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Abstract: Appropriately substituted N-centered urazolyl radicals are capable of generating interesting
cage-like structures upon forming N-N bonds. The radicals are generated by the oxidation of the
corresponding NH urazole precursors. We synthesized a triurazole precursor that we hoped would
dimerize through the formation of three N-N bonds to afford a large molecular cage. Unfortunately,
the attempts at the oxidation of the urazoles to form urazolyl radicals instead only lead to random
oligomerization, forming plastic-like materials rather than the desired cages.
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1. Introduction

1-Substituted urazole radicals are a class of deeply colored persistent nitrogen-centered
radicals, 2, that exist in equilibrium with the N-N dimers, 3, in solution [1,2]. The urazolyl
radicals are generated from the oxidation of precursor N-H urazoles, 1, via various oxidants,
including tert-butyl hypochlorite and Ni2O3 (Scheme 1) [1–3]. With simple alkyl or aryl
substituents at the N1 and N4 positions of the urazole ring, the radical form seen in 2
remains heavily populated in the solution [1–3]. We have reported that for 1-aryl urazolyl
radicals in which there is present a bis-ortho substitution relative to the urazole radical
ring (i.e., 4) that the N-N dimer form seen in 5 predominates instead (Scheme 2) [3,4]. By
leveraging this behavior, we were able to synthesize the cage compound shown by 7 via
the dimerization of the triurazolyl radical seen in 6 via the formation of three N-N bonds
(Scheme 3) [4]. In an attempt to form even larger cage structures in an analogous manner,
we were interested in the synthesis and oxidation of a triurazole compound, as shown in 8
(Figure 1). Herein we report our synthesis, the characterization of this compound, and its
attempted oxidation.
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Scheme 1. Oxidation of urazoles, 1, to form N-centered urazolyl radicals, 2, that exist in equilibrium
with N-N dimers, 3, in solution.

Molbank 2023, 2023, M1535. https://doi.org/10.3390/M1535 https://www.mdpi.com/journal/molbank

https://doi.org/10.3390/M1535
https://doi.org/10.3390/M1535
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molbank
https://www.mdpi.com
https://orcid.org/0000-0001-5760-7071
https://doi.org/10.3390/M1535
https://www.mdpi.com/journal/molbank
https://www.mdpi.com/article/10.3390/M1535?type=check_update&version=1


Molbank 2023, 2023, M1535 2 of 5

Molbank 2022, 2022, x FOR PEER REVIEW 2 of 5 
 

 

Scheme 2. Bis-ortho-substituted 1-aryl urazolyl radicals, 4, exist predominantly in the N-N dimer 

form, 5, in solution. 

 

Scheme 3. Formation of cage compound shown in 7 via the formation of three N-N bonds from the 

radical sites of precursor triradical, 6. 

 

Figure 1. Structure of target triurazole, 8. 

2. Results and Discussion 

Scheme 4 outlines the synthetic route utilized for the synthesis of the target molecule, 

triurazole, as shown in 8. The treatment of commercially available 1,3,5-tris(bromome-

thyl)benzene with three equivalents of the 3,5-dimethylphenoxide generated via the 

deprotonation of the phenol using potassium tert-butoxide afforded the known com-

pound tris(phenoxymethyl)benzene, shown in 9, at a 96% yield [5]. Compound 9 was an-

alyzed using 1H and 13C NMR, IR, and HRMS analyses. The NMR spectra were decep-

tively simple for its molecular size due to the symmetry of the structure and, in the 1H 

NMR spectrum, the lack of H-H coupling that meant all signals were simple singlets (see 

the spectra provided in the Supplementary Materials). The treatment of 9 with three 

equivalents of MeTAD in the presence of trifluoroacetic acid as a catalyst led to the for-

mation of target triurazole 8 at a 98% yield. Compound 8 was characterized using 1H and 
13C NMR, DEPT, IR, and HRMS analyses. As with 9, the symmetry and lack of H-H cou-

pling rendered the 1H NMR spectrum as a simple series of singlets but with proper inte-

grations. The N-methyl signals of the urazole rings are readily identified as a singlet at 

2.99 ppm in the 1H NMR spectrum (relative integration of 6H), and the carbonyl groups 

of the ring appear at 153.6 and 152.5 ppm in the 13C NMR spectrum. Triurazole 8 exhibited 

extremely low solubility in chlorinated solvents (CHCl3, CH2Cl2) and acetonitrile but was 

fairly soluble in the highly polar solvents DMSO and DMF. 

