-vinyl-1H-tetrazole 1. i, NaN3, AlCl3, N2, THF, reflux, 24 h, 15% 
HCl, mp (from CHCl3, charcoal) 126–127 °C, 55%; ii, NaN3, AlCl3, THF, N2, reflux 24 h, 15% HCl; 
iii, NaOH, H2O, p-methoxyphenol, reflux, 2 h, mp (from CHCl3, charcoal) 126–127 °C, 70% 

The described methods did not spread widely in use: compound 1, which was ob-
tained under the conditions specified by the authors, is practically impossible to purify 
from polymer impurities [9]. Furthermore, aluminum oxide and hydrogen azide—by-
products in situ in the reaction mixture—are highly explosive and extremely toxic. 

In this work, the synthesis of 5-vinyl-1H-tetrazole 1 was based on the two-stage 
method, which was published earlier by our scientific group [10]. In the first stage, as a 
result of 1,3-dipolar cycloaddition of dimethylammonium azide to β-dimethyla-
minopropionitrile in DMF, 5-(β-dimethylaminoethyl)tetrazole with a zwitter-ion struc-
ture 4a was obtained, which precipitated [11]. In the second stage, exhaustive alkylation 
in H2O of the terminal dimethylamino group of 5-(β-dimethylaminoethyl)tetrazole in 
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Due to the presence of the vinyl group in the molecular structure, which is activated
by an electron-withdrawn tetrazole ring, compounds 1–3 can be used as monomers for
obtaining nitrogen-rich high-molecular substances—poly-5-vinyltetrazoles. Possessing
a unique set of physicochemical properties and operational characteristics, polyvinylte-
trazoles are promising as a high-molecular basis for binding energy-intensive systems as
well as medical materials [4,5]. Nowadays, these possibilities are disclosed only for N-
substituted 5-vinyltetrazoles 2 and 3, which have turned out to be interesting intermediate
reagents for the complete synthesis of compounds with potential biological activity. In this
context, recently, we have disclosed the Palladium-catalyzed Mizoroki-Heck cross-coupling
reactions between N-methyl-5-vinyltetrazoles and aryl iodides in the presence of copper
salts for the synthesis of 5-styryltetrazoles [6,7].

It is noteworthy that 5-vinyl-1H-tetrazole 1 is unique: in addition to the polarized
C=C bond at the endocyclic carbon atom in the tetrazole ring, it has a “pyrrole” nitrogen
atom—the NH group, capable of dissociation in accordance with the Brønsted–Lowry
theory and forming H-bonded complexes with hydrogen-atom acceptors. This fact signifi-
cantly expands the possibilities of 5-vinyltetrazoles’ functionalization, due not only to the
reactivity of the C-vinyl group but also to reactions involving endocyclic nitrogen atoms of
the tetrazole ring [8]. However, the known methods of synthesis are not suitable to obtain
5-vinyl-1H-tetrazole 1 with acceptable purification and good yields. The actual problem is
to develop a rational synthesis method for tetrazole 1 and receive complete information
about its molecular structure, stability, reactional properties and spectral properties.

2. Results and Discussion
2.1. Synthesis of 5-Vinyl-1H-tetrazole

First, 5-vinyltetrazole 1 was synthesized by Arnold C. and Thatcher D. from acryloni-
trile or 5-chloroethyltetrazole according to Scheme 1 [9].
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Scheme 1. The first synthesis of 5-vinyl-1H-tetrazole 1. i, NaN3, AlCl3, N2, THF, reflux, 24 h, 15%
HCl, mp (from CHCl3, charcoal) 126–127 ◦C, 55%; ii, NaN3, AlCl3, THF, N2, reflux 24 h, 15% HCl; iii,
NaOH, H2O, p-methoxyphenol, reflux, 2 h, mp (from CHCl3, charcoal) 126–127 ◦C, 70%.

The described methods did not spread widely in use: compound 1, which was obtained
under the conditions specified by the authors, is practically impossible to purify from
polymer impurities [9]. Furthermore, aluminum oxide and hydrogen azide—byproducts in
situ in the reaction mixture—are highly explosive and extremely toxic.

In this work, the synthesis of 5-vinyl-1H-tetrazole 1 was based on the two-stage method,
which was published earlier by our scientific group [10]. In the first stage, as a result of
1,3-dipolar cycloaddition of dimethylammonium azide to β-dimethylaminopropionitrile
in DMF, 5-(β-dimethylaminoethyl)tetrazole with a zwitter-ion structure 4a was obtained,
which precipitated [11]. In the second stage, exhaustive alkylation in H2O of the terminal
dimethylamino group of 5-(β-dimethylaminoethyl)tetrazole in normal form 4b was carried out
selectively, without affecting the tetrazole ring [10]. According to the mechanism established
in work [12], trimethylammonium salt undergoes the elimination of trimethylamine with
regeneration of the double bond (Hofmann elimination) in position 5 of the tetrazole ring,
with the formation of 5-vinyl-1H-tetrazole (Scheme 2) [10]. This exact method is what we
improve in the current work by introducing important minor adjustments for enhancing
the quality of the product. As seen from Scheme 2 and following the synthesis method, we
included an additional purification step for 5-β-dimethylaminoethyltetrazole with activated
charcoal. Additionally, in the method used in [10], the obtained 5-vinyl-1H-tetrazole was
dissolved in chloroform at the boiling point of the solvent (61.2 ◦C) before crystallization,
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which often leads to the spontaneous polymerization of the product and increases its impurity.
According to these circumstances, we dissolved 5-vinyl-1H-tetrazole 1 at a temperature not
exceeding 50 ◦C before crystallization from chloroform.
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Scheme 2. Synthesis of 5-vinyl-1H-tetrazole 1. i, (CH3)2NN3, DMF, 110 ◦C, 18 h, activated charcoal,
mp 186 ◦C, 67%; ii, (CH3O)2SO2, NaOH, H2O (pH 14), 50–60 ◦C, 3.5 h, ionol, 0% HCl (pH 2), mp
(from CH3Cl, DSC-method), 131 ◦C, 55%.

2.2. Differential Scanning Calorimetry (DSC)

The thermal behavior of 5-vinyl-1H-tetrazole 1 was investigated using DSC. The
melting point was determined to be 131.2 ± 0.5 ◦C (Figure 2). When the compound
starts melting, a spontaneous polymerization occurs in the absence of any special initiator,
obviously due to a thermal initiation. Under conditions of uncontrolled polymerization
in the bulk of the monomer melt, the result is usually a cross-linked polymer that is
insoluble in any solvent. At about 200 ◦C, polymerization finishes, and further heating
leads to the degradation of poly(5-vinyltetrazole). The lower heating rate causes a narrower
temperature range of melting and polymerization so that at the slow heating rate of
3 ◦C/min, the polymerization exotherm appears earlier than the melting endotherm.
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2.3. X-ray Diffraction Analysis and Quantum Chemical Calculations

In the crystal (Figure 3), the molecules of 5-vinyl-1H-tetrazole 1 are held by a pair of
NH···N hydrogen bonds, thus forming an infinite chain. In the lateral projection, these chains
line up in almost flat plates. The distance between these plates varies and is about 3.2 Å.
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Figure 3. A structure of 5-vinyl-1H-tetrazole 1: (a) one molecule; (b) frontal and (c) side view of a
5-vinyl-1H-tetrazole molecule chain.

The results of the X-ray diffraction of compound 1 are shown in Table 1. The crystals
are monoclinic with dimensions of 0.1 × 0.06 × 0.03 mm3.

Table 1. Crystal data and structure refinement parameters for 5-vinyl-1H-tetrazole 1.

Crystal Data Structure Refinement Parameters

CCDC number 2,226,676
Empirical formula C3H4N4

Molecular mass 96.10
Temperature, K 100(2)
Crystal system monoclinic

Space group P21/c
a, Å 7.7859(3)
b, Å 9.6724(3)
c, Å 6.7435(3)
α, ◦ 90
β, ◦ 115.262(5)
γ, ◦ 90

Volume, Å3 459.27(4)
Z 4

ρcalc, g/cm3 1.390
µ, mm−1 0.84

F (000) 200.0
Crystal size/mm3 0.1 × 0.06 × 0.03

2Θ range for data collection/◦ 12.572 to 138.176
Index ranges −9 ≤ h ≤ 9, −11 ≤ k ≤ 11, −8 ≤ l ≤ 7

Reflections collected 3211
Independent reflections 846 [Rint = 0.0268, Rsigma = 0.0223]

Data/restraints/parameters 846/0/73
Goodness-of-fit on F2 1.049

Final R indices [I ≥ 2σ (I)] R1 = 0.0306, wR2 = 0.0803
Final R indices [all data] R1 = 0.0318, wR2 = 0.0812

Largest diff. peak/hole/e Å−3 0.23/−0.14
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For theoretical calculations, the potential energy surface near the dihedral angle N4-
C5-C6-C7 was scanned (the molecular model of vinyltetrazole with atomic numbering is
shown in Figure 4). On a graph that describes the dependence of the potential energy of
vinyltetrazole on the value of the dihedral angle N4-C5-C6-C7 (Figure 5), the energy of the
most stable isomer was taken as zero, and the zero value of the dihedral angle corresponds
to the structure of the molecule, as shown in Figure 4.
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According to the calculation, the 1H-5-vinyltetrazole form has to be more stable in the
gas phase with 0.5 kJ/mol more energy. The results of the X-ray diffraction show that a
4H- form of the molecule is prevalent in the crystal. This may be due to the presence of
intramolecular cooperation: the occurring molecular energy of the 4H- form is greater than
that of the 1H- form. However, it should be expected that there is a dynamic equilibrium
between the two forms of the molecule’s existence in a crystalline phase. The rotation
barrier of the vinyl fragment is 17.3 kJ/mol.
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The calculated quantum chemical and experimentally detected geometrical parameters
of 5-vinyl-1H-tetrazole 1 are shown in Table 2 (with the numbering of atoms displayed in
accordance with Figure 4).