Scheme 2. Bis-ortho-substituted 1-aryl urazolyl radicals, 4, exist predominantly in the N-N dimer
form, 5, in solution.

Molbank 2022, 2022, x FOR PEER REVIEW 2 of 5 
 

 

Scheme 2. Bis-ortho-substituted 1-aryl urazolyl radicals, 4, exist predominantly in the N-N dimer 

form, 5, in solution. 

 

Scheme 3. Formation of cage compound shown in 7 via the formation of three N-N bonds from the 

radical sites of precursor triradical, 6. 

 

Figure 1. Structure of target triurazole, 8. 

2. Results and Discussion 

Scheme 4 outlines the synthetic route utilized for the synthesis of the target molecule, 

triurazole, as shown in 8. The treatment of commercially available 1,3,5-tris(bromome-

thyl)benzene with three equivalents of the 3,5-dimethylphenoxide generated via the 

deprotonation of the phenol using potassium tert-butoxide afforded the known com-

pound tris(phenoxymethyl)benzene, shown in 9, at a 96% yield [5]. Compound 9 was an-

alyzed using 1H and 13C NMR, IR, and HRMS analyses. The NMR spectra were decep-

tively simple for its molecular size due to the symmetry of the structure and, in the 1H 

NMR spectrum, the lack of H-H coupling that meant all signals were simple singlets (see 

the spectra provided in the Supplementary Materials). The treatment of 9 with three 

equivalents of MeTAD in the presence of trifluoroacetic acid as a catalyst led to the for-

mation of target triurazole 8 at a 98% yield. Compound 8 was characterized using 1H and 
13C NMR, DEPT, IR, and HRMS analyses. As with 9, the symmetry and lack of H-H cou-

pling rendered the 1H NMR spectrum as a simple series of singlets but with proper inte-

grations. The N-methyl signals of the urazole rings are readily identified as a singlet at 

2.99 ppm in the 1H NMR spectrum (relative integration of 6H), and the carbonyl groups 

of the ring appear at 153.6 and 152.5 ppm in the 13C NMR spectrum. Triurazole 8 exhibited 

extremely low solubility in chlorinated solvents (CHCl3, CH2Cl2) and acetonitrile but was 

fairly soluble in the highly polar solvents DMSO and DMF. 

Scheme 3. Formation of cage compound shown in 7 via the formation of three N-N bonds from the
radical sites of precursor triradical, 6.

Molbank 2022, 2022, x FOR PEER REVIEW 2 of 5 
 

 

Scheme 2. Bis-ortho-substituted 1-aryl urazolyl radicals, 4, exist predominantly in the N-N dimer 

form, 5, in solution. 

 

Scheme 3. Formation of cage compound shown in 7 via the formation of three N-N bonds from the 

radical sites of precursor triradical, 6. 

 

Figure 1. Structure of target triurazole, 8. 

2. Results and Discussion 

Scheme 4 outlines the synthetic route utilized for the synthesis of the target molecule, 

triurazole, as shown in 8. The treatment of commercially available 1,3,5-tris(bromome-

thyl)benzene with three equivalents of the 3,5-dimethylphenoxide generated via the 

deprotonation of the phenol using potassium tert-butoxide afforded the known com-

pound tris(phenoxymethyl)benzene, shown in 9, at a 96% yield [5]. Compound 9 was an-

alyzed using 1H and 13C NMR, IR, and HRMS analyses. The NMR spectra were decep-

tively simple for its molecular size due to the symmetry of the structure and, in the 1H 