Table 2. Calculated quantum chemical and experimentally detected geometrical parameters of
5-vinyl-1H-tetrazole 1, rotational constants and dipole moment.

Parameter * Experimental Values
B3LYP Calculation; Basis Set

6-311+G(d,p) Three-Molecule
System 6-311+G(d,p) aug-cc-pVQZ

Bond lengths
N1-N2 1.3534(14) 1.356 1.351 1.353
N2-N3 1.2932(15) 1.289 1.290 1.286
N3-N4 1.3527(13) 1.350 1.346 1.345
N1-C5 1.3314(14) 1.324 1.331 1.320
N4-C5 1.3300(14) 1.353 1.346 1.349
C5-C6 1.4547(15) 1.453 1.455 1.450
C6-C7 1.3225(17) 1.335 1.335 1.330
N4-H8 0.87(3) 1.008 1.034 1.005
C6-H9 0.950 1.084 1.086 1.081
C7-H10 0.950 1.083 1.083 1.079
C7-H11 0.950 1.085 1.085 1.082

Bond angles
N1-N2-N3 108.46(9) 111.3 110.3 111.2
N2-N3-N4 108.14(9) 106.0 106.8 106.1
N2-N1-C5 107.93(9) 106.6 107.2 106.6
N3-N4-C5 108.19(9) 109.0 109.0 109.1
N1-C5-N4 107.3 107.1 106.7 107.1
N1-C5-C6 127.5 124.9 125.2 124.9
C5-C6-C7 123.63(11) 125.9 124.7 125.8
N3-N4-H8 120.4 119.9 118.5 120.0
C5-C6-H9 118.2 113.3 114.2 113.4
C6-C7-H10 120.0 120.8 120.3 120.9
C6-C7-H11 120.0 123.0 123.3 122.9

Rotational constants
A – 8727.04 – 8776.11
B – 2095.33 – 2107.12
C – 1689.65 – 1699.15

Dipole moment, µ – 5.90 – 5.70

* Bond lengths in angstroms; angles in degrees; rotational constants in MHz; dipole moment in Debye.

The deviation between the calculated and experimental parameters is up to two-
hundredths of an angstrom for the bond lengths and up to five degrees for the bond angles.
Such a deviation may be connected with the fact that the calculations were performed for
an isolated molecular system, whose geometrical parameters are fundamentally different
from the parameters of a molecule in a crystal.

A topological analysis of the electron-density distribution in the three-molecule system
was carried out (Figure 3c, in the middle). This type of analysis facilitates the recognition of
critical bond points, which are defined as extrema of electron density. Critical points were
assigned as p rank, equal to the number of non-zero eigenvalues of the Hess matrix, and as
q rank, equal to the algebraic sum of the signs with non-zero eigenvalues. Thus, a set of
four types of critical points was obtained: points (3; −3) correspond to the nucleus position,
points (3; −1) are between chemically bonded atoms, points (3; +1) are inside a flat circle
and (3;+3) are inside a three-dimensional closed structure. Such an analysis, among other
things, reveals the presence of hydrogen bonds in organic compounds [13].

On the basis of the analysis results, a molecular graph using lines that connect critical
points (3; −3) and (3; −1) was constructed (Figure 6). As is seen from the graph, between
the hydrogen atoms of one molecule and the nitrogen atoms of another molecule, a critical
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point of bond is observed. This means that a hydrogen bond exists in such a system,
which corresponds with the results of the X-ray diffraction analysis. These critical point
parameters and the characteristics of the nitrogen–hydrogen bond in the system with one
molecule are presented in Table 3. The Laplacian electron density values ∇2(ρ) show that
the discussed intramolecular bonds have a different nature than the N-H covalent bonds
with a Laplacian value of about −1.7. A similar result is shown in the value of the electron
density ρ, which is greater than 0.3 for covalently bonded atoms, while for the discussed
hydrogen bonds it is 0.003–0.037. The ellipticity parameter ε remains approximately the
same for all the given bonds, but for the N2-(H-C) bond it sharply increases to 1.137, which
is most likely because of the interaction of the nitrogen atom with the pi electrons of the
carbon–carbon double bond.
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Table 3. Parameters of critical points of bonds in the one- and three-molecule system of 5-vinyl-1H-
tetrazole 1.

Bond ∇2(ρ) ε ρ, Å-3 H, a.u.

N4-H8 * −1.771 0.042 0.340 −0.488
N4-H8 −1.730 0.033 0.314 −0.475

(N4-H8)–N ** 0.097 0.060 0.037 −0.002
N1–(H-N) ** 0.097 0.061 0.037 −0.002
N3–(H-C) ** 0.018 0.050 0.006 0.001
N2–(H-C) ** 0.009 1.137 0.003 0.000

* 1 molecule. ** value for hydrogen bond.

In general, the results of AIM analysis indicate the existence of hydrogen bonds.
However, it is noteworthy that for N-(H-C) bonds, the density of the H energy has a
positive value, which means that atom repulsion takes place in such an interaction. For this
reason, these interactions are not hydrogen bonds, unlike bonds of the N—(H-N) type for
which both the electron density is higher and the value of the energy density at the critical
point is negative.

To describe the electron-density distribution, the charges of the atoms and the indices
for the one- and three-molecule systems were calculated. The results are presented in
Table 4. The calculations were made according to the theories of atoms in molecule (AIM)
and natural bond orbitals (NBO). The table shows the charges of the atoms according to
the definitions by Bader (AIM—charges) [14] and by Weinhold (NBO charges) [15]. The
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bond order according to the Laplacian indices for AIM analysis and Wiberg bond indices
for NBO analysis were used as bond-multiplicity indices.

Table 4. Calculated charges of atoms q and bond-multiplicity indices Q. For AIM, charges of atoms
according to Bader and Laplacian bond order are presented. For NBO, NBO charges and Wiberg
bond indices (WBI) are presented.

Parameter
AIM NBO

1 mol 3 mol 1 mol 3 mol

q(N1) −0.600 −0.663 −0.296 −0.373
q(N2) −0.057 −0.076 −0.066 −0.066
q(N3) −0.069 −0.092 −0.064 −0.082
q(N4) −0.763 −0.789 −0.363 −0.374
q(C5) 0.910 0.913 0.308 0.347
q(C6) 0.016 0.008 −0.233 −0.258
q(C7) −0.019 −0.018 −0.322 −0.298
q(H8) 0.442 0.516 0.420 0.456
q(H9) 0.073 0.101 0.232 0.248

q(H10) 0.051 0.054 0.206 0.205
q(H11) 0.016 0.046 0.179 0.193

Q(N1-N2) 0.845 0.848 1.320 1.316
Q(N2-N3) 1.236 1.217 1.615 1.595
Q(N3-N4) 0.806 0.832 1.218 1.239
Q(N4-C5) 1.008 0.590 1.212 1.251
Q(N1-C5) 1.308 1.245 1.490 1.436
Q(C5-C6) 1.204 1.189 1.091 1.092
Q(C6-C7) 1.761 1.757 1.905 1.900
Q(N4-H8) 0.689 0.590 0.793 0.692
Q(C6-H9) 0.834 0.832 0.904 0.893

Q(C7-H10) 0.847 0.849 0.937 0.937
Q(C7-H11) 0.841 0.845 0.944 0.938
Q(N1–H-N) 0.0001 0.072
Q(N4-H8–N) 0.0001 0.072

The NBO charges of the atoms are represented for one molecule (Figure 7a) and for a
system of three molecules (Figure 7b).
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On the whole, the nature of a charge distribution corresponds to general chemical
concepts. It could be noticed that the N4-H8 bond in the three-molecule system weakens
compared to the single molecule, which is associated with hydrogen bond formation. The
Laplacian bond order for such hydrogen bonds is about 10−4, while the Wiberg bond
index for them is about 0.07. This indicates the low energy of such interactions, which is
consistent with the characteristics of the critical points given above.

To provide a description of the electron-density distribution and chemical properties
of 5-vinyl-1H-tetrazole, the energy levels of the highest occupied molecular orbital (HOMO)
and lowest unoccupied molecular orbital (LUMO) were calculated (Figure 8). The energies
of these orbitals correspond with the ability to donate and accept electrons, respectively.
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On the basis of the HOMO and LUMO energies, the reactivity indices were calculated:
io5.nization potential (IP = −EHOMO), electron affinity (EA = −ELUMO), electrophilicity index
(ω = µ2/2η), chemical potential (µ = −(IP + EA)/2), electronegativity (χ = (IP + EA)/2) and
hardness (η = IP− EA) (Table 5). The calculation was performed on the basis of Koopmans’
theorem, which shows that the HOMO and LUMO energies are practically equal to the
ionization potential and electron affinity, respectively. The energy difference between HOMO
and LUMO, the so-called energy gap, is an indicator of the stability and reactivity of the
compound [16] and is used for the description of organic compound reactivity [17]. In this
case, its value indicates the stability of the synthesized 5-vinyl-1H-tetrazole.

Table 5. HOMO and LUMO orbital energies (eV) and global reactivity descriptors (eV) of 5-vinyl-1H-
tetrazole 1.