NMR spectrum, the lack of H-H coupling that meant all signals were simple singlets (see 

the spectra provided in the Supplementary Materials). The treatment of 9 with three 

equivalents of MeTAD in the presence of trifluoroacetic acid as a catalyst led to the for-

mation of target triurazole 8 at a 98% yield. Compound 8 was characterized using 1H and 
13C NMR, DEPT, IR, and HRMS analyses. As with 9, the symmetry and lack of H-H cou-

pling rendered the 1H NMR spectrum as a simple series of singlets but with proper inte-

grations. The N-methyl signals of the urazole rings are readily identified as a singlet at 

2.99 ppm in the 1H NMR spectrum (relative integration of 6H), and the carbonyl groups 

of the ring appear at 153.6 and 152.5 ppm in the 13C NMR spectrum. Triurazole 8 exhibited 

extremely low solubility in chlorinated solvents (CHCl3, CH2Cl2) and acetonitrile but was 

fairly soluble in the highly polar solvents DMSO and DMF. 

Figure 1. Structure of target triurazole, 8.



Molbank 2023, 2023, M1535 3 of 5

2. Results and Discussion

Scheme 4 outlines the synthetic route utilized for the synthesis of the target molecule,
triurazole, as shown in 8. The treatment of commercially available 1,3,5-tris(bromomethyl)be
nzene with three equivalents of the 3,5-dimethylphenoxide generated via the depro-
tonation of the phenol using potassium tert-butoxide afforded the known compound
tris(phenoxymethyl)benzene, shown in 9, at a 96% yield [5]. Compound 9 was analyzed
using 1H and 13C NMR, IR, and HRMS analyses. The NMR spectra were deceptively
simple for its molecular size due to the symmetry of the structure and, in the 1H NMR spec-
trum, the lack of H-H coupling that meant all signals were simple singlets (see the spectra
provided in the Supplementary Materials). The treatment of 9 with three equivalents of
MeTAD in the presence of trifluoroacetic acid as a catalyst led to the formation of target
triurazole 8 at a 98% yield. Compound 8 was characterized using 1H and 13C NMR, DEPT,
IR, and HRMS analyses. As with 9, the symmetry and lack of H-H coupling rendered the
1H NMR spectrum as a simple series of singlets but with proper integrations. The N-methyl
signals of the urazole rings are readily identified as a singlet at 2.99 ppm in the 1H NMR
spectrum (relative integration of 6H), and the carbonyl groups of the ring appear at 153.6
and 152.5 ppm in the 13C NMR spectrum. Triurazole 8 exhibited extremely low solubility in
chlorinated solvents (CHCl3, CH2Cl2) and acetonitrile but was fairly soluble in the highly
polar solvents DMSO and DMF.
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The oxidation of urazoles to form the corresponding urazolyl radicals can be effected
by using the heterogeneous oxidant Ni2O3 in CHCl3 or CH2Cl2 [3,4]. However, attempts at
oxidization in these solvents (even in boiling CHCl3) were unsuccessful, apparently due to
the poor solubility of the starting triurazole. Unfortunately, DMSO and DMF, solvents that
are better able to dissolve 8, were incompatible with the oxidizing agent.

The NHs of urazoles are fairly acidic, with pKa’s close to 5 [6]. Therefore, the reaction
of 8 with three equivalents of NaOH in water resulted in the slow dissolution of the starting
material due to the deprotonation of the urazole NHs by the hydroxide. The treatment of
the resulting trianion with the oxidizing agent (NH4)2S2O8 resulted in the formation of
a plastic-like material that separated from the aqueous layer. This material was also not
particularly soluble in CDCl3, but from the amount that we were able to dissolve, a very
complex 1H NMR spectrum that lacked the NH’s of the starting urazole 8 but included
very broad signals at the remaining chemical shifts analogous to those of 8 were observed.
This observation suggested that instead of forming the desired cage compound via a
“dimerization” of two tri-radical units, the tri-radicals prefer to engage in oligomerization
via random N-N bond formation to form the observed plastic-like material, as represented
in Figure 2.
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3. Materials and Methods
3.1. General Methods

The 1H and 13C NMR spectra were obtained using a 400 MHz NMR spectrometer.
The chemical shifts were reported in units of parts per million downfield from TMS. High-
resolution mass spectra (HRMS) were acquired via electron spray ionization on an LTQ-FTMS
hybrid mass spectrometer. N-Methyl-1,3,5-triazoline-3,5-dione (MeTAD) was synthesized via
the oxidation of N-methylurazole with DABCO-Br2, as described in the literature [7,8]. All of
the other compounds were commercially available and used as received.