Parameter Value

HOMO energy −7.81
LUMO energy −2.18

HOMO–LUMO energy gap 5.63
Ionization potential (IP) 7.81

Electron affinity (EA) 2.18
Electrophilicity index (ω) 4.43

Chemical potential (µ) −4.99
Electronegativity (χ) 4.99

Hardness (η) 5.63

To describe the reactivity, we also calculated the values of the Fukui functions f + [16],
which are equal to the difference in electron density at a given point between the system
with N + 1 number of electrons and the initial system with N number of electrons. A
visualization of the obtained results is shown in Figure 9. Areas with a positive Fukui
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function value are green-colored, and areas with a negative Fukui function value are blue-
colored. Thus, in the green areas, an additional electron is predominantly distributed. A
nucleophilic attack will predominantly occur in the same areas because a nucleophile is an
electron-rich system.
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2.4. Infrared Spectroscopy

The IR spectra of the one-molecule system (Figure 10) and three-molecule system
(Figure S1 in Supplementary Materials) were obtained, analyzed and interpreted.
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Figure 10. Calculated infrared spectrum of 5-vinyl-1H-tetrazole 1.

It is worth noting that the signal of an intense band corresponding to vibrations of the
N–H bond at 3500 cm−1 is absent (Figures S2 and S3). Taking this into account, those spectra
were inferred to be the crystals of 5-vinyl-1H-tetrazole 1. Analyzing the results of the X-ray
diffraction analysis and quantum chemical calculations, we can assume that the reason
is the presence of the proton of the cycle in the composition of the linear associates –N-1–
H···N-4–, where nitrogen atoms belong to the cycles of neighboring molecules. This fact
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was highlighted earlier as the characteristic feature of the crystals of all NH-unsubstituted
tetrazoles [18]. Then, the vibration of the proton is consistent; for example, the stretching
of the N-1–H bond is accompanied by the contraction of the H···N-4 bond and vice versa.
This is accompanied by a shift in the resonant frequency to the lower wave number area.
Interestingly, in the IR spectrum of the N-vinyl pyrrolidone and 5-vinyl-1H-tetrazole 1
copolymer sample, which contained only 5 mol% of 5-vinyltetrazole units, a band appeared
at 3500 cm-1 (Figure S4). Because the spectrum of N-vinylpyrrolidone has no absorption
in this region (Figure S5), a band corresponds to the calculated related vibrations of the
N–H bond. The difference between the polymer and monomer crystals is that the tetrazole
rings were linked to the polymer chain and depended on its molecular dynamics. This
makes it impossible to form associates similar to those found in the crystals of the 5-vinyl-
1H-tetrazole 1 itself.

The above reasoning is confirmed by the results of quantum chemical calculations. In
the calculated IR spectrum for the three-molecule system, there are 2 peaks: 3531 cm −1

corresponds to stretching vibrations of the N-H side molecule, and 3075 cm−1 (the intense
band) corresponds to stretching vibrations of H atoms bound by hydrogen bonds. Apparently,
a corresponding vibration occurs in the experimental spectrum at the peaks of 3116 cm−1

(Figure S2) and 3114 cm−1 (Figure S3). A large difference between the experimental and
calculated intensity of the discussed peaks is explained by the fact that for the vibrations that
appear in the IR spectrum, the intensity is proportional to the change in the dipole moment for
a given vibration. At the same time, with the scaling of a system’s size (in this case, an increase
in the number of links in the chain), the dipole moment stabilizes and depends less and less
on the vibration of the atom, which leads to a decrease in the vibrations’ intensity. Vibrations
were observed in both the experimental and theoretical spectra (theoretical value is given in
parentheses): 674.1 (653.3) cm−1 corresponds to deformation vibrations of the vinyl fragment;
781.2 (757.5) cm−1 corresponds to torsional vibrations of both the vinyl fragment and the ring;
935.5 (925.4) cm−1 corresponds to torsional vibrations of CH2; 962.5 (975.4) cm−1 corresponds
to bending vibrations of the ring; 1050.3-1248.0 cm−1 peaks refer to stretching vibrations of the
tetrazole ring; the 1371.45 (1369.2) and 1559.51 (1510.5) cm−1 peaks correspond to deformation
symmetric CH-CH2 vibrations (in this case, the second peak corresponds to a vibration with a
large amplitude of the endocyclic carbon atom); the 1645.3 (1648.3) cm−1 peak corresponds to
stretching vibrations of the vinyl fragment; and the 2872.13 (3042.3), 2924.2 (3085.3) and 2998.5
(3128.4) cm–1 peaks refer to stretching vibrations of hydrogen atoms in the vinyl fragment.
It should be noted that we used a scaling multiplier of 0.9688 for the entire range of wave
numbers, and in the region of the small wave numbers, the theoretical values are somewhat
underestimated compared to the experimental ones. Peaks at about 1000–1300 cm−1 converge
well, and peaks in the region above 2000 cm−1 are strongly overestimated. Peaks that are not
indicated above and that are absent from both the calculated spectra for the system of one
molecule and for the system of three molecules (in the region of 2200–2850 cm−1) were most
likely interplanar vibrations in the vinyltetrazole crystal.

2.5. Mass Spectrometry

In order to confirm the structure of the synthesized compound and study the pathways
of mass spectrometric fragmentation, high-resolution mass spectra in full-scan mode and
tandem spectra for the protonated molecular ion were obtained. In the spectra recorded
using electrospray mass spectroscopy (ESI-MS) in positive mode, a molecular ion with m/z
97.05087 was detected. Its mass differed from the theoretical (calculated) mass of 5-vinyl-
tetrazole by 0.23 ppm, which fit into the mass measurement accuracy criterion (5 ppm)
when identifying compounds using an LTQ Orbitrap high-resolution mass spectrometer.

The fragmentation of the molecular ions of the studied substance was strongly in-
fluenced by the collision energy in the fragmentation cell. Thus, with an increase in the
fragmentation energy, the intensity of the molecular ion signal noticeably decreased [M+H]+
(m/z = 97), and the intensity of the fragment ions increased (m/z = 54) (Table 6).
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Table 6. Product ions formed from the precursor ion of m/z 97 ([М+Н]+) and their intensities in
tandem mass spectra acquired at three different collision energy levels.

Collision Energy, % Product Ions Absolute Intensity Relative Intensity, %

10 97 2590 100

20
54 170 10
97 1680 100

35
54 850 100
69 10 1

The mass spectral fragmentation of 5-vinyl-1H-tetrazole mainly proceeded with
the elimination of HN3 (product ion with m/z 54), which was also noted by Forkey
and Carpenter when studying the fragmentation of tetrazole, 5-methyltetrazole and 1,5-
dimethyltetrazole [19]. At high ionization energies, the nitrogen molecule (product ion with
m/z 69) was eliminated, which is characteristic of all tetrazole derivatives [19] (Scheme 3).
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2.6. NMR Spectroscopy

A group of signals of protons in the vinyl group, a proton cycle in a very weak field
and three signals of carbon atoms are expected to be observed in the NMR 1H and 13C
spectra. The endocyclic carbon atom is visible in the weakest field (Figures S6 and S7).

Tetrazole has only two existing tautomeric forms from the four possible tautomers:
1H-tetrazole and 2H-tetrazole (Figure 11). The 1H-tautomer predominates in the condensed
phase and polar solvents, whereas 2H-tetrazole is more stable in the gas phase [20].
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It should be noted that virtually all NH-unsubstituted 5-substituted tetrazoles, regard-
less of the substituent, exist in the crystalline state as individual 1H-tautomers [1,18].

According to the data of the 2D correlation spectrum 1H-15N HMBC, the proton of
the CH group, which is in the alpha position to the tetrazole ring, has two significant
cross-peaks with two types of nitrogen atoms at 177.7 and 345.7 ppm, while the protons
of the CH2 group have cross-peaks with only one nitrogen atom at 177.4 ppm (Table 7,
Figure S8). Obviously, such a picture can be observed because of the fast intermolecular
exchange of protons between the nitrogen atoms in positions 1 and 4 of the heteroring,
which leads to an averaging of the characteristics of the N1 and N4 atoms as well as
N2 and N3. Similar effects were noted previously [20]. The probability of tautomeric
transformations of 1H/2H-tetrazole seems unlikely under these conditions [18].
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Table 7. Cross-peaks in 1H-15N HMBC spectrum of 5-vinyl-1H-tetrazole 1.

1H Cross-Peaks

H-9 (6.83ppm) −43.5 (weak); −32.3; −21.7; 87.7; 177.7; 345.7;
353.2 (weak); 409.5 (weak); 415.7; 434.9

H-11 (6.25 ppm) 132.7; 133.3; 177.4 (strong); 346.2; 353.1 (strong)
H-10 (5.81 ppm) 178.5 (strong); 299.1 (strong); 408.8 (strong)

3. Materials and Methods
3.1. Synthesis of 5-Vinyl-1H-tetrazole 1

5-(β-dimethylaminoethyl)tetrazole 4 was synthesized according to the following pro-
cedure. 12.6 g (154 mmol) of dimethylamine hydrochloride was dissolved in 70 mL of
DMF, then 10 g (154 mmol) of sodium azide was added in portions to the obtained solution.
The reaction mixture was stirred for 2 h at 40–50 ◦C. After cooling to room temperature, a
solution of dimethylammonium azide was filtered from sodium chloride and used at the
next stage in dissolved form. Then, 15.1 mL (134 mmol) of β-dimethylaminopropionitrile
was added to a solution of dimethylammonium azide. The reaction mixture was stirred for
18 h at 110 ◦C. After exposure, the reaction mixture was first cooled to room temperature,
then to 0 ◦C. The reaction product was filtered off under vacuum and washed with acetone
(3 × 20 mL). For the purification, 5-(β-dimethylaminoethyl)tetrazole 4 was dissolved in
100 mL of distilled water, and approximately 1 g of finely dispersed activated charcoal
was added. Exposure lasted until the complete discoloration of the solution. The purified
product was filtered from charcoal and drained from water in vacuum. The yield was 12.7 g
(67%) of colorless crystals.