3.2. 1,3,5-Tris[(3,5-dimethylphenoxy)methyl]benzene (9) [5]

To a stirring solution of 2 g (0.016 mole, 4 eq) of 3,5-dimethylphenol in 50 mL dry
DMF, 1.8 g (0.016 mole) of potassium tert-butoxide was added as a solid. The tert-butoxide
dissolved, and the reaction mixture was stirred at room temperature for 45 min. To the
resulting clear pale brown solution, solid 1,3,5-tris(bromomethyl)benzene was added at
once. This mixture was stirred for 48 hours and then poured into 100 mL of ether. The
organic layer was washed 3 × 50 mL 1M aq. NaOH, 1 × 50 mL sat. aq. NaCl, dried over
Na2SO4, filtered, and concentrated to afford a white solid. The solid was dissolved in 80 mL
of acetone, and 100 mL of methanol was then added while swirling. Crystallization began
to take place almost immediately. The mixture was cooled in a freezer for 1 h, and the
crystalline product was isolated via vacuum filtration to afford 1.50 g (96% yield) of 9 as
colorless crystals, m.p. 129–130 ◦C. IR (ATR) cm−1 2916, 2862, 1617, 1596, 1325, 1298, 1174,
1160, 1084, 845, 824; 1H NMR (400 MHz, CDCl3) δ 7.46 (s, 3H), 6.62 (s, 9H), 5.05 (s, 6H),
2.29 (s, 18H); 13C{1H} NMR (100 MHz, CDCl3) δ 158.9, 139.4, 138.2, 126.0, 123.0, 112.7, 69.7,
21.6; HRMS (electron spray ionization) m/z [M+H]+ Calcd for C33H37O3 481.2737; Found
481.2745. The NMR data were consistent with the data provided in the literature [5].
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3.3. 1-(4-{[3,5-bis({[3,5-Dimethyl-4-(4-methyl-3,5-dioxo-1,2,4-triazolidin-1-yl)-
phenoxy]methyl})phenyl]methoxy}-2,6-dimethylphenyl)-4-methyl-1,2,4-triazolidine-3,5-dione (8)

To a stirring solution of 0.5 g of 9 (1.18 mmol) in 20 mL of CH2Cl2, 0.4 g (3.54 mmol,
3.1 eq) of MeTAD was added as a solid. To the resulting deep red solution, 0.27 mL (3.1 equiv)
of CF3CO2H was added via a syringe. After stirring overnight, the resulting pale pink
solution was concentrated and subjected to column chromatography (SiO2, 90:10 ethyl ac-
etate/methanol) to afford 0.904 g (98% yield) of triurazole 9 as a white solid, m.p. 266–268 ◦C
(decomp): IR (ATR) cm−1 1697, 1483, 1164, 857. 1H NMR (400 MHz, DMSO-d6) δ 10.8 (s,
3H), 7.51 (s, 3H), 6.87 (s, 6H), 5.16 (s, 6H), 2.99 (s, 9H), 2.13 (s, 18H); 13C{1H} NMR (100 MHz,
DMSO-d6)158.7, 153.6, 151.5, 139.7, 137.5, 126.4, 125.8, 114.4, 69.1, 24.9, 17.6; HRMS (eléctron
spray ionization) m/z [M+H]+ Calcd for C42H46N9O9 820.3413; Found 820.3390.

Supplementary Materials: The following supporting information can be downloaded: For com-
pound 8: 1H NMR spectrum, 13C NMR spectrum, DEPT spectrum, IR spectrum, HRMS spectra. For
compound 9: 1H NMR spectrum, 13C NMR spectrum, IR spectrum, HRMS spectra.
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