Further, 10 g (70 mmol) of 5-(β-dimethylaminoethyl)tetrazole 4 was dissolved in 35 mL
of distilled water. Then, 5.7 g (141 mmol) of sodium hydroxide was dissolved in 35 g of ice
to avoid heating and was added in portions. The resulting solution (pH~14) was stirred
for 15 min at room temperature. Then, 9.9 g (78 mmol) of freshly distilled dimethyl sulfate
was added dropwise. The reaction mixture was heated at 50 ◦C and stirred for 3.5 h. After
exposure, the reaction mixture was cooled to 5 ◦C. To avoid spontaneous polymerization of
5-vinyl-1H-tetrazole, an inhibitor was added: several crystals of hydroquinone or ionol.
Then, concentrated hydrochloric acid was added dropwise until the pH value reached
2. The reaction mixture was extracted with ethyl acetate (7 × 30 mL), and the combined
extract was dried with anhydrous Mg2SO4 for 12 h. The drying agent was removed with
filtration, and the solvent was removed in vacuum. The purification by crystallization was
carried out. 5-vinyl-1H-tetrazole 1 was added to 30 mL of chloroform and heated slowly at
50 ◦C until the substance had completely dissolved. Next, hot filtration was carried out.
The obtained colorless crystals were filtered under vacuum and dried. The yield was 3.7 g
(55%). The melting point was 131 ◦C (DSC-method).

1H NMR spectrum (400 MHz, DMSO-d6) δ, ppm: 16.00. (s, 1H), 6.86–6.80 (dd, J = 17.8,
11.3 Hz, H-9, CH), 6.24-6.27 (dd, J = 17.8, 0.9 Hz, H-11, CH2), 5.80–5.83 (dd, J = 11.3, 0.9 Hz,
H-10, CH2). 13C NMR spectrum (126 MHz, DMSO-d6) δ, ppm: 154.10, 125.16, 120.37.

3.2. Synthesis of Copolymer of N-Vinylpyrrolidone with 5-Vinyl-1H-tetrazole

The block copolymer p(N-vinylpyrrolidone-b-vinyltetrazole) was synthesized using re-
versible addition–fragmentation chain-transfer polymerization (RAFT). p(N-vinylpyrrolidone)
based on a RAFT agent, S-benzyl O-ethylcarbonodithioate, was applied as a macro-RAFT agent
with an average molecular weight of 4100 and a polydispersity of 1.11. Typically, the macro-
RAFT agent 95 mol.%, azobisisobutyronitrile as an initiator (10−3 M) and 5-vinyl-1H-tetrazole
(5 mol.%) were added to dioxane (10 mL) and placed in a Pyrex reactor, degassed with three
repeated freeze−evacuate−thaw cycles and sealed. The polymerization was carried out at
70 ◦C for 6 h. The obtained block copolymer was purified through re-precipitation from diethyl
ether and chloroform. The yield equaled ca. 85%.
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3.3. Materials and Equipment
3.3.1. Characteristics of the Quantum Chemical Method, Baselines

The theoretical calculations were performed with the GAUSSIAN09 [21] program
package using a Becke-style [22] three-parameter density functional with a Lee–Yang–Parr
correlation functional B3LYP [23] and the 6-311+G(d, p) basis set that contains diffuse and
polarization functions. In addition, calculations were performed with the aug-cc-pVQZ
basis set that contains four basis functions for each valence orbital, diffuse and polarizations
functions and additional basis functions to account for electron correlation.

Frequency calculations and an electron structure analysis were performed on the
B3LYP/6-311+G(d,p) level of theory with the Multiwfn [24] and NBO 3.1 programs.

The calculated harmonic wavenumbers were scaled down using a single scale factor
of 0.9688 [25].

3.3.2. Mass Spectrometry

The target compound was identified using high-performance liquid chromatography–
high-resolution mass spectrometry (HPLC-MS-HR) using a Prominence LC-20 HPLC
system (Shimadzu, Duiburg, Germany) in combination with an LTQ Orbitrap XL mass
spectrometer (Thermo Fisher Scientific, San Jose, CA, USA). A Luna Omega C18 reverse
phase column (100 × 2.1 mm, 3 µm, Phenomenex) was used in the gradient elution
mode (content of the organic component from 40 to 90%) at a flow rate of 0.3 mL/min
with a mixture of water and acetonitrile. Mass spectrometric analysis was performed
under electrospray ionization conditions in the positive ion detection mode. The ion mass
scanning range was m/z 70–200. The target compound was identified on the basis of
accurate ion mass measurements with a resolution of 30.000 and an accuracy within 5 ppm.
Fragment spectra were obtained in a linear ion trap by varying the collision energy (10%,
20%, 35%) in the CID mode (Collision Initiated Dissociation).

3.3.3. Differential Scanning Calorimetry (DSC)

Differential scanning calorimetry (DSC) was performed using a Shimadzu DSC-60
Plus differential scanning calorimeter (Kyoto, Japan). The analysis was carried out in a N2
atmosphere (flow rate 100 mL/min) with samples of approximately 2.8 mg at a scanning
speed of 3, 10, 20 and 30 ◦C/min in the temperature range from 273 K to 573 K. Data
processing was carried out using ShimadzuCorporation©ta60 Version 2.21.

3.3.4. X-Ray Diffraction Analysis

Single crystal X-ray diffraction measurements were conducted with a SuperNova, Sin-
gle source at offset/far, HyPix3000 diffractometer. The crystal was kept at 100 K during data
collection. The structures were solved with the SHELXT program [26], using least-squares
minimization in an anisotropic (for non-hydrogen atoms) approximation and refined with
the SHELXL [27] package incorporated in the Olex2 [28] program package. The hydrogen
atoms were introduced to the geometrically calculated positions and refined by attaching
themselves to the corresponding parent atoms. Empirical absorption correction was ap-
plied in the CrysAlisPro (Rikagu Oxford Diffraction; CrysAlisPro; Agilent Technologies
Inc.: Yarnton, Oxfordshire, UK, 2018) program complex using spherical harmonics and
implemented in SCALE3 ABSPACK scaling algorithm.

The supplementary crystallographic data for this paper have been deposited at the
Cambridge Crystallographic Data Centre (CCDC 2226676) and can be obtained free of
charge via www.ccdc.cam.ac.uk/data_request/cif.

3.3.5. NMR Spectroscopy

The solution 1H, 13C{1H} NMR spectra were recorded on a Bruker Avance III 400 MHz
spectrometer in DMSO-d6. The solution 1H-15N HMBC NMR spectra were recorded on a
Bruker Avance III 500 MHz. The reference used for the 2D spectra was ammonium nitrate.

www.ccdc.cam.ac.uk/data_request/cif
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3.3.6. IR Spectroscopy

Spectra were registered using an Infrared Fourier spectrometer Shimadzu IRAffinity-1
in KBr and attenuated total reflectance (ATR) accessory, model Quest Single Reflection
(SPECAC).

4. Conclusions

The results of a comprehensive study of the molecular structure and spectral properties
of 5-vinyl-1H-tetrazole 1 have been described. Compound 1 is an indispensable monomer
for receiving a nitrogen-rich high-molecular base in the new-generation functional materials
that are in demand in modern medicine and technology. Using previously known methods
of synthesis, it is impossible to obtain pure vinyltetrazole 1. Furthermore, impurities
catalyze uncontrolled polymerization and occur both in the crystalline phase (in bulk) and
in solutions. We solved this problem in the framework of this study and synthesized a stable
5-vinyl-1H-tetrazole 1 that is not polymerized spontaneously. Improvements in compound
1 quality made it possible to establish the details of its molecular structure using X-ray
crystallography, differential scanning calorimetry (DSC), nuclear magnetic resonance (1H,
13C, 1H-15N, HMBC NMR), high-resolution mass spectrometry (HRMS) and vibrational
spectroscopy. In addition, we used ab initio quantum chemical calculations, which are
helpful for a comprehensive interpretation of the experimental data. The results enable
us to apply fundamentally new methods for the controlled polymerization of tetrazole
structures (for example, RAFT polymerization) and to obtain polymers with a complex
architecture and specified physicochemical characteristics.

Supplementary Materials: The following supporting information can be downloaded online. Figure S1:
Calculated infrared spectrum for the three 5-vinyl-1H-tetrazole molecule system; Figure S2: IR spectrum of
5-vinyl-1H-tetrazole (in KBr); Figure S3: IR spectrum of 5-vinyl-1H-tetrazole (obtained using attenuated
total reflectance (ATR) accessory); Figure S4: IR spectrum of copolymers synthesized from monomer
mixture N-vinyl pyrrolidone/5-vinyl-1H-tetrazole =95/5 (mol.%); Figure S5: IR spectrum of N-vinyl
pyrrolidone; Figure S6: 1H NMR spectrum of 5-vinyl-1H-tetrazole in DMSO-d6; Figure S7: 13C NMR
spectrum of 5-vinyl-1H-tetrazole in DMSO-d6; Figure S8: 1H-15N HMBC NMR spectrum of 5-vinyl-1H-
tetrazole in DMSO-d6.
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